用户名: 密码: 验证码:
火焰气相沉积法制备二氧化钛复合纳米颗粒及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO2纳米颗粒材料的制备和应用研究是近些年纳米材料领域的研究热点之一。论文采用的火焰气相沉积法由于具有工艺简单、产品纯度高、球形度高、粒径可控的优点,是近年来纳米颗粒材料、特别是纳米陶瓷颗粒材料研究与开发的主要制备技术之一。传统工艺中,因此为降低成本论文采用工业丙烷为燃料以空气为氧化性气体制备纳米材料,避免了传统工艺中多是采用氢气或甲烷为燃料,以氧气为氧化性气体,成本较高的不足,并充分利用丙烷的不完全燃烧制得C/TiO2复合纳米材料。在应用方面,将TiO2复合纳米颗粒材料应用到传统的电镀工业可以使镀层性能得到改善,在电镀锌中引进SiO2/TiO2复合纳米粉体,可使镀层在耐蚀性、硬度、耐磨性等性能上得到更大的提升,使其能够满足在恶劣环境下工作的需要。同时利用复合纳米颗粒吸收光谱偏移,增加了可见光的利用率,提高其在光催化中的降解率也被广泛的研究,实验中发现复合炭黑后的TiO2纳米颗粒材料吸收光谱发生红移,试将其应用于光催化降解甲醛中,以提高甲醛的降解效率。基于以上考虑,论文中采用C3H8/Air火焰气相沉积系统制备纳米TiO2复合粉体,对反应过程中的影响因素及颗粒在火焰中的形成过程进行了分析。将所制得的SiO2/TiO2粉体加入镀锌液中以获得二元合金复合镀层,并对镀层的性能进行了研究。将所制得的C/TiO2复合颗粒进行光催化降解甲醛应用研究,并对影响甲醛降解率的主要因素进行了分析。
     主要研究和结论如下:
     1.丙烷/空气火焰气相沉积系统制备纳米颗粒的方法研究。以丙烷和空气为原料对火焰气相沉积系统制备纳米材料的方法进行研究,改变工作条件,从完全燃烧到不完全燃烧,在不完全燃烧的反应条件下得到炭黑纳米粉体。研究了扩散火焰中纳米颗粒的形成和长大过程,及反应中中间产物乙炔浓度对炭黑形成过程的影响,并通过TEM和XRD等手段对实验所制得的产品进行表征,结果可知实验所制备的炭黑颗粒的平均尺寸主要在10-40nm之间为在此基础上反应物中引入TiCl4制得TiO2及C/TiO2(?)内米粉体从实验角度提供了理论依据。
     2.TiO2复合粉体的制备。在对C3H8/Air火焰气相沉积系统方法研究的基础上,分别以C3H8/Air/TiCl4和C3H8/Air/TiCl4/SiCl4为原料采用火焰气相沉积法制备TiO2(?)内米粉体、C/TiO2及SiO2/TiO2复合纳米粉体,研究了操作条件对颗粒物性的影响,通过XRD、TEM、EDS能谱等仪器对所制得的颗粒材料进行表征。结果表明,所制得颗粒平均尺寸主要在20-60nm之间,其晶体的类型以锐态相为主,C/TiO2含碳量在0-22.3%。经分析颗粒的粒径与反应的温度,停留时间和(?)TiCl4的浓度有关,当温度升高,停留时间加长或是TiCl4的浓度增大时,颗粒的粒径将会变大。。
     3.TiO2颗粒的积分碰撞动力学模型优化。采用Fluent软件中的涡流耗散燃烧模型,利用非平衡壁函数的RNG k-ε湍流模型和两步丙烷燃烧机理,对实验操作条件进行数值模拟,分析了不同氧化剂和载气流量对火焰温度场分布情况的影响,证实了TiCl4分子在进入火焰前是全部转化为TiO2单体,并在火焰中发生融合。参考相关的流体动力学模型、颗粒动力学模型和纳米颗粒凝结的相关理论后,对颗粒的积分碰撞动力学模型进行优化。经过理论推导和模型推导的合理性假设,得出初始颗粒直径的表达式,优化后的模型能够更好的预测初始颗粒直径大小。
     4.复合颗粒在电镀中的应用研究。将实验所制得的TiO2纳米粉体、SiO2(?)内米粉体以及SiO2/TiO2复合纳米粉体用于电镀中,研究了所制得复合镀层的性能变化,通过XRD、SEM、电化学综合测试仪、测厚仪、硬度仪等设备对镀层表征,得出结论SiO2/TiO2复合纳米粉体可以显著提高电镀液的电导率,在同等电镀条件下增加了镀层的厚度,同时有效地影响镀层金属的电结晶过程,使镀层金属的颗粒大为细化,使镀层表面光滑、平整,并使镀层的硬度、特别是在耐蚀性等方面得到显著的提高。
     5.复合颗粒光催化降解甲醛。通过对火焰气相沉积法所制备的C/TiO2复合纳米粉体表征中发现C/TiO2复合纳米粉体的吸收光谱发生红移,基于TiO2在光催化方面的广泛应用研究,将其应用在光催化降解甲醛方面,取得了很好的降解效果。利用液相沉积法将所制备的C/TiO2复合纳米粉体沉积在管式反应器壁面,研究了各种反应条件对甲醛降解率的影响。通过气相色谱表征,结果表明纳米TiO2薄膜光催化降解甲醛的降解率在0-30%之间,并讨论了TiO2的晶型、含碳量、及紫外吸光特征对TiO2薄膜光催化降解甲醛的影响,当TiO2中金红石含量在30%以内时,甲醛的降解率随TiO2中金红石含量的增加而增加,当TiO2中碳含量约5%时,甲醛的降解率达最大值,有最佳的降解效果。
Titanium dioxide nanoparticles preparation and application study is one of the hot topics of nano-materials in recent years. Methods to prepare nanocomposite powders are through liquid-phase, vapor-phase, solid-phase and so on; comparatively vapor-phase method can produce ultra-small nanoparticles of high purity, good particle sphericity and small particle size distribution range. In recent years, flame assisted CVD (FCVD) from vapor-phase methods is one of the main preparation technologies in research and development of nanoparticles materials, especially nano-materials of ceramic particles, as it possesses the advantages of simple process, high purity, high sphericity and controlled particle size. In application, the use of titanium dioxide nanoparticles materials in traditional electro-galvanizing industry can improve coating performance; zinc electro-galvanizing is the process of using mechanism of electrolytic cleaning to deposit zinc on the surface of galvanized plating, forming uniform, dense and associative layer of zinc deposition; the process is widely used to protect steel parts from especially atmospheric corrosion, and for decoration; however, single galvanized layer protection of metal is limited, and cannot meet the needs of harsh environments. Introduction of nano-TiO2to electro-galvanizing, can form composite coating of UV aging-resistance, wear-resistance and self-cleanness, in hope of greater improvement in corrosion resistance of the coating. Meanwhile using composite nanoparticles spectra shift absorption, to improve its photocatalytic degradation rate is also in a wide range of research, through experiment C/TiO2nanoparticles with carbon soot composition are found red-shifted after spectra absorption, and was attempted to apply in photocatalytic degradation of formaldehyde, to improve the degradation efficiency of formaldehyde. Based on the above considerations, in the paper C3H8/Air FCVD system was adopted to prepare nano-TiO2composite powders, influential factors in the reaction process and formation process of particles in the flame are analyzed. The obtained SiO2/TiO2compound was added into galvanizing flux to get binary alloy composite coating, and the coating properties were studied. The prepared C/TiO2composite particles were used in application research of photocatalytic degradation of formaldehyde, and the main factors affecting degradation rate of formaldehyde were analyzed. The main research contents and results are as follows:
     1. Method study of nanoparticles preparation through C3H8/Air FCVD system. Using C3H8and air as raw materials to study the preparation methods of nano-materials through FCVD system, changing in working conditions, from complete combustion to incomplete combustion, acquires carbon black nano-powder under incomplete combustion. Studying the formation and growth process of nanoparticles in the diffusion flame, and the effect of reaction intermediate acetylene concentration on soot formation process, and by means of TEM and XRD to characterize the products obtained in experiments, from the results the average size of carbon black particles prepared in experiments is known mainly between10-40nm providng theoretical basis from experimental perspective for introduction of TiCl4to the reactants to acquire TiO2and C/TiO2nano-powder.
     2. TiO2composite powders preparation. Based on the study of C3H8/Air FCVD system method, using respectively C3H8, Air, TiCl4and C3H8, Air, TiCl4, SiCl4as raw materials and FCVD system as method to prepare TiO2nano-powder, C/TiO2and SiO2/TiO2composite nano-powders, we researched the effects of operating conditions towards particle properties, using devices such as XRD, TEM and EDS spectra to characterize the prepared granular materials. The results show that the average size of prepared particles is mainly within20-60nm, its crystal type is mainly sharp-state phase; carbon content of C/TiO2is0-22.3%. Through analysis particle size and reaction temperature, residence time and the concentration of TiCl4are relevant, when temperature rises, the residence time prolongs or TiCl4concentration increases, the particle size will be larger.
     3. Optimization of TiO2particle's integral impact dynamics model. Using eddy-dissipation combustion model from Fluent, the RNG k-ε turbulence model of non-equilibrium wall function and two-step propane combustion mechanism, we got numerical simulation of the experimental conditions, and analyzed the impact of different oxidants and carrier gas flux on the flame temperature field distribution, proving that TiCl4molecules completely converted to T1O2monomers before entering the flame, and fusion in the flame. After referring to some relevant fluid dynamics models, particle dynamics models and theories of nanoparticle coagulation, we optimized the particle's integral impact dynamics model. Through theoretical derivation and reasonable assumptions of model derivation, we arrived at the expression of initial particle diameter; the optimized model can better predict the initial particle diameter.
     4. Applied research of composite particles in galvanization. Using the TiO2, SiO2nano-powders and SiO2/TiO2composite nano-materials prepared in experiments to galvanization, we studied change in properties of the prepared composite coating; through coating characterization by devices such as XRD, SEM, electrochemical tester, thickness gauge and hardness tester, we concluded that SiO2/TiO2composite nano-powders can significantly improve conductivity of the plating solution, increasing thickness of the coating in the same galvanization conditions, meanwhile influencing effectively the electrocrystallization process of coating metal, too much refine coating metal grain, make coating surface smooth and neat, and significantly improve coating hardness, especially corrosion resistance and so on.
     5. Photocatalytic formaldehyde degradation using composite particles. In FCVD-prepared C/TiO2characterization we found redshift in absorption spectra of C/TiO2composite particles, based on extensive applied research of TiO2in photocatalysis, we tried to apply it in photocatalytic formaldehyde degradation, achieving good degradation results. Using liquid-phase method to deposit prepared nano-TiO2on a tubular reactor wall, we studied effect of various reaction conditions on the degradation rate of formaldehyde. Characterized by gas chromatography, the results showed that photocatalytic formaldehyde degradation rate of nano-TiO2thin film is between0-30%, and we discussed the TiO2's crystal formation, carbon content, and influence of TiO2thin film's UV absorption characteristic towards photocatalytic formaldehyde degradation, when rutile content in TiO2is less than30%, formaldehyde degradation rate increases along with the increase in rutile content of TiO2, when carbon content in TiO2is about5%, formaldehyde degradation rate reaches its maximum, resulting in best degradation.
引文
[1]Eckert J, Holzer JC, Krill CE, et al. Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders[J]. Journal of Applied Physics,1993,73:2794-802.
    [2]甘礼华,岳天仪,李光明等.微乳液法制备γ-A12O3超细末及其表征[J].同济大学学报(自然科学版),1996,24:194-7.
    [3]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [4]Gleiter H. Nanocrystalline materials[J]. Progress in Materials Science, 1989,33:223-315.
    [5]王广厚,韩民.纳米微晶材料的结构和性质[J].物理学进展,1990,10:248-89.
    [6]胡黎明,李春忠,姚光辉等.化学气相沉积反应器中的超细粒子的形态控制[J].华东化工学院学报,1992,18:417-22.
    [7]K 0, Y K, J. wang WJ, et al. Production of Ul-trafine Metal Oxide Aerosol Particles by Thermal Decomposition of Metal Alkoxide Vapors[J]. AICHE Journal,1986,32:2010-9.
    [8]S M, T Y, A K, et al. A mechanism for the production of ultra fine particles of by a gas-phase reaction[J]. International Chemical Engineering,1989,29:119-28.
    [9]李炳炎.炭黑生产与应用手册[M].北京:化学工业出版社,2000.
    [10]Wang著M-J,郭隽奎译,张秀英译.炭黑的性质、生产方法及其应用[J].炭黑工业,2006,4:4-9.
    [11]J.B.道奈,A.沃埃特著,王梦蛟译.炭黑[M].北京:化学工业出版社,1982.
    [12]陈中颖,于刚,张彭义等.炭黑改性薄膜光催化剂的研制[J].环境污染与防治,2002,24:150-3.
    [13]田地,于刚,张彭义等.炭黑改性二氧化钛对气相中甲苯的光催化降解[J].太阳能学报,2002,23:66-9.
    [14]陈中颖,于刚,张彭义等.炭黑改性纳米TiO2薄膜光催化降解有机污染物[J].科学通报,2001,46:1961-5.
    [15]王道宏,徐亦飞,张继炎.炭黑的物化性质及表征[J].化学工业与工程,2002,19:76-82.
    [16]朱永康.碳黑的应用研究进展[J].橡塑技术与装备2009,35:24-30.
    [17]施利毅,李春忠,朱以华等.TiCl4高温气相氧化合成纳米二氧化钛颗粒的研究I.颗粒粒度控制[J].功能材料,2000,3:622-4.
    [18]姚超,吴凤芹,林西平等.纳米二氧化钛的气相合成[J].现代化工,2004,24:14-21.
    [19]白亚楠,郝建军.纳米微粒复合镀层的研究进展[J].电镀与精饰,2010,32:21-5.
    [20]鲁香粉,吴玉程,朱邦同等.Ni-P-TiO2纳米复合镀层的制备及性能研究[J].功能材料,2008,39:482-4.
    [21]蒋斌,徐滨士,董世运等.纳米复合镀层的研究现状[J].材料保护,2002,6:1-3
    [22]元新华,张玉泉,荆瑞俊.高硬度耐腐蚀纳米复合镀层的研究现状[J].腐蚀与防护,2007,28:329-32.
    [23]朱福良,侯莹.电沉积方式对Cu-nanoAl2O3复合镀层组织结构和显微硬度的影响[J].中国铸造装备与技术,2010,1:16-9.
    [24]常通.电泳-电沉积法制备Ni-Fe2O3复合镀层及其氧化性能研究[J].湖南工业大学学报,2011,25:6-10。
    [25]卜路霞,石军,朱华玲等.Ni-SiO2纳米微粒复合镀层的电沉积及其耐蚀性研究[J].电镀与精饰,2011,33:13-9.
    [26]徐龙堂.电刷镀镍基含纳米粉复合镀层性能、结构和共沉积机理[D].北京:北京工业大学,2000.
    [27]GugliemiN. Kinetics of the deposition of inertpart icles from electro lutic baths[J]. Journal of the electrochemical society,1972,119:1009-12.
    [28]HellemK. Electro deposition of composite layers[J]. Finishin,1997,21:28-30.
    [29]黄新民,吴玉程,郑玉春等.分散方法对纳米颗粒化学复合镀层组织及性能的影响[J].电镀与精饰,1999,21:12-4.
    [30]相英伟.化学复合镀纳米金刚石粉的研究[J].材料工程,2000,4:22-3.
    [31]李丽华.表面活性剂对高速ZnSiO2复合镀层的影响[J].电镀与精饰,1996,18:810-3.
    [32]马洁NiMo合金复合镀层上的析氢反应[J].应用化学,1997,14:16-8.
    [33]高濂,郑珊,张青红.纳米氧化钛催化材料及应用[M].北京:化学工业出版社,2002.
    [34]刘学东,朱浩,姜健等.铁基纳米晶合金的界面缺陷结构及力学性能[J].科学通报,1994,39:411-3.
    [35]Carp 0, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide [J]. Progress in Solid State Chemistry,2004,32:33-177.
    [36]于向阳,梁文,程继健.提高二氧化钛光催化性能的途径[J].硅酸盐通报,2000,1:53-6.
    [37]Tsumura T, Kojitani N, Umemura H, et al. Composites between photoactive anatase-type Ti02 and adsorptive carbon [J]. Applied Surface Science,2002,196:429-36.
    [38]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,1972,238:37-+.
    [39]于向阳,程继健,杜永娟.二氧化钛光催化材料[J]。化学世界,2000,11:567-70.
    [40]刘莹,王向宇.纳米二氧化钛光催化材料研究新进展[J].化工中间体,2005,1:6-10.
    [41]于向阳,梁文,杜永娟等.二氧化钛光催化材料的应用进展[J].材料导报,2000,14:38-41.
    [42]杨阳,徐学炎.紫外光催化降解空气中甲醛的纳米二氧化钛复合涂料的研究[J].涂料工业,2003,33:6-9.
    [43]Noguchi T, Fujishima A. Photocatalytic degradation of gaseous formaldehyde using TiO2 film[J]. Environ Sci Technol,1998,32:3831-3.
    [44]黄建宏.浅谈用Ti02除甲醛的研究[J].福建轻纺,2005,191:8-9.
    [45]何俣,朱永法,喻方.玻璃珠负载中孔TiO2纳米薄膜光催化剂研究[J].无机材料学报,2004,19:385-90.
    [46]侯一宁,王安,王燕.二氧化钛-活性炭纤维混合材料净化室内甲醛污染[J].四川大学学报(工程科学版),2004,36:41-4.
    [47]杜剑桥,王兰武,邱发礼等.锐钛型纳米TiO2光催化降解甲醛性能的研究[J].钢铁钒钛,2004,25:57-61.
    [48]鹿院卫,马重芳,夏国栋等.室内污染物甲醛的光催化氧化降解研究[J].太阳能学报,2004,25:542-6.
    [49]杨瑞,莫金汉,张寅平TiO2/丝光沸石光催化降解甲醛特性研究[J].工程热物理学报,2002,26:474-6.
    [50]杨庆,郭奋,邢颖等TiO2多孔性薄膜光催化降解低浓度甲醛[J].环境科学,2003,26:35-9.
    [51]徐瑞芬,佘广为,徐秀艳.复合涂料中纳米Ti02降解污染物和抗菌性能研究[J].化工进展,2003,22:1193-5.
    [52]Wang W, Chiang L-W, Ku Y. Decomposition of benzene in air streams by UV/TiO2 process[J]. Journal of Hazardous Materials,2003,101:133-46.
    [53]丁延伟,范崇正,吴缨等.纳米TiO2光催化降解CH3OH、HCHO及HCOOH反应的研究[J].分子催化,2002,6:175-9.
    [54]廖东亮,肖新颜,邓沁等.二氧化钛光催化降解甲醛反应动力学研究[J].化工环保,2003,23:191-4.
    [55]林劲东,梁丽云,蓝仁华等.Fe-TiO2光催化涂层材料的制备及在可见光下清除甲醛的性能表证[J].精细化工,2004,115-118.
    [56]蔡铁军,吕晓萌,邓谦.复合催化剂PWn/TiO2光催化降解甲醛反应的研究[J].环境科学学报,2005,25:618-22。
    [57]Zhang Y, Yang R, Zhao R. A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds[J]. Atmospheric Environment, 2003,37:3395-9.
    [58]Amama PB, Itoh K, Murabayashi M. Photocatalytic oxidation of trichloroethylene in humidified atmosphere[J]. Journal of Molecular Catalysis A:Chemical,2001,176:165-72.
    [59]Lin HF, Valsaraj KT. A titania thin film annular photocatalytic reactor for the degradation of polycyclic aromatic hydrocarbons in dilute water streams[J]. Journal of Hazardous Materials,2003,99:203-19.
    [60]Ray AK, Beenackers AACM. Development of a new photocatalytic reactor for water purification[J]. Catalysis Today,1998,40:73-83.
    [61]Sun R-D, Nakajima A, Watanabe I, et al. TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds[J]. Journal of Photochemistry and Photobiology A:Chemistry,2000,136:111-6.
    [62]Saquib M, Muneer M. TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions[J]. Dyes and Pigments,2003,56:37-49.
    [63]何建波,张鑫,杨仁武.Ti02薄膜晶相组成对苯胺光催化降解的影响[J].应用化学,1999,16:57-60.
    [64]徐悦华,古国榜,房想.纳米Ti02光催化降解有机磷农药的研究[J].土壤与环境,2001,10:173-5.
    [65]Obee TN, Satyapal S. Photocatalytic decomposition of DMMP on titania[J]. Journal of Photochemistry and Photobiology A:Chemistry,1998,118:45-51.
    [66]方世杰,徐明霞,黄卫友.纳米TiO2光催化降解甲基橙[J].硅酸盐学报,2001,29:439-42.
    [67]梁金生,金宗哲,王静.环境净化功能(Ce,Ag)/TiO2纳米材料表面能带结构的研究[J].硅酸盐学报,2001,29:500-2.
    [68]Mohseni M, David A. Gas phase vinyl chloride (VC) oxidation using TiO2-based photocatalysis[J]. Applied Catalysis B:Environmental,2003,46:219-28.
    [69]Bhatkhande DS, Pangarkar VG, Beenackers AACM. Photocatalytic degradation for environmental applications-a review[J]. J Chem Technol Biot,2002,77:102-16.
    [70]沈伟韧,赵文宽,贺飞等TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10:349-61.
    [71]GB/T3780.2.炭黑结构的测定.In:editor.editors. ed.:1984. p.
    [72]GB/T3780.7.炭黑pH值的测定.In:editor. editors. ed.:1996). p.
    [73]GB/T3780.11.炭黑筛余物的测定.In:editor.editors. ed.:1984. p.
    [74]Sunderland PB, Faeth GM. Soot formation in hydrocarbon/air laminar jet diffusion flames [J]. Combust Flame,1996,105:132-46.
    [75]Onischuk AA, di Stasio S, Karasev VV, et al. Evolution of structure and charge of soot aggregates during and after formation in a propane/air diffusion flame[J]. Journal of Aerosol Science,2003,34:383-403.
    [76]Barakat MA, Hayes G, Shah SI. Effect of cobalt doping on the phase transformation of TiO2 nanoparticies[J]. J Nanosci Nanotechno,2005,5:759-65.
    [77]Kobata A, Kusakabe K, Morooka S. Growth and transformation of TiO2 crystallites in aerosol reactor[J]. AICHE Journal,1991,37:347-59.
    [78]查理特·丹尼斯著,梁鸿富译,卢定正译.气溶胶手册[M].北京:原子能出版社,1988.
    [79]郝晓梅.火焰CVD法合成纳米颗粒的数值模拟[D].大连:大连理工大学,2005.
    [80]张令品.火焰CVD法制备纳米颗粒材料不完全燃烧过程数值模拟[D].大连:大连理工大学,2007.
    [81]戎杰.FCVD法制纳米TiO_2过程的详细机理数值模拟[D].大连:大连理工大学,2008.
    [82]Jachimowski CJ. Chemical kinetic reaction mechanism for the combustion of propane[J]. Combust Flame,1984,55:213-24.
    [83]王俏齐.超细粉体材料前景广阔[J].当代化工,2002,31:98-100.
    [84]Yu M, Lin J, Chan T. Numerical simulation of nanoparticle synthesis in diffusion flame reactor[J]. Powder Technology,2008,181:9-20.
    [85]赵和平.火焰CVD法合成二氧化钛纳米颗粒的数值模拟[D].大连:大连理工大学,2006.
    [86]于明洲.纳米粒子多相流矩方法研究[D].浙江:浙江大学,2008.
    [87]陈彩凤,陈志刚,陈雪梅等.纳米粉体的制备技术[J].江苏理工大学学报,2001,11:98-102.
    [88]谢洪勇.粉体力学与工程[M].北京:化学工业出版社,2003.
    [89]Allen MD, Raabe OG. Slip correction measurements for aerosol particles of doublet and triangular triplet aggregates of spheres[J]. Journal of Aerosol Science,1985,16:57-67.
    [90]Otto E, Fissan H, Park SH, et al. The log-normal size distribution theory of brownian aerosol coagulation for the entire particle size range:part Ⅱ-analytical solution using Dahneke's coagulation kernel[J]. Journal of Aerosol Science,1999,30:17-34.
    [91]Pratsinis SE. Simultaneous nucleation, condensation, and coagulation in aerosol reactors[J]. Journal of Colloid and Interface Science,1988,124:416-27.
    [92]Wright PG. On the discontinuity involved in diffusion across an interface (the [capital Delta] of Fuchs)[J]. Discussions of the Faraday Society,1960,30:100-12.
    [93]潘洪亮.火焰CVD法合成二氧化钛纳米颗粒的数值模拟[D].大连:大连理工大学,2006.
    [94]陈中颖,于刚,张彭义等.碳黑改性纳米Ti02薄膜光催化降解有机污染物[J].科学通报,2001,46(23):1961-1965.
    [95]孙瑶毅.纳米Ti02光催化薄膜制备及降解甲醛的研究[D].大连:大连理工大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700