用户名: 密码: 验证码:
铋系一维纳米材料的制备及其光催化性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于光催化技术可以将太阳光能转化为电能和化学能,因此在杀菌、环境净化、光催化、光解水制氢和染料敏化太阳能电池等领域有广泛的应用前景。但光催化技术发展至今仍然存在以下几个主要问题,第一,以二氧化钛为代表的紫外光驱动的光催化剂的量子效率低。第二,光生电子空穴对复合过快。第三,光催化剂难于分离回收。因而,寻求高活性、易回收的可见光光催化剂是解决光催化技术应用的当务之急。本文基于催化剂发展中存在的问题,利用电纺技术结合溶剂热、水热法、原位还原、离子交换等方法制备具有高效可见光催化活性的铋系一维复合纳米光催化剂,通过对异质结型光催化剂的组成和形貌控制试图解决催化剂在应用中的问题。具体内容如下:
     (1)利用静电纺丝技术和溶剂热方法制备了Bi_2MoO_6微米管材料。首先,以电纺聚丙烯腈(PAN)为模板,通过乙二醇溶剂热方法制备了核壳结构的聚丙烯腈/Bi_2MoO_6(PAN/BMO)混合纤维。然后,通过煅烧去掉PAN/BMO混合微纤维中的电纺PAN获得Bi_2MoO_6微米管(BMO-MTs)。这种BMO-MTs在可见光照射下对于罗丹明B(RB)的降解表现出高的活性。增强的光催化活性可能由于特殊的中空管状结构对光的高利用率和大的比表面积。由于BMO-MTs的大的长径比,它在光催化反应液中能通过沉淀而回收再利用。通过该方法还可以制备其他的铋系复合氧化物微米管,例如Bi_2WO_6和BiVO_4微米管。另外,采用水热方法和原位还原手段对所制备的BiVO_4微管进行进一步的修饰,获得了BVO_4@C/Ag复合微米管材料体系。在可见光的作用下,利用所获得的复合材料降解展示了优于未经修饰BiVO_4微米管的光催化活性。这可归因于该材料的一维中空结构三元组分的光协同作用,导致了高的光利用率和高的量子产率。另外,由于碳层对嵌入其中的Ag纳米粒子起到了保护作用,使Ag纳米粒子不易被氧化,从而保证了光催化剂的稳定性。
     (2)利用静电纺丝技术和溶剂热方法制备了Bi_2MoO_6/TiO_2纳米纤维异质结材料。在溶剂热反应过程中,通过调控反应浓度,在纳米纤维上分别构造了不同形貌的Bi_2MoO_6次级结构。在该体系中,Bi_2MoO_6可以增加复合体系对可见光的吸收能力,而Bi_2MoO_6和TiO_2所形成的异质结界面则有利于光生电子空穴对的有效分离,因此,在可见光照射下,该异质结构在光催化降解罗丹明B的过程中展现了很好的光催化活性。此外,由于电纺TiO_2纳米纤维所具有的网毡结构,使该材料具有较好的沉降可回收再利用的性质。
     (3)利用静电纺丝技术和溶剂热方法制备了Bi_2MoO_6/碳纳米纤维异质结材料。可见光催化降解罗丹明B研究表明,Bi_2MoO_6/碳纳米纤维异质结材料具有优于同摩尔比例机械混的Bi_2MoO_6与碳纳米纤维混合物的光催化活性。在该材料体系中,碳纳米纤维优异的导电性能可以使光生电子空穴对的分离效率得到增强,从而使该材料表现出优异的光催化性能。此外,Bi_2MoO_6/碳纳米纤维异质结材料的一维纳米网毡结构,也使其具有优异的可分离及重复使用特性。最后,我们对溶剂热过程中的各种实验参数进行了系统的调控,进而得到了多种Bi_2MoO_6/碳纳米纤维异质结材料,并研究了Bi_2MoO_6次级结构对其的光催化性质的影响。
     (4)利用静电纺丝技术和溶剂热方法制备了BiOCl/碳纳米纤维异质结材料。在溶剂热反应过程中,通过调控反应浓度,在纳米纤维上分别构造了不同形貌的BiOCl次级结构。紫外光催化降解罗丹明4-硝基酚研究表明,BiOCl//碳纳米纤维异质结材料具有优于单组份BiOCl纳米粉体的光催化活性。在该材料体系中,碳纳米纤维优异的导电性能可以使光生电子空穴对的分离效率得到增强,从而使该材料表现出优异的光催化性能。此外,通过相同的方法,我们制备出了具有可见光催化活性的BiOBr/碳纳米纤维及BiOI/碳纳米纤维异质结材料。
     (5)对制得的BiOBr/CNFs异质结通过粒子交换技术处理,制备了具有特殊结构的AgBr/BiOBr/碳纳米纤维三元异质结材料。可见光催化降解罗丹明甲基橙(MO)研究表明,AgBr/BiOBr/碳纳米纤维异质结材料具有优于BiOBr/碳纳米纤维异质的二元光催化活性。对光催化机理的研究发现,三元异质结构是加快光生电子空穴对分离的主要原因。
It is possible to converse the low density solar energy to chemistry and electricity energy bythe photocatalytic technologies, which provide great potential for the applications insterilization,remediation of environment, H2production by water splitting and dye-sensitizedsolar cell,and so on. However, the photocatalytic technologies still have at least twodisadvantages. First, most of these applications suffer from its dissatisfactory quantumeffciency. Second, the rapid recombination of photoinduced electrons and holes greatlylowers the quantum efficiency. Therefore, to design and develop highly efficient and easy tobe recovered photocatalyts has become the focus of current research. Generally, highly activephotocatalysts have the features of narrow band gap, high quantum efficiency, large specificsurface area, high stability and can be easy recovered. However, in fact, many programs ofimproving photocatalytic activity are still unable to meet the above points. In this dissertation,we focus on development of bismuth-based heterojunctions as photocatalysts, usinghydrothermal and solvothermal methods to control their composition and morphology. Themain contents were discussed as follows:
     (1) Bi_2MoO_6microtubes (BMO-MTs) were obtained by a two-step fabrication route. Byusing the electrospun polyacrylonitrile (PAN) microfibers as structure-directing hard templateand through ethylene glycol solvothermal method, polyacrylonitrile/Bi_2MoO_6(PAN/BMO)hybrid microfibers with core–shell structures were prepared. Through heat treatment of theas-prepared PAN/BMO to remove the PAN core, Bi_2MoO_6with tubes-structured wereobtained. Photocatalytic tests show that the BMO-MTs possess a much higher degradationrate of Rhodamine B (RB) than that of Bi_2MoO_6prepared by solid-state reaction andconventional P25. The improved photocatalytic performance could be ascribed to the hollowmulti channelled structure and large surface area. The BMO-MTs could be reclaimed easilyby sedimentation from the photocatalytic reaction solution due to the large length to diameterratio of one-dimensional tubes structures. Moreover, such simple and versatile strategy canprovide a general way to fabricate other tubes structures of Bi(III)-containing oxides, such asBi_2WO_6and BiVO_4microtubes. Carbon-modified BiVO_4microtubes embedded by Agnanoparticles (BVO@C/Ag MTs) were obtained by by a combination of hydrothermaltechnique and ion exchange reaction. The photocatalytic studies revealed that theBVO@C/Ag MTs exhibited the highest photocatalytic activity for photodegradation ofRhodamine B (RB) as compared with the pure BiVO_4MTs, BiVO_4@C MTs under visiblelight irradiation. The high separation efficiency of photogenerated electron–hole pairs basedon the photosynergistic effect among the three components of BiVO_4, carbon, and Ag and the improved visible light utilization from the sensitizing effects of carbon layers both contributeto the enhanced photocatalytic activity. The BVO@C/Ag MTs did not exhibit any significantloss of activity after three cycles of the photodegradation process of RB, which results fromthe fact that the presence of carbon layer could inhibit the oxidized and lost of Ag NPs duringrepeated applications.
     (2) One-dimensional Bi_2MoO_6/TiO_2hierarchical heterostructures with different secondaryBi_2MoO_6nanostructures grown on primary TiO_2nanofibers have been obtained by acombination of electrospinning and a solvothermal technique. The morphology of thesecondary Bi_2MoO_6nanostructures could be controlled by adjusting precursor concentration,and then two different morphologies of Bi_2MoO_6/TiO_2heterostructures with Bi_2MoO_6nanoparticles and nanosheets were successfully achieved. Photocatalytic tests displayed thatthe Bi_2MoO_6/TiO_2heterostructures possessed a much higher degradation rate of Rhodamine B(RB) than the unmodifed TiO_2nanofibers and Bi_2MoO_6under UV and visible light.Moreover, the heterostructures could be reclaimed easily by sedimentation without a decreaseof the photocatalytic activity.
     (3) A two-step synthesis route combining an electrospinning technique and solvothermalmethod has been accepted as a straightforward protocol for the exploitation ofBi_2MoO_6/carbon nanofibers (CNFs) hierarchical heterostructures which are composed ofBi_2MoO_6nanosheets on the surface of CNFs. Photocatalytic tests display that theBi_2MoO_6/CNFs heterostructures possess a much higher degradation rate of Rhodamine B(RB) than pure Bi_2MoO_6under visible light. The enhanced photocatalytic activity could beattributed to the extended absorption in the visible light region resulting from the Bi_2MoO_6nanosheets, and the effective separation of photogenerated carriers driven by thephotoinduced potential difference generated at the Bi_2MoO_6/CNFs heterojunction interface.Moreover, the heterostructures could be reclaimed easily by sedimentation without a decreaseof the photocatalytic activity. The morphology of the secondary Bi_2MoO_6nanostructurescould be controlled by adjusting the experimental parameters including precursorconcentration, temperature and solvent during the solvothermal process. As a result, differentmorphologies of Bi_2MoO_6/CNFs heterostructures with Bi_2MoO_6nanosheets, nanoparticles,nanoflowers and nanorods were successfully achieved.
     (4) A two-step synthesis route combining an electrospinning technique and solvothermalmethod has been accepted as a straightforward protocol for the exploitation of BiOCl/carbonnanofibers (CNFs) hierarchical heterostructures which are composed of BiOCl nanosheets onthe surface of CNFs. Photocatalytic tests display that the BiOCl/CNFs heterostructurespossess a much higher degradation rate of4-nitrophenol (4-NP) than pure BiOCl under UVlight. The enhanced photocatalytic activity could be attributed to the effective separation ofphotogenerated carriers driven by the photoinduced potential difference generated at the BiOCl/CNFs heterojunction interface. Moreover, the heterostructures could be reclaimedeasily by sedimentation without a decrease of the photocatalytic activity. Moreover, suchsimple and versatile strategy can provide a general way to fabricate other BiOX (X=Cl, Br,I)/CNFs heterostructures, such as BiOBr/CNFs and BiOI/CNFs.
     (5) A novel AgBr/BiOBr/CNFs heterostructures was prepared by a rational in situ ionexchange reaction between BiOBr and AgNO3in ethylene glycol. Photocatalytic tests displaythat the AgBr/BiOBr/CNFs heterostructures possess a much higher degradation rate ofmethyl orange (MO) than BiOBr/CNFs heterostructures under visible light. The enhancedphotocatalytic activity could be attributed to the extended absorption in the visible lightregion resulting from the AgBr and BiOBr nanosheets, and the effective separation ofphotogenerated carriers driven by the photoinduced potential difference generated at theAgBr/BiOBr/CNFs heterojunction interface.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38.
    [2] Chen X, Lou Y, Samia A C, Burda C. Coherency strain effects on the optical response of core-Shellheteronanostructures [J]. Nano Lett,2003,3(6):799-803.
    [3] Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. Bactericidal and detoxification effects of TiO2thinfilm photocatalysts [J]. Environ Sci Technol1998,32(5):726-728.
    [4] Nirmal. M, Brus. L. Luminescence photophysics in semiconductor nanocrystals [J].Acc Chem Res,1999,32(5):407-414.
    [5] Yu J C,Lin J,Kwok R W M. Ti1-xZrxO2solid solution for the Photoeatalytic degradation of acetone inair [J]. J phys Chem B,1998,102(26):5094-5098.
    [6] Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution attitanium dioxide powder [J]. J Am Chem Soc,1977,99(1),303-304.
    [7] Frank S N, Bard A J. Heterogeneous photocatalytic oxidoion of cyanide and sulfite in aqueoussolutions at semiconductor powders [J]. J Phys Chem,1977,81(15):1484-1488.
    [8] O’Regan B, Gr tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films[J]. Nature.1991,353:737-740.
    [9]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京,化学工业出版社,2002,26-27.
    [10]翟俊英,化工百科全书(第15卷,无机钛化合物)[M].北京,化学工业出版社,539-542.
    [11] Diebold U. The surface science of titanium dioxide [J]. Surface Science Reports,2003,48(5-8):53-229.
    [12] Obuchi E. Titania photocatalytic [J]. Journal of the Electrochemical Society,1996,143(9):191-193.
    [13] Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of CH3COOH with H2O onsmall-particle TiO2: size quantization effects and reaction intermediates [J]. J Phys Chem,1987,91(16):4305-4310.
    [14] Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO2nanoparticles[J]. Nano Lett,2003,3(8):1049-1051.
    [15] Chen X, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J].J Phys Chem B,2004,108(40):15446-15449.
    [16] Szczepankiewicz S H, Colussi A.J, Hoffmann M R. Infrared spectra of photoinduced species onhydroxylated titania surfaces [J]. J Phys Chem B,2000,104(42):9842-9850.
    [17] Tentorio A,Matijevic E,Kratohvil J P. Preparation and optical properties of spherical Colloidalaluminum hydroxide Particles containing a dye [J]. J Colloid Interface Sci,1980,77(2):418-426.
    [18] Navío J A,Marehena F J,Roneel M,et al. A Laser flash photolysis study of the reduction of Methylviologen by conduction band electrons of TiO2and Fe-Ti oxide photocatalysts[J]. J PhotochemPhotobiol A Chem,1991,55(3):319-322.
    [19] Milis A,Peral J,Domènech X,et al. Heterogeneous photocatalytic oxidation of nitrite over iron-dopedTiO2samples [J]. J Mol Catal,1994,87(1):67-74.
    [20] Matijevic E. Uniform colloidal barium ferrite partieles [J]. J Colloid Interface Sci,1987,117(2):593-595.
    [21] Choi W, Termin A, Hoffmann M R. The Role of metal ion dopants in quantum-sized TiO2: correlationbetween Photoreactivity and Charge Carrier Recombination Dynamics [J]. J Phys Chem,1994,98(51):13669-13679.
    [22] Yamashita H,Harada M,Misaka J,et al. Photocatalytic degradation of Propanol diluted in water undervisible light irradiation using metal ion-implanted titanium dioxide photocatalysts [J]. J PhotochemPhotobiol A,2002,148(l-3):257-261.
    [23] Radecka M,Zakrewska K, WierZbieka M,et al. Study of the TiO2-Cr2O3system for photoelectrolyticdecomposition of water [J]. Solid State Ionics,2003,157(1-4):379-386.
    [24] Gupta A K, Pal A, Sahoo C. Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet3)and Methyl Red dye in aqueous suspensions using Ag+doped TiO2[J]. Dyes Pigments,2006,69(3):224–232.
    [25] Chen C, Li X, Ma W, et al. Effect of transition metal ions on the TiO2-assisted photodegradation ofdyes under visible irradiation:a probe for the interfacial electron transfer process and reactionmechanism [J]. J Phys Chem B,2002,106(2):318-324.
    [26] Zhang Y,Zhang H,Xu Y,et al.Europium doped nanocrystalline titanium dioxide:preparation,phase transformation and photocatalytic properties [J]. J Mater Chem,2003,13(9):2261-2265.
    [27] Batzill M, Morales E H, Diebold U. Influence of nitrogen doping on the defect formation and surfaceproperties of TiO2anatase and rutile [J]. Phys Rev Lett,2006,96(2):026103.
    [28] Diwald O, Thompson T L, Zubkov T, etal. Photochemical activity of nitrogen-doped rutile TiO2(110)in visible light [J]. J Phys Chem B,2004,108(19):6004-6008.
    [29] Valentin C D, Pacchioni G, Selloni A, et al. Characterization of paramagnetic species in N-doped TiO2powders by EPR spectroscopy and DFT calculations [J]. J Phys Chem B,2005,109(23):11414-11419.
    [30] Valentin D, Pacchioni C, Selloni G A.Origin of the photoactivity of N-doped anatase and rutile TiO2[J]. Phys Rev B,2004,70(8):085116.
    [31] Nakamura R, TanakaT, Nakato Y. Mechanism for visible light responses in anodic photocurrents atN-Doped TiO2film electrodes [J]. J Phys Chem B,2004,108(30):10617-10620.
    [32] Miyauchi M, Ikezawa A, Tobimatsu H, et al. Zeta potential and photocatalytic activity of nitrogendoped TiO2thin films[J]. Phys Chem Chem Phys,2004,6(4):865-870.
    [33] Lee J Y, Park J, Cho J H. Electronic properties of N-and C-doped TiO2[J]. Appl Phys Lett,2005,87(1):011904.
    [34] Hotsenpiller P A M, Bolt J D, Farneth W E, et al. Orientation dependence of photochemical reactionson TiO2surfaces [J]. J Phys Chem B,1998,102(17):3216-3226.
    [35] Lowekamp J B, Rohrer G S, Hotsenpiller P A M. Anisotropic photochemical reactivity of bulk TiO2crystals [J]. J Phys Chem B,1998,102(38):7323-7327.
    [36] Sakthivel S,Kisch H.Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angew ChemInt Ed,2003,42(40):4908-4911.
    [37] Hwang S, Lee M C, Choi W. Highly enhanced photocatalytic oxidation of CO on titania depositedwith Pt nanoparticles:kinetics and mechanism [J]. Appl Catal B,2003,46(1):49-63.
    [38] Wang Z S, Ebina Y, Takada K. Inorganic multilayer assembly of Titania semiconductor nanosheets andRu complexes [J]. Langmuir,2003,19(22):9534-9537.
    [39] Jakob M, Levanon H. Charge distribution between UV-irradiated TiO2and gold nanoparticles:determination of shift in the Fermi level [J]. Nano Letters,2003,3(3):353-358.
    [40] SubramanianV, Wolf E E, Kamat P V. Catalysis with TiO2/Gold nanocomposites. Effect of metalparticle size on the Fermi level equilibration [J]. J Am Chem Soc,2004,126(15):4943-4950.
    [41] Naoi K, Ohko Y, Tasuma T. TiO2films loaded with silver nanoparticles:control of multicolorphotochromic behavior [J]. J Am Chem Soc,2004,126(11):3664-3668.
    [42] Subramanian V, Wolf E, Kamat P V. Influence of metal/metal ion concentration on the photocatalyticactivity of TiO2/Au composite nanoparticles [J]. Langmuir2003,19(2):469-474.
    [43] Gong X, Selloni A, Dulub O, Jacobson P, Diebold U. Small Au and Pt clusters at the anatase TiO2(101)surface: behavior at terraces, steps, and surface oxygen vacancies [J]. J Am Chem Soc,2008,130(1):370-381.
    [44] Formo E, Lee E, Campbell D, et al. Functionalization of electrospun TiO2nanofibers with Ptnanoparticles and nanowires for catalytic applications [J]. Nano Letters,2008,8(2):668-672.
    [45] Einaga H.,Harada M.,Futamura S,et al.,Generation of active site for CO photooxidation on TiO2byplatinum deposition. J Phys Chem B,2003,107(35):9290-9297.
    [46] Hiesgen R, Meissner D. Nanoscale photocurrent variations at metal-modified semiconductor surfaces[J]. J Phys Chem B,1998,102(34):6549-6557.
    [47] Amihood D, Katz E, Willner, I. Organization of Au colloids as monolayer films onto ITO glasssurfaces: application of themetal colloid films as base interfaces to construct redox-active monolayers[J]. Langmuir,1995,11(4):1313-1317.
    [48] Yonezawa T, Mutsune H, Kunitake T. Layered nanocomposite of close-packed Gold nanoparticles andTiO2gel layers [J]. Chem Mater,1999,11(1):33-35.
    [49] Giersig M, Mulvaney P. Formation of ordered two-dimensional Gold colloid lattices byelectrophoretic deposition [J]. J Phys Chem,1993,97(24):6334-6336.
    [50] Chandrasekharan N, Kamat P V. Assembling Gold nanoparticles as nanostructured films using anelectrophoretic approach [J]. Nano Lett,2001,1(2):67-70.
    [51] Subramanian V, Wolf E, Kamat P V. Semiconductor-metal composite nanostructures. To What extentdo metal nanoparticles improve the photocatalytic activity of TiO2films?[J]. J Phys Chem B2001,105(46):11439-11446.
    [52] LinsebiglerA L,Lu G-Q,Yates J t. Photocaltalysis on TiO2surfaces,principles,Mechanisms, andselected results [J]. Chem Rev,1995,95(3):735-738.
    [53] Miyoshi H, Mori H, Yoneyama H. Light-induced decomposition of saturated carboxylic acids on ironoxide incorporated clay suspended in aqueous solutions [J]. Langmuir,1991,7(3):503-507.
    [54] Domen K, Kudo A, Tanaka A, et al. Overall photodecomposition of water on a layered niobite catalyst[J]. Catalysis Today,1990,8(1):77-84.
    [55] Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2and CdS/TiO2heterojunctions as an availableconfiguration for photocatalytic degradation of organic pollutant [J]. J Photochem Photobiol A Chem,2004,163(3):569-580.
    [56] Ostermann R, Li D,Yin Y D, et al. V2O5Nanorods on TiO2nanofibers: A new class of hierarchicalnanostructures enabled by electrospinning and calcination [J]. Nano Lett,2006,6(6):1297-1302.
    [57] NasrC, KamatP V, Hotchandani S. Photoelectrochemistry of composite semiconductor thin films.Photosensitization of the SnO2/TiO2coupled system with a Ruthenium polypyridyl complex [J]. JPhys Chem B,1998,102(49):10047-10052.
    [58] Yoo J, Oh D, Wachsman E D. Investigation of WO3-based potentiometric sensor performance(M/YSZ/WO3, M=Au, Pd, and TiO2) with varying counter electrode [J]. Solid State Ionics,2008,179(37):2090-2100.
    [59] Lin J, Yu J C, Lo D, Lam S K. Photocatalytic activity of rutile Ti1-xSnxO2solid solutions [J]. J Catal,1999,183(2):368-372.
    [60] Tada H, Hattori A, Tokihisa Y, et al. A patterned-TiO2/SnO2bilayer type photocatalyst [J]. J PhysChem B,2000,104(19):4585-4587.
    [61] Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3,and Bi2S3particles as sensitizersfor various nanoporous wide-band gap semiconductors[J]. J Phys Chem,1994,98(12):3183-3188.
    [62] Shchukin D G,Caruso R A.Inorganic Macroporous films from preformed nanoparticles andmembrance templates: synthesis and investigation of photocatalytic and photoelectrochemicalproperties [J]. Adv Funct Mater,2003,13(10):789-794.
    [63] Marci G, Augugliaro V, Lopez-Munoz M J, et al. Preparation characterization and photocatalyticactivity of polycrystalline ZnO/TiO2systems, surface, bulk characterization, and4-nitrophenolphotodegradation in liquid-solid regime [J]. J Phys Chem B,2001,105(5):1033-1040.
    [64] Do Y R, Lee W, Dwight K, et al. The effect of WO3on the photocatalytic activity of TiO2[J]. J SolidState Chem,1994,108(1):198-201.
    [65] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2under visible light irradiation [J].J Photochem Photobiol A Chem,2001,141(2-3):209-217.
    [66] Zorn M E, Tompkins D T, Zeltner W A, et al. Photocatalytic oxidation of a cetonevaporon TiO2-ZrO2thin films [J]. Applied Catalysis B Environment,1999,23(1):1-8.
    [67] Heinz D, Hoelderich W F, Kriu S, et al. V2O5-TiO2catalysts for the vapor-phase oxidation ofβ-Picoline influence of the TiO2-carrier [J]. J Catal,2000,192(1):10-11.
    [68] VinodgoPal K, Kamat P V. Enhanced rates of photocatalytic degradation of an azo dye usingSnO2/TiO2coupled semiconductor thin films [J]. Environ Sci Technol,1995,29(3):841-845.
    [69] Ilchuk G A, Ukrainets V O, Rud Y V. Electrochemical synthesis of thin CdS films [J].Tech Phys Lett,2004,30(46):628-636.
    [70] Feitosa A V, Miranda M A R, Sasaki J M, et al. A New route for preparing CdS thin films by chemicalbath deposition using EDTA as ligand [J]. J Phys Chem B,2004,34(3):656-662.
    [71] Robert D. Assembly of alternating TiO2/CdS nanoparticle composite films [J]. Catalysis Today,2007,122(1):20-23.
    [72] Gopidas K R, Boherguez M, Kamat P V. Photo-physical and potichemical aspects of coupledsemiaonducters.Charge-kramsfer processes in colloid as CdS-TiO2and CdS-AgI system [J]. J PhysChem,1990,94(8):6535-6538.
    [73] Hirai T, Suzuki K, Komasawa I. Preparation and photocatalytic properties of composite CdSnanoparticles-Titanium Dioxide particles [J]. J Colloid Interface Sci,2001,244(2):262-265.
    [74] Bessekhouad Y, Chaoui N, Trzpit M, et al. UV–vis versus visible degradation of Acid Orange II in acoupled CdS/TiO2semiconductors suspension [J]. J Photochem Photobiol A Chem,2006,183(1-2):218–224.
    [75] Biswas S, Hossain M F, Takahashi T. Fabrication of Gr tzel solar cell with TiO2/CdS bilayeredphotoelectrode [J]. Thin Solid Films,2008,517(3):1284-1288.
    [76] Si H Y, Sun Z H, Zhang H L. Photoelectrochemical response from CdSe-sensitized anodic oxidationTiO2nanotubes [J]. Coll Sur A: Physicochem Eng Aspects,2008,313-314(2):604-607.
    [77] Shen Q, Katayama K, amaguchi M.Y, et al. Study of ultrafast carrier dynamics of nanostructured TiO2films with and withoutt CdSe quantum dot deposition using lens-free heterodyne detection transientgrating technique [J]. Thin Solid Films,2005,486(1-2):15-19.
    [78] Zhou X M, Yang H C, Wang C X, et al. Visible Light Induced Photocatalytic Degradation RhodamineB on One-Dimensional Iron Oxide Particles[J]. J.Phys.Chem. C,2010,114(40):17051-17061
    [79] Xie H, Li Y Z, Jin S F, et al. Facile Fabrication of3D-Ordered Macroporous Nanocrystalline IronOxide Films with Highly Efficient Visible Light Induced Photocatalytic Activity[J]. J. Phys. Chem. C,2010,114(21):9706-9712
    [80] Yu H, Yu J, Liu S, et al.Template-free hydrothermal synthesis of CuO/Cu2O composite hollowmicrospheres [J]. Chem. Mater,2007,19(17):4327-4334
    [81] Ai Z H, Zhang L Z, Lee S C, et al. Interfacial Hydrothermal Synthesis of Cu@Cu2O Core-ShellMicrospheres with Enhanced Visible-Light-Driven Photocatalytic Activity [J]. J. Phys. Chem. C,2009,113(49):20896-20902
    [82] Bao N, Shen L, Takata T, et al. Facile cd-thiourea complex thermolysis synthesis of phase-controlledCdS nanocrystals for photocatalytic hydrogen production under visible light [J]. J. Phys. Chem. C,2007,111(47):17527-17534
    [83] Bao N Z, Shen L M, Takata T, et al.Self-templated synthesis of nanoporous CdS nanostructures forhighly efficient photocatalytic hydrogen production under visible[J]. Chem. Mater.,2008,20(1):110-117
    [84] Jia L S, Li J J, Fang W P, et al.Visible-light-induced photocatalyst based on C-doped LaCoO3synthesized by novel microorganism chelate method [J]. Catal. Commun.,200910(8):1230-1234
    [85] Li Y Y, Yao S S, Wen W,et al. Sol-gel combustion synthesis and visible-light-driven photocatalyticproperty of perovskite LaNiO3[J]. J.Alloy.Compd.,2010,491(1-2)560-564
    [86] Shu X, He J, Chen D.Visible-light-induced photocatalyst based on nickel titanat nanoparticles [J]. Ind.Eng. Chem. Res.,2008,47(14):4750-4753
    [87] Xu S H, Feng D L, Shangguan W F. Preparations and Photocatalytic Properties o Visible-Light-ActiveZinc Ferrite-Doped TiO2Photocatalyst[J]. J. Phys. Chem. C,2009113(6):2463-2467
    [88] Hou Y, Li X Y, Zhao Q D, et al. Electrochemically Assisted Photocatalytic Degradation of4-Chlorophenol by ZnFe2O4-Modified TiO2Nanotube Array Electrode under Visibl Light Irradiation[J]. Environ. Sci. Technol.,2010,44(13):5098-5103
    [89] Unal U, Matsumoto Y, Tamoto N, et al.Visible light photoelectrochemical activity K4Nb6O17intercalated with photoactive complexes by electrostatic self-assembly deposition [J]. J. Solid. State.Chem.,2006,179(1):33-40
    [90] Maeda K, Eguchi M, Youngblood W J, et al. Niobium Oxide Nanoscrolls as Building Blocks forDye-Sensitized Hydrogen Production from Water under Visible Ligh Irradiation [J]. Chem. Mater.,2008,20(21):6770-6778
    [91] Shi H F, Li X K, Iwai H, et al.2-Propanol photodegradation over nitrogen-doped NaNbO3powdersunder visible-light irradiation[J].J. Phys. Chem. Solids.,2009,70(6)931-935
    [92] Li E J, Chen L, Zhang Q A, et al. Bismuth-Containing Semiconductor Photocatalysts[J] Prog. Chem.,2010,22(12):2282-2289
    [93] Zhang L S, Wang W Z, Yang J O, et al. Sonochemical synthesis of nanocrystallite Bi2O3as avisible-light-driven photocatalyst [J]. Appl. Catal. A,2006,308:105-110
    [94] Zhou L, Wang W Z, Xu H L, et al. Bi2O3Hierarchical Nanostructures: Controllabl Synthesis, GrowthMechanism, and their Application in Photocatalysis [J]. Chem. Eur J.,2009,15(7):1776-1782
    [95] Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6undervisible light irradiation [J]. Catal. Lett.,2004,92(1-2):53-56
    [96] Zhang C, Zhu Y F. Synthesis of square Bi2WO6nanoplates as high-activity visible-light-drivenphotocatalysts [J]. Chem. Mater.,2005,17(13):3537-3545
    [97] Zhang L S, Wang W Z, Chen Z G, et al. Fabrication of flower-like Bi2WO6superstructures as highperformance visible-light driven photocatalysts [J]. J. Mater Chem.,2007,17(24):2526-2532
    [98] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4withscheelite structure and their photocatalytic properties [J]. Chem. Mater.,2001,13(12):4624-4628
    [99] Yu J Q, Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermallysynthesized BiVO4[J]. Adv. Funct. Mater.,2006,16(16):2163-2169
    [100] Kidchob T, Malfatti L, Marongiu D, et al. Sol-Gel Processing of Bi2Ti2O7and Bi2Ti4O11Films withPhotocatalytic Activity [J].J. Am. Ceram. Soc.,2010,93(9):2897-2902
    [101] Gao F, Chen X Y, Yin K B, et al.Visible-light photocatalytic properties of weak magnetic BiFeO3nanoparticles [J]. Adv. Mater.,2007,19(19):2889
    [102] Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organic contaminants overCaBi2O4under visible-light irradiation [J]. Angew. Chem. Int. Edit.,2004,43(34):4463-4466
    [103] Shan Z C, Xia Y J, Yang Y X, et al. Preparation and photocatalytic activity of novel efficientphotocatalyst Sr2Bi2O5[J]. Mater. Lett.,2009,63(1):75-77
    [104] Yang Y Q, Zhang G K, Yu S J, et al.Efficient removal of organic contaminants by a visible lightdriven photocatalyst Sr6Bi2O9[J]. Chem. Eng. J.,2010,162(1):171-177
    [105] Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure with high photocatalyticactivity by CTAB as Br source and template [J]. J.Hazard.Mater.,2009,167(1-3):803-809
    [106] Zhang X, Zhang L Z. Electronic and Band Structure Tuning of Ternary Semiconductor Photocatalystsby Self Doping: The Case of BiOI[J]. J. Phys. Chem. C,2010,114(42):18198-18206
    [107] Xia J X, Yin S, Li H M, et al. Self-Assembly and Enhanced Photocatalytic Properties of BiOI HollowMicrospheres via a Reactable Ionic Liquid [J]. Langmuir,2011,27(3):1200-1206
    [108] Wang W D, Huang F Q, Lin X P. xBiOI(1-x)BiOCl as efficient visible-light-driven photocatalysts [J].Scripta Mater.,2007,56(8):669-672
    [109] Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel?[J]. Adv Mater,2004,16(14):1151-1170.
    [110] Xia Y, Yang P. Guest editorial: chemistry and physics of nanowires [J]. Adv Mater,2003,15(5):351-456.
    [111]吕砚山.常见电工电子技术手册[M].北京:化学工业出版社,1995.
    [112] Chun I, Reneker D H, Fong H, et al. Carbon nanofibers from polyacrylonitrile and mesophasepitch[J]. J Adv Mater,1999,31(1):36-41.
    [1] Wang J, Tafen D N, Lewis J P, et al. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2Nanobelts[J]. Journal of the American Chemical Society.2009,131(34):12290-12297.
    [2] Zhang Z, Wang W, Shang M, et al. Low-temperature combustion synthesis of Bi2WO6nanoparticles asa visible-light-driven photocatalyst[J]. Journal of Hazardous Materials.2010,177(1-3):1013-1018.
    [3] Wang X C, Yu J C, Chen Y L, et al. ZrO2-modified mesoporous manocrystalline TiO2-xNxas efficientvisible light photocatalysts[J]. Environmental Science&Technology.2006,40(7):2369-2374.
    [4] Maeda K, Teramura K, Lu D L, et al. Photocatalyst releasing hydrogen from water-Enhancingcatalytic performance holds promise for hydrogen production by water splitting in sunlight[J]. Nature.2006,440(7082):295-295.
    [5] Liu W, Yu Y, Cao L, et al. Synthesis of monoclinic structured BiVO4spindly microtubes in deepeutectic solvent and their application for dye degradation[J]. Journal of Hazardous Materials.2010,181(1-3):1102-1108.
    [6] Islam M S, Lazure S, Vannier R N. Structural and computational studies of Bi2WO6based oxygen ionconductors [J]. Journal of Materials Chemistry.1998,8(3):655-660.
    [7] Lopez Cuellar E, Martinez-de la Cruz A, Lozano Rodriguez K H, et al. Preparation ofgamma-Bi2MoO6thin films by thermal evaporation deposition and characterization for photocatalyticapplications[J]. Catalysis Today.2011,166(1):140-145.
    [8] Zhang M, Shao C, Mu J, et al. One-dimensional Bi2MoO6/TiO2hierarchical heterostructures withenhanced photocatalytic activity[J]. CrystEngComm.2012,14(2):605-612.
    [9] Zhang L, Xu T, Zhao X, et al. Controllable synthesis of Bi2MoO6and effect of morphology andvariation in local structure on photocatalytic activities[J]. Applied Catalysis B-Environmental.2010,98(3-4):138-146.
    [10] Shang M, Wang W, Ren J, et al. Nanoscale Kirkendall effect for the synthesis of Bi2MoO6boxes via afacile solution-phase method[J]. Nanoscale.2011,3(4):1474-1476.
    [11] Tian G, Chen Y, Zhou W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6hollow spheres as high performance visible-light driven photocatalysts[J]. Journal of MaterialsChemistry.2011,21(3):887-892.
    [12] Yin W, Wang W, Sun S. Photocatalytic degradation of phenol over cage-like Bi2MoO6hollow spheresunder visible-light irradiation[J]. Catalysis Communications.2010,11(7):647-650.
    [13] Cao S-W, Yin Z, Barber J, et al. Preparation of Au-BiVO4Heterogeneous Nanostructures as HighlyEfficient Visible-Light Photocatalysts[J]. ACS Applied Materials&Interfaces.2012,4(1):418-423.
    [14] Chatchai P, Kishioka S-y, Murakami Y, et al. Enhanced photoelectrocatalytic activity ofFTO/WO3/BiVO4electrode modified with gold nanoparticles for water oxidation under visible lightirradiation[J]. Electrochimica Acta.2010,55(3):592-596.
    [15] Ren J, Wang W, Sun S, et al. Enhanced photocatalytic activity of Bi2WO6loaded with Agnanoparticles under visible light irradiation[J]. Applied Catalysis B-Environmental.2009,92(1-2):50-55.
    [16] Liu W, Yu Y, Cao L, et al. Synthesis of monoclinic structured BiVO4spindly microtubes in deepeutectic solvent and their application for dye degradation[J]. Journal of Hazardous Materials.2010,181(1-3):1102-1108.
    [17] An C, Wang J, Qin C, et al. Synthesis of Ag@AgBr/AgCl heterostructured nanocashews withenhanced photocatalytic performance via anion exchange[J]. Journal of Materials Chemistry.2012,22(26):13153-13158.
    [18] Graf P, Mantion A, Haase A, et al. Silicification of Peptide-Coated Silver Nanoparticles-A BiomimeticSoft Chemistry Approach toward Chiral Hybrid Core-Shell Materials[J]. ACS NANO.2011,5(2):820-833.
    [19] Bi J, Wu L, Li H, et al. Simple solvothermal routes to synthesize nanocrystallineBi2MoO6photocatalysts with different morphologies[J]. Acta Materialia.2007,55(14):4699-4705.
    [20] Su C, Liu J, Shao C, et al. Controlled synthesis of PAN/Ag2S composites nanofibers viaelectrospinning-assisted hydro(solvo)thermal method[J]. Journal of Non-Crystalline Solids.2011,357(5):1488-1493.
    [21] Kudo A, Tsuji I, Kato H. AgInZn7S9solid solution photocatalyst for H2evolution from aqueoussolutions under visible light irradiation[J]. Chemical Communications.2002(17):1958-1959.
    [22] Zhang J, Shi F, Lin J, et al. Self-assembled3-D architectures of BiOBr as a visible light-drivenphotocatalyst[J]. Chemistry of Materials.2008,20(9):2937-2941.
    [23] Shimodaira Y, Kato H, Kobayashi H, et al. Photophysical properties and photocatalytic activities ofbismuth molybdates under visible light irradiation[J]. Journal of Physical Chemistry B.2006,110(36):17790-17797.
    [24] Long M, Cai W, Kisch H. Photoelectrochemical properties of nanocrystalline Aurivillius phaseBi2MoO6film under visible light irradiation[J]. Chemical Physics Letters.2008,461(1-3):102-105.
    [25] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductorphotocatalysis [J].Chem. Rev. Chem. Rev.1995,95(1):69-96.
    [26] Sun S, Wang W, Zhang L, et al. Visible Light-induced Efficient Contaminant Removal by Bi5O7I[J].Environmental Science&Technology.2009,43(6):2005-2010.
    [27] Fujishima A, Zhang X, Tryk D A. TiO2photocatalysis and related surface phenomena[J]. SurfaceScience Reports.2008,63(12):515-582.
    [1] Linsebigler A, Lu G, Yates J T. Photocatalysis on TiO2surfaces-principles, mechanisms, and selectedresults[J]. Chem. Rev.1995,95(3):735-758.
    [2] Berger T, Sterrer M, Diwald O, et al. Light-induced charge separation in anatase TiO2particles[J]. J.Phys. Chem. B.2005,109(13):6061-6068
    [3] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductorphotocatalysis [J].Chem. Rev. Chem. Rev.1995,95(1):69-96.
    [4] Sun S, Wang W, Zhang L, et al. Visible Light-induced Efficient Contaminant Removal by Bi5O7I[J].Environmental Science&Technology.2009,43(6):2005-2010.
    [5] Chai S Y, Kim Y J, Jung M H, et al. Heterojunctioned BiOCl/Bi2O3, a new visible lightphotocatalyst[J]. Journal of Catalysis.2009,262(1):144-149.
    [6] Zhang M, Shao C, Guo Z, et al. Hierarchical Nanostructures of Copper(II) Phthalocyanine onElectrospun TiO2Nanofibers: Controllable Solvothermal Fabrication and Enhanced VisiblePhotocatalytic Properties[J]. ACS Applied Materials&Interfaces.2011,3(2):369-377.
    [7] Zhang X, Ai Z, Jia F, et al. Generalized one-pot synthesis, characterization, and photocatalytic activityof hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. Journal of Physical Chemistry C.2008,112(3):747-753.
    [8] Kudo A, Tsuji I, Kato H. AgInZn7S9solid solution photocatalyst for H2evolution from aqueoussolutions under visible light irradiation[J]. Chemical Communications.2002(17):1958-1959.
    [9] Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organic contaminants overCaBi2O4under visible-light irradiation[J]. Angewandte chem-international edition2004,43(44),4463-4466.
    [10] Zhou L, Wang W, Zhang L. Ultrasonic-assisted synthesis of visible-light-induced Bi2MoO6(M=W,Mo) photocatalysts[J]. Journal of Molecular Catalysis a-Chemical.2007,268(1-2):195-200.
    [11] Islam M S, Lazure S, Vannier R N. Structural and computational studies of Bi2WO6based oxygen ionconductors [J]. Journal of Materials Chemistry.1998,8(3):655-660.
    [12] Tian G, Chen Y, Zhou W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6hollow spheres as high performance visible-light driven photocatalysts[J]. Journal of MaterialsChemistry.2011,21(3):887-892.
    [13] Xie L, Ma J, Xu G. Preparation of a novel Bi2MoO6flake-like nanophotocatalyst by molten saltmethod and evaluation for photocatalytic decomposition of rhodamine B[J]. Materials Chemistry andPhysics.2008,110(2-3):197-200.
    [14] Cruz A M, Alfaro S O. Synthesis and characterization of Bi2MoO6prepared by co-precipitation:photoassisted degradation of organic dyes under visirradiation[J]. J. Mol. Catal. A: Chem.2010,320:85-91.
    [15] Yin W, Wang W, Sun S. Photocatalytic degradation of phenol over cage-like Bi2MoO6hollow spheresunder visible-light irradiation[J]. Catalysis Communications.2010,11(7):647-650.
    [16] Bergshoef M M, Vancso, G J. Transparent nanocomposites with ultrathin, electrospun nylon-4,6fiberreinforcement [J].Advanced. Materials.,1999,11(12):1362-1365.
    [17] Shimodaira Y, Kato H, Kobayashi H, et al. Photophysical properties and photocatalytic activities ofbismuth molybdates under visible light irradiation[J]. Journal of Physical Chemistry B.2006,110(36):17790-17797.
    [18] Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2nanofiber photocatalyst fabricatedby electrospinning with a side-by-side dual spinneret method[J]. Nano Letters.2007,7(4):1081-1085.
    [19] Li D, Xia Y N, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning[J].Nano Letters.2004,4(5):933-938.
    [20] Wang N, Sun C, Zhao Y, et al. Fabrication of three-dimensional ZnO/TiO2heteroarchitectures via asolution process[J]. Journal of Materials Chemistry.2008,18(33):3909-3911.
    [21] Wang C, Shao C, Liu Y, et al. Water-Dichloromethane Interface Controlled Synthesis of HierarchicalRutile TiO2Superstructures and Their Photocatalytic Properties[J]. Inorganic Chemistry.2009,48(3):1105-1113.
    [22] Ren W, Ai Z, Jia F, et al. Low temperature preparation and visible light photocatalytic activity ofmesoporous carbon-doped crystalline TiO2[J]. Applied Catalysis B-Environmental.2007,69(3-4):138-144.
    [23] Rengaraj S, Li X Z, Tanner P A, et al. Photocatalytic degradation of methylparathion-An endocrinedisruptor by Bi3+-doped TiO2[J]. Journal of Molecular Catalysis a-Chemical.2006,247(1-2):36-43.
    [24] Bian Z, Zhu J, Wang S, et al. Self-assembly of active Bi2O3/TiO2visible photocatalyst with orderedmesoporous structure and highly crystallized anatase[J]. Journal of Physical Chemistry C.2008,112(16):6258-6262.
    [25] Zhang J, Shi F, Lin J, et al. Self-assembled3-D architectures of BiOBr as a visible light-drivenphotocatalyst[J]. Chemistry of Materials.2008,20(9):2937-2941.
    [26] Long M, Cai W, Kisch H. Photoelectrochemical properties of nanocrystalline Aurivillius phaseBi2MoO6film under visible light irradiation[J]. Chemical Physics Letters.2008,461(1-3):102-105.
    [27] Robert D. Photosensitization of TiO2by MxOyand MxSynanoparticles for heterogeneousphotocatalysis applications[J]. Catalysis Today.2007,122(1-2):20-26.
    [1] Zhang J, Shi F, Lin J, et al. Self-assembled3-D architectures of BiOBr as a visible light-drivenphotocatalyst[J]. Chemistry of Materials.2008,20(9):2937-2941.
    [2] Wang X C, Yu J C, Chen Y L, et al. ZrO2-modified mesoporous manocrystalline TiO2-xNxas efficientvisible light photocatalysts[J]. Environmental Science&Technology.2006,40(7):2369-2374.
    [3] Zhang M, Shao C, Guo Z, et al. Highly Efficient Decomposition of Organic Dye by Aqueous-SolidPhase Transfer and In Situ Photocatalysis Using Hierarchical Copper Phthalocyanine HollowSpheres[J]. ACS Applied Materials&Interfaces.2011,3(7):2573-2578.
    [4] Islam M S, Lazure S, Vannier R N. Structural and computational studies of Bi2WO6based oxygen ionconductors [J]. Journal of Materials Chemistry.1998,8(3):655-660.
    [5] Shang M, Wang W, Ren J, et al. Nanoscale Kirkendall effect for the synthesis of Bi2MoO6boxes via afacile solution-phase method[J]. Nanoscale.2011,3(4):1474-1476.
    [6] Tian G, Chen Y, Zhou W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6hollow spheres as high performance visible-light driven photocatalysts[J]. Journal of MaterialsChemistry.2011,21(3):887-892.
    [7] Shang M, Wang W, Sun S, et al. Bi2MoO6nanocrystals with high photocatalytic activities undervisible light[J]. Journal of Physical Chemistry C.2008,112(28):10407-10411.
    [8] Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6nanoplate-built hierarchical nest-like structureswith visible-light-induced photocatalytic activity[J]. Journal of Physical Chemistry C.2007,111(34):12866-12871.
    [9] Zhang L, Wang W, Chen Z, et al. Fabrication of flower-like Bi2WO6superstructures as highperformance visible-light driven photocatalysts[J]. Journal of Materials Chemistry.2007,17(24):2526-2532.
    [10] Zhang L, Wang W, Zhou L, et al. Bi2WO6nano-and microstructures: Shape control and associatedvisible-light-driven photocatalytic activities[J]. Small.2007,3(9):1618-1625.
    [11] Li Y, Liu J, Huang X, et al. Hydrothermal synthesis of Bi2WO6uniform hierarchical microspheres[J].CRYSTAL GROWTH&DESIGN.2007,7(7):1350-1355.
    [12] Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2nanofiber photocatalyst fabricatedby electrospinning with a side-by-side dual spinneret method[J]. Nano Letters.2007,7(4):1081-1085.
    [13] Unalan H E, Di W, Suzuki K, et al. Photoelectrochemical cell using dye sensitized zinc oxidenanowires grown on carbon fibers[J]. Applied Physics Letters.2008,93(13).133116.
    [14] Liu J, Li J, Sedhain A, et al. Structure and Photoluminescence Study of TiO2Nanoneedle Texturealong Vertically Aligned Carbon Nanofiber Arrays[J]. Journal of Physical Chemistry C.2008,112(44):17127-17132.
    [15] Liu Y, Jing X. Pyrolysis and structure of hyperbranched polyborate modified phenolic resins[J].Carbon.2007,45(10):1965-1971.
    [16] Zhang G, Sun S, Yang D, et al. The surface analytical characterization of carbon fibers functionalizedby H2SO4/HNO3treatment[J]. Carbon.2008,46(2):196-205.
    [17] Long M, Cai W, Kisch H. Photoelectrochemical properties of nanocrystalline Aurivillius phaseBi2MoO6film under visible light irradiation[J]. Chemical Physics Letters.2008,461(1-3):102-105.
    [18] Hoffmann M R, Martin S T, Choi W Y, et al. Environmental applications of semiconductorphotocatalysis [J].Chem. Rev. Chem. Rev.1995,95(1):69-96.
    [19] Shimodaira Y, Kato H, Kobayashi H, et al. Photophysical properties and photocatalytic activities ofbismuth molybdates under visible light irradiation[J]. Journal of Physical Chemistry B.2006,110(36):17790-17797.32S. Sun, W. Wang, L. Zhang, L. Zhou, W. Yin and M. Shang,Environ. Sci. Technol.,2009,43,2005.
    [20] Fujishima A, Zhang X, Tryk D A. TiO2photocatalysis and related surface phenomena[J]. SurfaceScience Reports.2008,63(12):515-582.
    [1] Shimodaira Y, Kato H, Kobayashi H, et al. Photophysical properties and photocatalytic activities ofbismuth molybdates under visible light irradiation[J]. Journal of Physical Chemistry B.2006,110(36):17790-17797.32S. Sun, W. Wang, L. Zhang, L. Zhou, W. Yin and M. Shang,Environ. Sci. Technol.,2009,43,2005.
    [2] Long M, Cai W, Kisch H. Photoelectrochemical properties of nanocrystalline Aurivillius phaseBi2MoO6film under visible light irradiation[J]. Chemical Physics Letters.2008,461(1-3):102-105.
    [3] Zhang L, Wang W, Zhou L, et al. Bi2WO6nano-and microstructures: Shape control and associatedvisible-light-driven photocatalytic activities[J]. Small.2007,3(9):1618-1625.
    [4] Shang M, Wang W, Sun S, et al. Bi2WO6nanocrystals with high photocatalytic activities under visiblelight[J]. Journal of Physical Chemistry C.2008,112(28):10407-10411.
    [5] Wu J, Duan F, Zheng Y, et al. Synthesis of Bi2WO6nanoplate-built hierarchical nest-like structureswith visible-light-induced photocatalytic activity[J]. Journal of Physical Chemistry C.2007,111(34):12866-12871.
    [6] Shang M, Wang W, Ren J, et al. Nanoscale Kirkendall effect for the synthesis of Bi2MoO6boxes via afacile solution-phase method[J]. Nanoscale.2011,3(4):1474-1476.
    [7] Tian G, Chen Y, Zhou W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6hollow spheres as high performance visible-light driven photocatalysts[J]. Journal of MaterialsChemistry.2011,21(3):887-892.
    [8] Sun S, Wang W, Zhang L, et al. Visible Light-induced Efficient Contaminant Removal by Bi5O7I[J].Environmental Science&Technology.2009,43(6):2005-2010.[9] Chai S Y, Kim Y J, Jung M H, et al.Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst[J]. Journal of Catalysis.2009,262(1):144-149.
    [9] Kidchob T, Malfatti L, Marongiu D, et al. Sol-Gel Processing of Bi2Ti2O7and Bi2Ti4O11Films withPhotocatalytic Activity [J].J. Am. Ceram. Soc.,2010,93(9):2897-2902
    [10] Zhang X, Ai Z, Jia F, et al. Generalized one-pot synthesis, characterization, and photocatalytic activityof hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. Journal of Physical Chemistry C.2008,112(3):747-753.
    [11] Zhang J, Shi F, Lin J, et al. Self-assembled3-D architectures of BiOBr as a visible light-drivenphotocatalyst[J]. Chemistry of Materials.2008,20(9):2937-2941.
    [12] Chai S Y, Kim Y J, Jung M H, et al. Heterojunctioned BiOCl/Bi2O3, a new visible lightphotocatalyst[J]. Journal of Catalysis.2009,262(1):144-149.
    [13] Zhang M, Shao C, Guo Z, et al. Hierarchical Nanostructures of Copper(II) Phthalocyanine onElectrospun TiO2Nanofibers: Controllable Solvothermal Fabrication and Enhanced VisiblePhotocatalytic Properties[J]. ACS Applied Materials&Interfaces.2011,3(2):369-377.
    [14] Zhang X, Ai Z, Jia F, et al. Generalized one-pot synthesis, characterization, and photocatalytic activityof hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J]. Journal of Physical Chemistry C.2008,112(3):747-753.
    [15] Kudo A, Tsuji I, Kato H. AgInZn7S9solid solution photocatalyst for H2evolution from aqueoussolutions under visible light irradiation[J]. Chemical Communications.2002(17):1958-1959.
    [16] Cakan R D, Titirici M-M, Antonietti M, et al. Hydrothermal carbon spheres containing siliconnanoparticles: synthesis and lithium storage performance[J]. Chemical Communications.2008(32):3759-3761.
    [17] Zhang Y, Tang Z, Fu X, et al. Engineering the unique2D mat of graphene to achieve graphene-TiO2nanocomposite for photocatalytic selective transformation: what advantage does graphene have overits forebear carbon nanotube?[J]. ACS Nano2011,5:7426-7435.
    [18] Zhao X, Liu H, Shen Y, Qu J. Photocatalytic reduction of bromate at C60modifed Bi2MoO6undervisible light irradiation[J]. Applied Catalysis B: Environmental2011,106(3):63–68.
    [19] Lee W, Lee J, Kochuveedu S, et al. Biomineralized N-doped CNT/TiO2core/shell nanowires forvisible light photocatalysis[J]. ACS Nano2012,6:935–943.
    [20] Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2nanofiber photocatalyst fabricatedby electrospinning with a side-by-side dual spinneret method[J]. Nano Letters.
    [21] Su C, Liu J, Shao C, et al. Controlled synthesis of PAN/Ag2S composites nanofibers viaelectrospinning-assisted hydro(solvo)thermal method[J]. Journal of Non-Crystalline Solids.2011,357(5):1488-1493.
    [22] Unalan H E, Di W, Suzuki K, et al. Photoelectrochemical cell using dye sensitized zinc oxidenanowires grown on carbon fibers[J]. Applied Physics Letters.2008,93(13):133116.
    [1] Shi H F, Li X K, Iwai H, et al.2-Propanol photodegradation over nitrogen-doped NaNbO3powdersunder visible-light irradiation[J].J. Phys. Chem. Solids.,2009,70(6)931-935
    [2] Li E J, Chen L, Zhang Q A, et al. Bismuth-Containing Semiconductor Photocatalysts[J] Prog. Chem.,2010,22(12):2282-2289
    [3] Zhang L S, Wang W Z, Yang J O, et al. Sonochemical synthesis of nanocrystallite Bi2O3as avisible-light-driven photocatalyst [J]. Appl. Catal. A,2006,308:105-110
    [4] Zhou L, Wang W Z, Xu H L, et al. Bi2O3Hierarchical Nanostructures: Controllabl Synthesis, GrowthMechanism, and their Application in Photocatalysis [J]. Chem. Eur J.,2009,15(7):1776-1782
    [5] Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6undervisible light irradiation [J]. Catal. Lett.,2004,92(1-2):53-56
    [6] Zhang C, Zhu Y F. Synthesis of square Bi2WO6nanoplates as high-activity visible-light-drivenphotocatalysts [J]. Chem. Mater.,2005,17(13):3537-3545
    [7] Zhang L S, Wang W Z, Chen Z G, et al. Fabrication of flower-like Bi2WO6superstructures as highperformance visible-light driven photocatalysts [J]. J. Mater Chem.,2007,17(24):2526-2532
    [8] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4withscheelite structure and their photocatalytic properties [J]. Chem. Mater.,2001,13(12):4624-4628
    [9] Yu J Q, Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermallysynthesized BiVO4[J]. Adv. Funct. Mater.,2006,16(16):2163-2169
    [10] Kidchob T, Malfatti L, Marongiu D, et al. Sol-Gel Processing of Bi2Ti2O7and Bi2Ti4O11Films withPhotocatalytic Activity [J].J. Am. Ceram. Soc.,2010,93(9):2897-2902
    [11] Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure with high photocatalyticactivity by CTAB as Br source and template [J]. J.Hazard.Mater.,2009,167(1-3):803-809
    [12] Zhang X, Zhang L Z. Electronic and Band Structure Tuning of Ternary Semiconductor Photocatalystsby Self Doping: The Case of BiOI[J]. J. Phys. Chem. C,2010,114(42):18198-18206
    [13] Xia J X, Yin S, Li H M, et al. Self-Assembly and Enhanced Photocatalytic Properties of BiOI HollowMicrospheres via a Reactable Ionic Liquid [J]. Langmuir,2011,27(3):1200-1206
    [14] Wang W D, Huang F Q, Lin X P. xBiOI(1-x)BiOCl as efficient visible-light-driven photocatalysts [J].Scripta Mater.,2007,56(8):669-672
    [15] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2under visible light irradiation [J].J Photochem Photobiol A Chem,2001,141(2-3):209-217.
    [16] Zorn M E, Tompkins D T, Zeltner W A, et al. Photocatalytic oxidation of a cetonevaporon TiO2-ZrO2thin films [J]. Applied Catalysis B Environment,1999,23(1):1-8.
    [17] Heinz D, Hoelderich W F, Kriu S, et al. V2O5-TiO2catalysts for the vapor-phase oxidation ofβ-Picoline influence of the TiO2-carrier [J]. J Catal,2000,192(1):10-11.
    [18] VinodgoPal K, Kamat P V. Enhanced rates of photocatalytic degradation of an azo dye usingSnO2/TiO2coupled semiconductor thin films [J]. Environ Sci Technol,1995,29(3):841-845.
    [19] Ilchuk G A, Ukrainets V O, Rud Y V. Electrochemical synthesis of thin CdS films [J].Tech Phys Lett,2004,30(46):628-636.
    [20] Feitosa A V, Miranda M A R, Sasaki J M, et al. A New route for preparing CdS thin films by chemicalbath deposition using EDTA as ligand [J]. J Phys Chem B,2004,34(3):656-662.
    [21] Robert D. Assembly of alternating TiO2/CdS nanoparticle composite films [J]. Catalysis Today,2007,122(1):20-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700