用户名: 密码: 验证码:
环保型胶凝材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环保型胶凝材料是在水泥产业逐渐转变发展模式的背景下,针对降低水泥工业资源和能源消耗,减轻并消除环境污染等问题提出的。环保型胶凝材料可消纳大量具有活性的工业废渣,即将工业废渣作为混合材用来取代传统波特兰水泥中部分或大部分熟料。环保型胶凝材料的研究与制备,将促进我国的水泥工业走向可持续发展道路。
     本论文以粉煤灰和矿粉为研究对象,通过提高它们作为混合材的掺量,来制备环保型胶凝材料。经过微波辐照,粉煤灰的反应活性可得到提高。用微波辐照的粉煤灰替代水泥熟料,可提高它在胶凝材料体系中的掺量。偏高岭土中的活性氧化铝和硫铝酸盐水泥中无水硫酸钙,有利于生成更多的钙矾石,促进水泥熟料的水化。两者作为添加剂,加入大掺量矿粉环保型胶凝材料,可提高其早期强度。
     此外,本论文对大掺量粉煤灰和矿粉胶凝材料采用微波辐照方法,系统地探讨此养护方法对两种胶凝材料的胶砂强度的影响。
     论文取得的主要结论如下:
     (1)微波辐照能明显提高粉煤灰的反应活性。不同的微波辐照功率和时间,对粉煤灰的反应活性提高效果不同。其中,粉煤灰经过450W微波辐照10min,反应活性提高效果最显著。粉煤灰的最佳微波辐照参数,可通过胶砂强度试验结果来确定。
     (2)通过对大掺量粉煤灰环保型胶凝材料进行标准稠度用水量和凝结时间测试,并结合胶砂强度试验结果,发现当微波辐照的粉煤灰以30%等质量取代水泥熟料,可制备出42.5强度等级的环保型胶凝材料。而当微波辐照的粉煤灰以40%、50%等质量取代水泥熟料,可制备出32.5强度等级的环保型胶凝材料。
     (3)添加少量偏高岭土和硫铝酸盐水泥,可提高胶凝材料胶砂试块的早期强度。研究发现当矿粉掺量为80%,通过添加适量的偏高岭土和硫铝酸盐水泥,可制备出32.5强度等级的大掺量矿粉环保型胶凝材料。
     (4)微波养护可提高大掺量粉煤灰和矿粉胶凝材料的胶砂试块的早期强度。大掺量粉煤灰胶凝材料经过150W微波辐照养护1Omin,大掺量矿粉胶凝材料经过300W微波辐照养护10min,它们的胶砂试块强度提高效果最显著。最佳的微波养护参数,根据胶砂强度试验结果确定。
In order to reduce resource and energy consumption of the cement industry, alleviate or eliminate environment pollution, environment-protecting cementitious material was put forward based on transformation in the development model of the cement industry. Environment-protecting cementitious material can eliminate a flood of industry wastes, namely industrial residue used to replace part or most of the traditional Portland cement clinker as cement admixture. Research and preparation of environment-protecting cementitious material can promote china's cement industry towards a path of sustainable development.
     In this study, fly ash and slag were researched as cement mixture though increasing their content to make environment-protecting cementitious material. The reactivity of fly ash was enhanced by microwave radiation, the content of which in cementitious material system can be increased with fly ash irradiated by microwave instead of cement clinker. Activated alumina of metakaolin and calcium sulfate anhydrate of sulpho-aluminate cement can benefit to form more ettringite, and then promote the hydration of the cement clinker. Metakaolin and sulpho-aluminate cement were added in large charge slag environment-protecting cementitious material and can improve its early strength.
     In addition, the high volume fly ash and slag cementitious materials were cured by microwave radiation in this paper. The influence of mortar strength of two cementitious materials conserved by microwave radiation was discussed systematiclly.
     The results are as follows:
     (1)Microwave irradiation can improve the reactivity of fly ash obviously. Different activation effects to the activity of fly ash can be obtained by different microwave radiation power and time. Among them, the activity of fly ash reaches the maximum by radiated with450W for10minutes. The best microwave radiation parameters applying to fly ash can be determined by the results of mortar strength tests.
     (2)Testing the water requirement of normal consistency and setting time of environment-protecting cementitious material containing large volume fly ash, combined with the results of mortar strength, show that42.5strength grade environment-protecting cementitious material can be prepared when the equal amount of cement clinker is replaced with fly ash radiated by microwave reaching30percent. And32.5strength grade environment protection type of cementitious materials can be prepared when the amount of fly ash stimulated by microwave radiation reaching40and50percent instead of cement clinker.
     (3) It can improve the early strength of environment-protecting cementitious material by adding a few of metakaolin and sulpho-aluminate cement. Research show that32.5strength grade large volume slag environment-protecting cementitious materials can be prepared by adding proper metakaolin and sulpho-aluminate cement when the amount of slag reaches80percent.
     (4)Microwave curing can improve the early mortar strength of high volume fly ash and slag cementitious materials. High volume fly ash cementitious material is irradiated by microwave with150W curing10minutes, and large amount of slag cementitious material is irradiated by microwave with300W curing10minutes, which shows their mortar strength increased most significantly. The optimal microwave curing parameters can be determined by the results of mortar strength tests.
引文
[1]张建新.2011年效益倍增2012年利润可期——中国水泥协会会长雷前治访谈录[J].中国水泥,2012(2):12-15.
    [2]雷前治.十二五水泥工业可持续发展的思考http://www.ccement.com/news/2011/4-7/ C134632705.htm (2011/4/7).
    [3]Jing Ke, Nina Zheng, David Fridley, et al. Potential energy savings and CO2 emissions reduction of Chain's cement industry[J]. Energy Policy,2012,45:739-751.
    [4]N.A. Madlool, R. Saidur, M.S. Hossain, et al. A critical review on energy ues and saving in the cement industries[J]. Renewable and Sustainable Energy Reviews,2011,15(4):2042-2060.
    [5]M.B. Ali, R. Saidur, M.S. Hossain.A review on emission analysis in cement industries[J]. Renewable and Sustianable Energy Reviews,2011,15(5):2252-2261.
    [6]王贵林,矫学成.制约水泥工业发展的因素与可持续发展战略[J].环境与可持续发展,2009,34(3):25-27.
    [7]史伟,崔源声,武夷山.国外水泥工业低碳发展技术现状及前景展望[J].水泥,2011(3):13-16.
    [8]黄弘,唐明亮,沈晓冬,等.工业废渣资源化及其可持续发展——与水泥混凝十工业相结合走可持续发展之路[J].材料导报,2006(20):455-458.
    [9]万鲁君.浅谈粉煤灰在混凝土中的应用技术[J].中国科技信息,2009,4:18-81.
    [10]聂轶苗,牛福生.张锦瑞.我国矿渣综合利用现状[J].建材技术与应用,2009,2:6-9.
    [11]Ellis Gartner. Industrially interesting approaches to "low-CO2" cement[J]. Cement and Concrete Research,2004,34(9):1489-1498.
    [12]M.B. Ali, R. Saidur, M.S. Hossain. A review on emission analysis in cement industries[J]. Renewable and Sustainable Energy Reviews,2011,15(5):2252-2261.
    [13]Yu Lei, Qing Zhang, Chris Nielsen, et al. An inventory of primary air pollutants and CO2 emissions from cement production in China,1990-2020[J]. Atmospheric Environment,2011, 45(1):147-154.
    [14]雷前治.低碳经济——水泥工业必然选择[J].中国水泥,2012(4):12.
    [15]Ryunosuke Kikuchi. Recycling of municipal solid waste for cement production:pilot-scale test for transforming incineration ash of solid waste into cement clinker[J]. Resources, Conservation and Recycling,2001,31 (2):137-147.
    [16]Pai-Haung Shih, Juu-En Chang, Li-Choung Chiang. Replacement of raw mix in cement production by municipal solid waste incineration ash[J].Cement and Concrete Research, 2003,33(11):1831-1836.
    [17]P Krammart, S Tangtermsirikul. Properties of cement made by partially replacing cement raw materials with municipal solid waste ashes and calcium carbide waste[J]. Construction and Building Materials,2004,18(8):579-583.
    [18]Nabajyoti Saikia, Shigeru Kato, Toshinori Kojima. Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash[J]. Waste Management,2007,27(9): 1178-1189.
    [19]Lei Wang, Yiying Jin, Yongfeng Nie, et al. Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production:A real-scale test[J]. Resources, Conservation and Recycling,2010,54(12):1428-1435.
    [20]张新辉,施惠生.生态水泥以及发展前景[J].节能环保,2011(12):14-17.
    [21]张瑞荣,贾海红.侯浩波.论LIFAC脱硫灰用作环保型胶凝材料的可行性[J].粉煤灰综合利用,2004(5):47-48.
    [22]姜洪义,彭长琪,张联盟.环保型GSF胶结材的研究[J].新型建筑材料,2001(4):37-38.
    [23]G. Habert, C. Billard, P. Rossi, et al. Cement production technology improvement compared to factor 4 objectives[J]. Cement and Concrete Research,2010,40(5):820-826.
    [24]Shalini Anand, Prem Vrat, R.P. Dahiya. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry[J]. Journal of Environmental Management,2006,79(4):383-389.
    [25]Chi-Liang Yen, Dyi-Hwa Tseng, Tung-Tsan Lin. Characterization of eco-cement paste produced from waste sludges[J]. Chemosphere,2011,84(2):220-226.
    [26]Hui-sheng Shi, Li-li Kan. Characteristics of municipal solid wastes incineration (MSWI) fly ash-cement matrices and effect of mineral admixtures on composite system[J]. Construction and Building Materials,2009,23(6):2160-2166.
    [27]Xiang-Guo Li, Yang Lv, Bao-Guo Ma, et al. Utilization of municipal solid waste incineration bottom ash in blended cement[J]. Journal of Cleaner Production,2012, 32:96-100.
    [28]安明喆,盛红.环保型节能水泥及其水化机理分析[J].北方交通大学学报,2001,25(1):15-18.
    [29]余其俊,赵三银,杉田修一,等.高活性稻壳灰的制备及其对水泥性能的影响[J].武汉理工大学学报,2003,25(1):15-18.
    [30]刘孟贺,李辉.干法脱硫灰用作水泥混合材的试验研究[J].洛阳工业高等专科学校学报,2007,17(5):1-5.
    [31]马保国,曹晓润,李叶青,等.利用煤矸石制备低环境负荷型水泥的研究[J].四川环境,2004,23(5):61-64.
    [32]覃霜.变质岩粉末作为生态水泥掺合料的研究[D].大连:大连理工大学,2007.
    [33]毛良喜,王越,李东旭,等.少熟料磷渣水泥的研究[J].水泥工程,1999(3):23-26.
    [34]陈平,安庆锋,李红.锰铁合金渣用于绿色生态水泥的研究[J].铁合金,2007(6):45-48.
    [35]陈平,明阳,李玲,等.锰渣—石灰石部分取代矿渣制备复合生态水泥[J].铁合金,2011(6):34-38.
    [36]丁欣.金文辉,成岳,等.利用工业废渣研制复合水泥[J].陶瓷学报,2011,32(3):475-478.
    [37]黄赟.磷石膏基水泥的开发研究[D].武汉:武汉理工大学,2010.
    [38]朱福印.利用电石工业废渣和风积沙生产生态水泥[J].水泥,2002(9):12-13.
    [39]吴铭生,滕海波.电石渣替代石灰石生产水泥熟料的技术经济分析[J].水泥技术,2011(4):40-41.
    [40]杨伟.镁渣作水泥混合材的研究[J].建材技术与应用,2011(9):11-13.
    [41]黄从运,柯劲松,张明飞,等.利用镁渣作混合材生产复合硅酸盐水泥试验研究[J].2005(5):21-22.
    [42]李倩,曹素改,张若思,等.利用钢渣、矿渣制备生态水泥[J].粉煤灰综合利用,2009(6):32-35.
    [43]王先进,金作先,任素梅,等.碱铬铁渣绿色水泥的研究[J].水泥技术,1993(4):53-54.
    [44]张国强.黄金尾矿在水泥中的资源化利用研究[D].苏州:苏州大学,2009.
    [45]施惠生,岳鹏.利用城市垃圾焚烧飞灰开发新型生态水泥混合材料[J].水泥技术,2003(6):8-12.
    [46]Arnaud Mercier. Prospective on the energy efficiency and CO2 emissions in the EU cement industry[J].Energy,2011,36(5):3244-3254.
    [47]Lgnacio Hidalgo, Juan Carlos Ciscar, Antonio Soria. CO2 emission trading within the European Upion and Annex B countries: the cement industry case[J]. Energy Policy,2006, 34(1):72-87.
    [48]N. Mahasenan, R.T. Dahowski, C.L. Davidson. The role of carbon dioxide capture and storage in reducing emissions from cement plants in North America[J]. Greenhouse Gas Control Technologies 7,2005:901-909.
    [49]Ni-Bin Chang, H.P Wang, W.L Huang, et al. The assessment of reuse potential for municipal solid waste and refuse-derived fuel incineration ashes[J]. Resources, Conservation and Recycling,1999,25(3-4):225-270.
    [50]K.L. Lin, C.T. Chang. Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash[J]. Journal of Hazardous Materials,2006,135 (1-3): 296-302.
    [51]“美国研究人员研制出‘绿色水泥’”,http://news.jc001.cn/detail/574019.html (2010/9/30)
    [52]“2008年十大绿色科技:从绿色水泥到太阳能岛”,http://news. xinhuanet.com/tech/ 2009-01/03/content_10596356.htm (2009/1/3)
    [53]高长明.利用水泥厂协同处置城市垃圾势在必行——从日本生态水泥的教训说起[J].水泥工程,2007(2):3-6.
    [54]Eduardo M.R. Fairbairn, Branca B. Americano, Guilherme C. Cordeiro. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits[J]. Journal of Environmental Management,2010,91(9):1864-1871.
    [55]Deutscher Innovationspreis fur Celitement, http://www.kit.edu/besuchen/pi_ 2012_8749.php (2012/1/17)
    [56]"Green cement could cut CO2", http://www.chinadialogue.net/blog/show/single/en/2665-Green-cement-could-cut-CO2-(2009/1/5)
    [57]水泥制造的未来,http://www.linkschina.com/cn/index.php?option=com_content&view= article&id=700:2010-01-21-11-09-03&catid=5:2009-11-13-10-03-15&Itemid=8(2010/1/20)
    [58]Zhiqiang Liu, Zhihua Liu, Xiaolin Li. Staus and prospect of the application of municipal solid waste incineration in China[J]. Applied Thermal Engineering,2006,26(11-12): 1193-1197.
    [59]Gang Zhang, Jing Hai, Jiang Cheng. Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China[J]. Watse Management,2012, 32(6):1156-1162.
    [60]Jing Ke, Nina Zheng, David Fridley, et al. Potential energy savings and CO2 emissions reduction of China's cement industry[J]. Energy Policy,2012,45:739-751.
    [61]无熟料水泥生产专利技术资料大全,http://www.doc88.com/p-90725317837.html (2009/1214)
    [62]方军良,陆文雄,徐彩宣.粉煤灰的活性激发技术及机理研究进展[J].上海大学学报,2002,8(3):255-259.
    [63]张雄,鲁辉.张文娟,等.矿渣活性激发方式的研究进展[J].西安建筑科技大学大学学报(自然科学版),2011,43(3):379-382.
    [64]K.E. Waters, N.A. Rowson, R.W. Greenwood, et al. Characterising the effect of microwave radiation on the magnetic properties of pyrite[J]. Separation and Purification Technology, 2007,56(1):9-17.
    [65]A. Arenillas, B. Fidalgo, L. Zubizarreta, et al. Microwave heating processes involving carbon materials[J]. Fuel Processing Technology,2010,91(1):1-8.
    [66]R. Trujillano, E. Rico, M.A. Vicente, et al. Microwave radiation and mechanical grinding as new ways for preparation of saponite-like materials[J]. Applied Clay Science,2010, 48(1-2):32-28.
    [67]肖勇丽.辐照激发粉煤灰活性研究[D].重庆:重庆大学,2008.
    [68]牟群英,李贤军.微波加热技术的应用与研究进展[J].物理,2004,33(6):438-441.
    [69]翁诗甫.傅里叶变换红外光谱分析(第二版)[M].2010,北京:化学工业出版社.
    [70]丁铸,张德成,丁杰.偏高岭土对水泥性能的影响[J].混凝土与水泥制品,1997(5):8-11.
    [71]安树好.高掺量矿渣水泥的研制及其早强激发机理的研究[D].保定:河北理工学院,2003.
    [72]吕竹梅.建筑施工中混凝土养护措施[J].民营科技,2010(3):200.
    [73]彭仕国,尹友良,焦云州.混凝土养护工艺应用[J].铁道工程学报,2001(2):123-126.
    [74]王宇亮.微波加热对水泥净浆强度影响的试验研究[D].大津:河北理工大学,2009.
    [75]杨医博,文梓云.水泥基材料的微波养护技术[J].低温建筑技术,2001(3):63-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700