用户名: 密码: 验证码:
除草剂异丙隆降解菌株的筛选鉴定及降解特性和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程和农村劳动力转移的不断加快,为提高农业生产效率保证农业生产的正常进行,除草剂被大量广泛使用,取代脲类除草剂就是其中的一种。因取代脲类除草剂的大量使用而造成的除草剂残留问题已经引起人们的广泛关注,对污染环境修复问题已成为迫在眉睫的重要课题。生物修复因具有经济、安全、方便、高效等优点,成为处理有机物面源污染的重要手段。本研究将对异丙隆(取代脲类除草剂的一种)降解菌株的分离过程进行介绍,对降解菌株的生长和降解性状进行研究,在此基础上完成对菌株的修复取代脲类除草剂污染能力的评估,以期为人们认识取代脲类除草剂在环境中的生物降解过程提供帮助,并为解决取代脲类除草剂的面源污染提供一种安全高效的方法。
     采用富集培养的方式从长期受除草剂污染土壤中分离了五株细菌,分别命名为Y57、YBL1、YBL2、YBL3和CA6。其中菌株Y57、YBL1、YBL2和YBL3降解取代脲类除草剂异丙隆,菌株CA6可以降解取代脲类除草剂降解过程中产生的苯胺化合物。根据生理生化特性和16SrRNA基因序列比对,将其中的一株细菌Y57鉴定为鞘氨醇单胞菌属(Sphingomonas sp.)细菌。将细菌YBL1、YBL2和YBL3鉴定为鞘氨醇杆菌属(Sphingobium sp.)细菌。
     苯胺降解菌株CA6通过16S rRNA基因序列分析鉴定为固氮螺菌属细菌,但与目前该属内已发表的种存在较大的差异。经过生理生化试验发现,菌株CA6培养1d后,在NFb固体培养基平板上会出现肉眼可见的菌落,菌落呈圆形,光滑,凸起,微小,3d后菌落在NFb培养基平板上的单菌落逐渐长大,菌落的形态发生变化,菌落的表面变粗燥,突起,与固体培养基平板牢固的结合;CA6菌体大小约为0.7-0.9μm×1.5-2.4μm,菌体呈杆状,稍有螺旋,单极生鞭毛;革兰氏染色为阴性,不产芽孢,严格好氧,接触酶阳性,氧化酶阳性,不液化明胶,脲酶阳性,不水解淀粉,最适生长温度为37℃,但菌株可以在20-40℃广泛的温度范围内生长,最适生长pH值为6.0-7.0。不能发酵葡萄糖、乳糖、蔗糖产酸,菌株为化能异养,菌株可以在含有3%的氯化钠的NFb液体培养基中生长,柠檬酸盐还原、硝酸还原和亚硝酸还原反应阴性;不产生吲哚;H2S产生反应阴性;水解磷酸盐阴性。16SrRNA基因序列(GenBank No.EU573183)与菌株Azospirillum rugosum AFH-6T, Azospirillum brasilense DSM1690T和Azospirillum lipoferum DSM1691T的序列同源性达到96.6%、96.3%、96.2%;CA6的成分如下:Feature2(4.92%),13:1AT12-13(0.45%), unknown14.959(0.31%), Sum In Feature3(4.72%),16:1ω5c(2.59%),16:0(2.67%),16:03OH (2.77%), Sum In Feature5(0.36%),18:1ω9c (4.55%),18:1ω7c (66.39%),18:0(1.19%),19:0CYCLOω8c (4.61%),18:12OH(3.75%),18:03OH (0.74%).;菌株可以利用环糊精、糊精、吐温40、N-乙酰基-D半乳糖胺、N-乙酰基-D-葡萄糖胺、侧金盏花醇、D-果糖、a-D-葡萄糖、甲基丙酮酸、麦芽糖、D-甘露糖、D-棉子糖、L-棉子糖、蔗糖、单甲基琥珀酸、甲酸、L-丙氨酸胺、D-丙氨酸、L-丙氨酸、L-丙氨酰、甘氨酸、L-脯氨酸、p-羟基丁酸、丙酸、琥珀酸、溴丁二酸、D,L-乳酸等为唯一碳源生长。其中菌株对糊精、蔗糖、单甲基琥珀酸、p-羟基丁酸、L-丙氨酰甘氨酸的利用最好。通过与现有菌株的特性比较后初步将该菌鉴定为固氮螺菌属的一个新种,命名为宪武固氮螺菌(Azospirillum xianwuii),模式菌株为Azospirillum xianwuii sp. nov. CA6(CCTCC AB208097=JCM15509).
     菌株降解异丙隆的实验表明,在接种量为1.0%时,四株细菌均可以在36h之内将30mg·1-1的异丙隆完全降解,最终降解率达99%以上。在降解异丙隆的同时,四株细菌利用异丙隆提供的碳氮源进行生长。菌株Y57、YBL1、YBL2和YBL3降解异丙隆的最适pH分别为7.0,培养基中异丙隆的初始浓度对菌株的降解速度的影响较小,在培养基中添加不同的金属离子对菌株的降解能力和降解速度产生不同的影响,Mg2+对菌株的降解产生促进作用,1mmol·l-1的Cu2+或Ni2+对菌株的降解有明显地抑制作用;在培养基中添加葡萄糖对菌株的降解有促进作用;菌株YBL1、YBL2和YBL3降解异丙隆的最适温度为30℃,菌株Y57的最适降解温度为35℃。菌株YBL1、YBL2、 YBL3和Y57均具有较宽的降解谱,四株细菌均可以降解异丙隆、绿麦隆、敌草隆、氟草隆等N,N.二甲基取代脲类除草剂,而YBL1菌株还可以降解甲氧基取代脲类除草剂中的利谷隆;菌株Y57不但可以降解取代脲类除草剂,还可以降解酰胺类除草剂中的敌稗,降解率达到80%以上。
     菌株YBL1、YBL2、YBL3可以迅速降解马肝土中的异丙隆、绿麦隆、敌草隆等除草剂;但是菌株对红壤中的除草剂的降解效果明显差于马肝土中的降解,这可能是红壤的pH过低所致;在土壤中的接种量较低时,菌株对土壤中的异丙隆的降解效果较差,只有当菌株在土壤中的浓度超过一定的数值,菌株才能对异丙隆残留有较好的降解效果。菌株在灭土壤中降解异丙隆的速率略快于新鲜土壤中的降解速度。在土壤中添加碳源、土壤的含水量、土壤中的土著微生物等对菌株降解能力产生明显地影响,其中土壤pH的影响最大。
     菌株YBL2降解苯脲基类化合物时,首先作用于苯环侧链,逐一脱去异丙隆N原子上所连的两个甲基基团,通过进一步的酶促反应生成相应的苯胺化合物。菌株YBL1、YBL2和YBL3降解苯胺化合物,降解苯胺的过程中生成了邻苯二酚,再通过1,2位双加氧酶降解邻苯二酚生成顺,顺-粘糠酸。其中YBL1可以降解以异丙隆为代表的双甲基取代脲类除草剂和以利谷隆为代表的N-甲基-N-甲氧基取代脲类除草剂,并且可以降解苯胺类化合物,为首次报道。菌株YBL2可以降解4-甲基邻苯二酚,但不能降解3-甲基邻苯二酚,苯胺的间位上存在的取代基团对菌株的降解产生明显地影响,使得菌株在对间位上含有取代基团的苯胺进行双加氧反应时,只有一个方向可以进行。说明间位上存在取代基团会影响到间位含有取代基团的苯胺生成的化合物的种类。
     通过试验发现菌株可以降低因加入绿麦隆而引起的药害,降低因加入异丙隆而对油菜的药害。将所分离的菌株发酵成菌剂投加到同时含有绿麦隆和绿黄隆残留的泰兴某处农田中,经测定菌株可以在一周之内将土壤中的0.1mg·kg-1的绿麦隆残留完全降解,直至检测不出,但在加入绿黄隆降解菌株SW3时,可使降解绿黄隆残留但降解率较低。
Five strains of bacteria (designated as Y57, YBL1, YBL2, YBL3, CA6respectively) capable of degrading isoproturon,3-(4-isopropylphenyl)-1,1-dimethylurea, or capable of degrading aniline which was thought as the critical metabolite in the degradation of isoproturon in environment, were isolated from the soils of three herbicide plants. Strain Y57was isolated from the soil collected from Changzhou, Strain YBL1was isolated from the soil collected from Nanjing and other two strains were isolated from the soil collected from Suzhou. Based on the comparative analysis of16S rRNA gene, phenotypic and biochemical characterization, strain Y57was identified as Sphingomonas sp., other three strains were identified as Sphingobium sp.. The optimum conditions for strains YBL1, YBL2and YBL3growth were pH6.0, and temperature30℃, while the optimum condition for strain Y57growth was pH7.0and temperature35℃. All these strains can not tolerate2.5%NaCl. Growth rate was related positively to oxygen availability.
     Strain CA6was isolated from soil which was collected from Suzhou. On the basis of polyphasic taxonomy, morphological characterization, Biolog analysis, Cellular fatty acid and16S rRNA gene sequence analysis, the isolate represent a new species within the genus Azospirillum. Its closest phylogenetic neighbors, as deduced by16S rRNA gene analysis, are Azospirillum rugosum AFH-6T, Azospirillum brasilense DSM1690T and Azospirillum Hpoferum DSM1691r with96.6,96.3and96.2%sequence similarity respectively. The chemotaxonomic characteristics of CA6(G+C content is70.5mol%and18:1ω7c as the major cellular fatty acid, and14:03-OH and16:03-OH as the major hydroxy fatty acids) were consistent with the genus Azospirillum. Cells of CA6are rods and curve,0.7-0.9μm in width and1.5-2.4μm in length, Gram-negative and motile with single polar flagellum. Optimum growth occurs at37℃and at pH values between6.0and7.0. They have a respiratory type of metabolism, grow well on Dextrin, a-D-Glucose, Maltose, Mono- Methyl-Succinate, β-Hydroxy Butyric Acid, L-Alanyl-glycine. For this species, the name Azospirillum xianwuii sp. nov. is suggested, with strain CA6(=CCTCC AB208097=JCM15509) as the type strain.
     In the degradation test, more than99%of the initial isoproturon (50mg·l-1, Y57was30mg·l-), added to the medium as the sole carbon source, were degraded by these strains at the inoculation rate of107cells per mili liter within20hours. Strains showed optimum degradation activity at pH7.0, which dropped sharply above pH9.0or below pH6.0, and the strain lost the ability to degrade isoproturon at pH5.0; the optimum temperature for isoproturon degradation by these strains was30℃, however these strains can degrade isoproturon between20℃to35℃as well. Supplementing the medium with glucose considerably enhanced isoproturon degradation rate; but slow down degradation rate by strain Y57in MSM medium, the addition of Cu2+, Ni2+at the rate of1mmol·l-1inhibited the capability of these strains to degrade isoproturon, while the Mg2+in the same quantity enhanced the isoproturon degradation rate under the same conditions. These four strains also showed the ability to remove the residues of other phenylurea herbicides such as chlorotoluron, diuron and fluometuron in mineral salt culture medium. Strain YBL1was found capable of degrading both, dimethylurea-substituted herbicides and methoxy methyl phenylurea herbicide i.e. linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea). Strain Y57was capable of degrading propail in addition to isoproturon and chlorotoluron. The concentration of isoproturon (within the chemical solubility in water) had no apparent effect on the degradation rate.
     Strains YBL1, YBL2and YBL3degraded isoproturon significantly (>80%) in Magan soil, and Flvo-Aquic soil within two days, while in Red soil the degradation activity was very poor. The degradation rate of other phenylurea herbicides, such as chlorotoluron and diuron was also observed higher in Magan soil. These three strains also have ability to degrade isoproturon in fresh soil (non-sterilized), but the degradation rate was slower in fresh soil than in sterilized soil, and the degradation rate of isoproturon by these strain was related positively to the soil moisture (10%-40%, v:v). The most adaptable temperature for these strains degrading isoproturon in soil was35℃, which was higher than the optimum temperature for isoproturon degradation in MSM The degradation rate was related positively to inoculation quantity, when the inoculum was below10CFU per gram soil, these strains were unable to degrade the isoproturon after two days inoculation. Glucose suplementation can enhance the degradation rate of isoproturon in soil, while the addition of NH4NO3showed the reverse results.
     MDBPU (3-(4-isopropylphenyl)-1-methylurea) was detected in the catabolic products of isoproturon, and the chemical3-(3-chloro-4-methylphenyl)-1-methylurea, was detected in the degradation of chlorotoluron by YBL2, analysed by HPLC-MS. The catechol, which was thought as the critical metabolite in the process of phenyl-ring cleavage of most aromatic hydrocarbon, was detected in the beginning of aniline degradation by these strains. Moreover the cis, cis-muconic acid, the first metabolite after phenyl-ring cleavage, was also detected in the degradation products of aniline by HPLC.
     Additon of strain Y57can reduce the effect of chlorotoluron residue on the growth of maize, and addition of strains YBL1, YBL2and YBL3respectively can clean up the isoproturon residue in laboratory experiments, and protected the rape from prototoxitity of isoproturon. Using culture of YBL3in a field, which was contaminated by chlorotoluron as a result of repeated use located at Taixing, can clean up the residue of chlorotoluron in soil. All these results indicate that these strains can be used for bioremediation of phenylurea herbicides contamination.
引文
1. Okamura H, Aoyama I, Takami T. Phytotoxicity of the new antifouling compound Irgarol 1051 and a new degradation product [J]. J Mar Pollut Bull,2000,40:754-763.
    2. Berard A, Dorigo U, Mercier I. Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva [J]. Chemosphere,2003,53:935-944.
    3.金文标,宋丽晖,吴东平等.油污土壤微生物处理技术[J].环境科学研究,2001,14(1):34-35.
    4. Middeldorp P, Briglia M, Salkinoja-Salonen M. Biodegradation of pentachlorophenol in natural polluted soil by inoculated Rhodococcus chloropheno [J] Microbiol Ecol,1990,20:123-139.
    5. Miethling R, Karlson U. Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicun PCP-1 and Sphingomonas chlorophenolica RA2 [J]. Appl Environ Microbiol,1996,36:254-258.
    6. Brunner W, Sutherland F, Focht D. Enhanced biodegradation in soil by analog enrichment and bacterial inoculation [J]. J Environ Qual,1995,14:324-328.
    7.虞云龙,盛国英,傅家谟.杀灭菊酯的微生物降解及酶促降解[J].环境科学进展,1997,19(2):58-61.
    8.黄国强,李凌,李鑫钢等.土壤污染的原位修复[J].环境科学动态,2000,3:25-27.
    9. Funk SB, Roberts DJ. Initial-phase optimization for bioremediation of munition compound contaminated soil [J]. Appl Environ Microbiol,1993,59(7):2171-2177.
    10. Hess A, Zarda B, Hahn D. In situ analysis fuel-contaminated laboratory aquifer column [J]. Appl Environ Microbiol,1992,63:2136-2141.
    11. Torma A.The basics of bioremediation [J]. Pollut Engineering,1994,26(6):46-47.
    12. Fredrickson J, Bolton H, Brockmon F. In situ and on-site bioremediation[J]. Environ Sci Technol, 1993,27(9):1711-1716.
    13. Anderson T, Guthrie E, Walton B. Bioremediation in the rhizosphere [J]. Environ Sci Technol,1993, 27(13):2630-2636.
    14. Shimp J, Tracy JC, Davis L. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials [J]. Critical Review in EST,1993,23(1):1-35.
    15. Davis L, Erickson L, Lee E. Modeling the effects of plants on the bioremediation of contaminated soil and groundwater[J]. Environ Prog,1993,12(1):67-75.
    16. Danna A, Crosignani P, Robutti F. Triazine herbicides and ovarian epithelial neoplasms [J]. Envrion Health,1989,15(47):53.
    17. Wilson SC, Jones KC. Bioremediation of soil contaminated with polycyclic aromatic hydrocarbons (PAHs):a review [J]. Environ Pollut,1993,81:229-249.
    18. Marks R, Field S, Wojtanowiez A. Biological treatment of petrochemical wastes for removal of hazardous polynuclear aromatic hydrocarbon constituents [J]. Water Sci Technol,1991, 25(3):200-213.
    19. Irving R, Earkeu T, Kehrberger G. Bioremediation of soils contaminated with Bis-(2-ethylhexyl) phthalate (BEHP) in a soil slurry-sequencing batch reactor [J]. Environ Prog,1993,12(l):39-44.
    20. Carroquino M, Cersbery R, Dawsey W. Toxicity reduction associsted with bioremediation of gasoline contamiated groundwaters [J]. Bull Environ Contam Toxicol,1992,49(2):224-231.
    21. Adenuga A, Johnson J, Cannon J. Bioremediation of PAH-contaminated soil via in-vessel composting [J]. Water Sci Technol,1992,26(1):9-11.
    22.李顺鹏,沈标等.甲基对硫磷降解菌的生态效应及应用[J].土壤学报,1996,33(4):380-384.
    23.丁美丽.环境因子对褐藻酸降解菌引起海带病烂影响研究[J].海洋学报,1990,12(2):224-230.
    24. Natsch A, Keel C, Troxler J. Importance of preferential flow and soil management in vertical transport of a biocontrol strain of Pseudomonas jluorescens in structured field soil [J]. Appl Environ Microbiol,1994,62(1):33-40.
    25. Brecht A. A direct optical immunosensor for atrazine detection [J]. Analy Chem Acta,1995, 311:289-299.
    26.束放.2000年全国农用农药需求量预测[J].农药科学与管理,2000,21(2):38-39.
    27.王立仁,赵明宇.阿特拉津残留及其对农田水和土壤的影响[J].农业环境保护,2000,19(2):111-113.
    28.尤民生,刘新.农药污染的生物降解与生物修复[J].生态学杂志,2004,23(1):73-77.
    29. Rani N, Lalithakumari D. Degradation of methyl parathion by Pseudomonas putida [J]. Can J Microbiol,1994,40:1000-1006.
    30. Kamanavalli CM, Ninnekar HZ. Biodegradation of DDT by a Pseudomonas species [J]. Curr Microbiol.2004,48(1):10-13.
    31. Mandelbaum R, Allan D, Wackett L. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine [J]. Appl Environ Microbiol,1995,61:1451-1457.
    32. Yanze-Kontchou C, Gschwind N. Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain [J]. Appl Environ Microbiol,1994,60:4297-4302.
    33. Jilani S, Khan MA. Isolation, characterization and growth response of pesticides degrading bacteria [J]. J Biolog Sci,2004,4(1):12-20.
    34.刘智,洪青,徐剑宏,武俊,张晓舟,张小华,马爱芝,朱军,李顺鹏.甲基对硫磷水解酶基因的克隆与融合表达[J].遗传学报,2003,30:40-46.
    35. Strong L, Rosendahl C, Johnson G. Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds[J]. Appl Environ Microbial,2002,68:5973-5980.
    36. Aislabie J, Bej A, Ryburn J, Lloyd N, A.Wilkins. Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand [J]. FEMS Microbiol Ecol,2005,52:279-286.
    37. Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW. Degradation of Substituted Phenylurea Herbicides by Arthrobacter globiformis Strain D47 and Characterization of a Plasmid-Associated Hydrolase Gene, puhA[J]. Appl Environ Microbiol,2001,67(5):2270-2275.
    38. Struthers J, Jayachandran K, Moorman T. Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil [J]. Appl Environ Microbiol,1998, 64:3368-3375.
    39. Mulbry W, Kearney PC. Degradation of pesticides by microorganisms and the potential for genetic manipulation[J]. Crop Prot,1991,10(5):334-346.
    40. Chaudhry G, Ali A, Wheeler W. Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp.[J]. Appl Environ Microbiol,1988,54(2):288-293.
    41. Bouquard C, Ouazzani J, Prome J, Michel-Briand Y, Plesiat P. Dechlorination of atrazine by a Rhizobium sp. isolate [J]. Appl Environ Microbiol,1997,63(3):862-866.
    42. Hammill TB, Crawford RL. Degradation of 2-sec-butyl-4,6-dinitrophenol (Dinoseb) by Clostridium bifermentans KMR-1[J]. Appl Environ Microbiol,1996,62:1842-1846.
    43.武俊,徐剑宏,洪青等.一株呋喃丹降解菌(CDS-1)的分离和性状研究[J].环境科学学报,2004,24(2):339-342.
    44.孙纪全,黄星,何健,许敬亮,李顺鹏.异丙隆降解菌Y57的分离鉴定及其降解特性[J].中国环境科学,2006,26(3):315-319.
    45.张明星,洪青,何健,许育新,李顺鹏.DDT降解菌株DB-1的分离、系统发育及降解特性[J].中国环境科学,2005,25(6):674-677.
    46. Miyazaki R, Sato Y, Ito M, Ohtsubo Y, Nagata Y, Tsuda M. Complete nucleotide sequence of an exogenously isolated plasmid, pLB1, involved in{gamma}-hexachlorocyclohexane.degradation [J]. Appl Environ Microbiol,2006,72(11):6923-6933.
    47.洪源范,洪青,武俊,张忠辉,李顺鹏.甲氰菊酯降解菌JQL4-5的分离鉴定及降解特性研究[J].环境科学,2006,27:2100-2104.
    48. Nadeau LJ, Menn FM, Breen A. Aerobic degradation of DDT by Alcaligenes eutrophus A5 [J]. Appl Environ Micmbiol,1994,60(1):51-55.
    49. Balajee S, Mahadevan A. Dissimilation of 2,4-dichlorophenoxyacetic acid by Azotobacter chroococcum[J]. Xenobiotica,1990,20:607-617.
    50.虞云龙,樊德方,陈鹤鑫.农药微生物降解的研究现状与繁殖策略[J].环境科学进展,1996,4(3):28-36.
    51. Masaphy S, Levanon D, Vaya J, Henis Y. Isolation and characterization of a novel atrazine metabolite produced by the fungus Pleurotus pulmonarius,2-chloro-4-ethylamino-6-(1-hydroxyisopropyisopropyl) amino-1,3,5-triazine[J]. Appl Environ Microbiol,1993, 59:4342-4346.
    52. Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M. Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium [J]. Appl Environ Microbiol,1994, 60:705-708.
    53. Benimeli CS, Amoroso MJ, Chaile AP, RCastro G. Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides [J]. Biore Tech,2003,89(2):133-138.
    54. Topp E, Mulbry W, Zhu H:Characterization of s-triazine herbicide metabolism by a Nocardioides sp. isolated from agricultural soils [J]. Appl Environ Microbiol 2000,66:3134-3141.
    55. Shao Z, Behki R. Cloning of the genes for degradation of the herbicides EPTC (s-ethyl dipropylthiocarbamate) and atrazine from Rhodococcus sp. strain TE1 [J]. Appl Environ Microbiol, 1995,61:2061-2065.
    56. Nagy I, Compernolle F, Ghys K, Vanderleyden J, De-Mot R. A single cytochrome P-450 system is involved in degradation of the herbicide EPTC (s-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21 [J]. Appl Environ Microbial,1995,61:2056-2060.
    57. Mulbry W, Zhu H, Nour S, Topp E. The triazine hydrolase gene trzN from Nocardioides sp. strain C190:Cloing and construction of gene-specific primers [J]. FEMS Microbiol Lett,2002,206:75-79.
    58. Sabate J, Grifool M, Vin M. Isolation and characterization of a 2-methyphenantherne utilizing bacterium:Identification of ring cleavage metabolites[J]. Appl Microbil Biotechnol,1999, 52:704-712.
    59.钞亚鹏,赵永芳,刘斌斌.甲基营养菌WB-1甲胺磷降解酶的产生、部分纯化及性质[J].微生物学报,2000,40(5):523-527.
    60.阮少江,刘洁,王银善.微生物酶催化甲胺磷降解机理初探[J].武汉大学学报(自然科学版),2000,46(4):471-474.
    61.王保军,刘志培,杨慧芳.甲单脒农药的微生物降解代谢研究[J].环境科学学报,1998,18(3):298-302.
    62.王永杰,李顺鹏,沈标.有机磷农药广谱活性降解菌的分离及其生理性研究[J].南京农业大学学报,1999,22(2):42.
    63.崔中利,李顺鹏.化学农药的微生物降解及其机制[J].江苏环境科技,1998,3:1-5.
    64.崔中利.甲基对硫磷的微生物降解及多功能基因工程降解菌的构建[D].南京农业大学博十论文,2000.
    65.沈东升,徐向阳,冯孝善.微生物共代谢在氯代有机物生物降解中的作用[J].环境科学进展,1994,15(4):84-87.
    66.刘玉焕,钟英长.甲胺磷降解真菌的研究[J].中国环境科学,1999,19(2):172-175.
    67. Fumio M, Krishna MCR. Biodegradation of pesticides [M]. New York and London:plenum 1983, 69.
    68.虞云龙,陈鹤鑫,樊德方.Alcaligenes sp. YF11菌对杀灭菊酯的降解机理[J].环境污染与防治,1998,20(6):5-7.
    69. Havens PL, Rase HE Reusable immobilized enzyme/polyrethane sponge for removal and detoxification of localized organphosphate pesticide spills[J]. Indus Engin Chem Res,1993, 32(10):2254-2258.
    70.孔繁翔,尹大强,严国安.环境生物学[M].北京:高等教育出版社,2000:211-230
    71.戴树桂,宋文华,李彤等.偶氮染料结构与其生物降解性关系研究进展[J].环境科学进展,1996,4(6):1-9.
    1.苏少泉,宋顺祖.中国农田杂草化学防治[M].北京,中国农业出版社,1996.
    2. Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW. Degradation of Substituted Phenylurea Herbicides by Arthrobacter globiformis Strain D47 and Characterization of a Plasmid-Associated Hydrolase Gene, puhA [J]. Appl Environ Microbiol,2001,67(5):2270-2275.
    3.周鑫淼,陈洁君,耿立召,李丹花,陈明,林敏.邻苯二酚2,3-双加氧酶的结构和功能研究进展[J].生物技术通报,2007,23(4):51-54.
    4.谭效松,贺红武.除草剂的作用靶标与作用模式[J].农药,2005,44(12):533-537.
    5.刘玉晓,许晓明.PSⅡ抑制剂作用位点的研究进展和方法[J].农药,2007,46(3):154-158,165.
    6.朱良天.精细化学品大全·农药卷[M].杭州:浙江科学技术出版社,2000:500-501.
    7.王焕民;张子明.新编农药手册[M].北京:农业出版社.1989:508-509.
    8. Eshel Y. Tolerance of cotton to diuron, fluometuron, norea and prometryne [J]. Weed Sci,1969, 17:152-154.
    9. Hamilton SE, Arle HF. Directed applications of herbicides in irrigated cotton [J]. Weed Sci,1970, 18:85-88.
    10. Palm HL. Proceeding of brighton crop protection conference-weed [J].1989,23.
    11.李贵,吴竞仑.除草剂对作物生理生化指标的影响[J].安徽农业科学,2007,35(29):9157-9159.
    12. Oettmeier W. Herbicide resistance and supersensitivity in photosystem [J]. Cell Mol Life Sci,1999, 55:1255-1277.
    13. Ikezawa N, Ifuku K, Endo T. Inhibition of photosystem Ⅱ of spinach by the respiration inhibitors piericidin A and thenoyltrifluoroacetone [J]. Biosci Biotechnol Biochem,2002,66(9):1925-1929.
    14. Reil E, Gerhard H, Draber W. Quinolones and their N-oxides as inhibitors of photosystem Ⅱ and the cytochrome b6/f-complex [J]. Biochimica Biophysica Acta,2001,1506(127-132).
    15. Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M. The coprophilous mushroom coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation[J]. Appl Environ Microbiol,2007,73(17):5477-5485.
    16.钟义红,顾军,张爱红,施爱民.取代脲类除草剂氟草隆对大鼠的亚慢性毒性研究[J].江苏预防医学,2007,18(3):68-70.
    17.穆洪,张平,徐建.绿麦隆与阿特拉津对小鼠毒性作用[J].中国公共卫生,2006,22(8):990.
    18. Ragsdale NN, Menzer RE. Carcinogenicity and pesticides:principles, issues and relationships [M]. Washington, DC:American Chemical Society,1989.
    19. Fielding M, Barcelo D, Helweg A. Pesticides in ground and drinking water [C]. Water Pollution Research Report 27, Commission of the European Communities, Directorate2General for Science, Research and Development, Brussels 1992.
    20.武丽辉.英国将逐步停止异丙隆的使用(译)[J].农药科学与管理,2007,28(10):44.
    21.胡笑形.澳大利亚削减敌草隆的使用[J].农药科学与管理,2005,26(11):40.
    22. Eichelberger JW, Lichtenberg JJ. Persistence of pesticides in river water [J]. Environ Sci Technol, 1971(5):541-544.
    23.主要贸易国家和地区食品中农兽药残留限量标准(食品卷)[S].北京:中国标准出版社 2006.
    24.李德平.绿麦隆在土壤中的降解残留与垂直分布[J].土壤,1991,23(6):307.
    25.刘维屏,Gessa C.利谷隆在土壤中的吸附过程与机理[J].环境科学,1995,16(1):16-19.
    26.陈祖义,石英,黄世乐.14C-绿麦隆的土壤结合残留[J].南京农业大学学报,1993,31(2):31.
    27.李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展[J].土壤,2004,36(6):577-583.
    28. Sorensen SR, Bending GD, Jacobsen CS, Walker A, Aamand J. Microbial degradation of IPU and related phenylurea herbicides in and below agricultural fields [J]. FEMS Microbiol Ecol,2003, 45:1-11.
    29. Nitchke L, Schussler W. Surface water pollution by herbicides from effluents of wastewater treatment plants [J]. Chemosphere,1998,36(1):35-41.
    30. Spliid HS, K(?)ppen. B. Occurrence of pesticides in Danish shallow groundwater [J]. Chemosphere, 1998,37:1307-1316.
    31. Stangroom SJ, Collins CD, Lester JN. Sources of organic micropollutants to lowland rivers [J]. Environ Technol,1998,19:643-666.
    32.马晓渊.绿麦隆对水稻二次药害的主要因素的探讨[J].植物保护学报,1990,17(1):89-93.
    33. Mansour M, Feicht EA, Behechti A. Determination photostability of selected agrochemicals in water and soil [J]. Chemosphere,1999,39(3):575-585.
    34. Peres F, Florin D, Grollier T, Feurtet-Mazel A, Coste M, Ribeyre F, M.Ricard, Boudou A. Effect of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosms [J]. Environ Poll,1996,94(141-152).
    35. Remde A, Traunspurger W. A method to assess the toxicity of pollutants on anaerobic microbial degradation activity in sediments[J]. Environ Toxicol Water Qual,1994,9:293-298.
    36. Hoshiya TR, Hasegawa K, Hakoi L. Enhancement by nonmutagenic pesticides of GST-P positive hepatic foci development initiated with diethyllnitrosamine in the rat [J]. Cancer Lett,1993, 72(1):59-64.
    37. Brennan R, R.H.Schiestl. Aniline and its metabolites generate free radicals in yeast [J]. Mutagenesis, 1997,12(4):215-220.
    38. Said el F, Verschuere L, Verstraete W, Top EM. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles [J]. Appl Environ Microbiol,1999,65(3):982-988.
    39.唐美珍,郭正元,袁敏.碘甲磺隆钠盐对土壤中过氧化氢酶活性及呼吸作用的影响[J].土壤,2005,37(4):421-425.
    40.徐建民,安曼,黄昌勇.磺酰脲类除草剂对土壤质量生物学指标的影响[J].中国环境科学,2000,20(6):491-494.
    41.高军,姜金华.异丙隆对土壤基础呼吸与微生物生物量的影响[J].安徽农业科学,2006,34(23):6264-6265.
    42.张殿京,程幕如.提高除草剂选择性应用技术的进展[J].中国农学通报,1988,6:9-11.
    43.张名恢.化学除草的选择性原理[J].杂草科学,1988(4):38-41.
    44.冯丽萍.绿麦隆过量施用队后茬水稻药害症状调查[J].云南农业科技,2002,增刊:202-203.
    45. Omura T. Forty years of cytochrome P450 [J]. Biochem Biophys Res Commun,1999,266:690-698.
    46. Porter T, Coon M. Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms [J]. J Biol Chem,1991,266(21):13469-13472.
    47. Burnet MWM, Loveys BR, Holtum JAM, Powles SB. Increased detoxification is a mechanism of simazine resistance in Lolium rigidum[J]. Pestic Biochem Physiol,46:207-218.
    48. Werck-Reichhart D, Hehn A, Didierjean L. Cytochromes P450 for engineering herbicide tolerance [J]. Trends Plant Sci,2000,5(3):116-123.
    49. Frear DS, Swanson HR, Tanaka FS. N-demethylation of substituted 3-(phenyl)-1-methylureas: isolation and characterization of a microsomal mixed function oxidase from cotton [J]. Phytochemistry,1969,8:2157-2169.
    50. Cabanne F, Huby D, Gaillardon P, Scalla R, Durst F. Effect of the cytochrome P450 inactivator 1-aminobenzotriazole on the metabolism of chlortoluron and isoproturon in wheat[J]. Pestic Biochem Physiol,1987,28:371-380.
    51. Inui H, Ueyama Y, Shiota N, Ohkawa Y, Ohkawa H. Herbicide metabolism and cross tolerance in transgenic potato plants expressing human CYP1A1 [J]. Pestic Biochem Physiol,1999,64:33-46.
    52.张山,李平,刘德立.细胞色素P450酶系与除草剂代谢[J].中国生物工程杂志,2004,24(10):18-21.
    53. Cox L, Walker A, Welch. SJ. Evidence for the accelerated degradation of isoproturon in soils [J]. Pestic Sci,1996,48:253-260.
    54. Mudd PJ, Hance RJ, Wright SJL. The persistence and metabolism of isoproturon in soil [J]. Weed Res,1983,23:269.
    55. S(?)rensen SR, Aamand J. Biodegradation of the phenylurea herbicide isoproturon and its metabolites in agricultural soils [J]. Biodegradation,2001,12:69-77.
    56. Sorensen SR, Ronen Z, Aamand J. Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon [J]. Appl Environ Microbiol,2001,67(12):5403-5409.
    57. Sorensen SR, Ronen Z, Aamand J. Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. Strain SRS2[J]. Appl Environ Microbiol,2002, 68(7):3478-3485.
    58. Talaat ES, Bernard L, Guy S. Isolation and characterization of an isoproturon-mineralising Methylopela sp. TES from French agricultural soil [J]. FEMS-Microbiol Lett,2004,239(l):103-110.
    59. Fournier JC, Catroux G. Use of strains of collected microorganisms for studies on pesticide biodegradability [J]. Chemosphere,1980,9:66-38.
    60. Vroumsia TR, Steiman MF, Seigle GJ, Benoit L, Khadrani A. Biodegradation of three substituted phenylurea herbicides (chlortoluron, diuron, and isoproturon) by soil fungi:a comparative study [J]. Chemosphere,1996,33:2045-2056.
    61. Ronhede S, Jensen B, Rosendahl S, Kragelund BB, Juhler RK, Aamand J. Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil[J]. Appl Environ Microbiol,2005, 71(12):7927-7932.
    62. Dellamatrice P, Monteiro R. Isolation of diuron degrading bacteria from treated soil [J]. Braz Arch Biol Technol,2004,47:999-1003.
    63. EI-Deeb B, Sollan S, Ali A, Ali K. Detoxification of the herbicide diuron by Pseudomonoas sp [J]. Folia Microbiol,2000,45:211-216.
    64. Widehem P, A€1t-A€issa S, Tixier C, Sancelme M, Veschambre H, Truffaut N. Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2[J]. Chemosphere,2002,46:527-534.
    65. Domsch KH. Pestizide im Boden. Weinheim/New York/Basel/Cambridge 1992:575.
    66. Schuelein J, Glaessgen WE, Hertkorn N, Schroeder P, Jr.Sandermann H, Kettrup A. Detection and identification of the herbicide isoproturon and its metabolites in field samples after a heavy rainfall event[J]. Int J Environ Anal Chem,1996,65:193-202.
    67. Lehr S, Glassgen W, Sandermann H, Beese JF, Scheunert I. Metabolism of isoproturon in soils originating from different agricultural management systems and in cultures of isolated bacteria[J]. Intern J Environ Anal Chem,1996,65:231-244.
    68. Gaillardon P, Sabar M. Changes in the concentration of isoproturon and its degradation products in soil and soil solution during incubation at two temperatures [J]. Weed Res,1994,34:243-250.
    69. KJuhler R, S(?)rensen S, Larsen L. Analysing transformation products of herbicide residues in environmental samples [J]. Water Res,2001,35:17-24.
    70. Pieuchot M, Perrin-Ganier C, Portal JM, Schiavon M. Study on the mineralization and degradation of isoproturon in three soils[J]. Chemosphere,1996,3:467-478.
    71. Berger BM. Parameters influencing biotransformation rates of phenylurea herbicides by soil microorganisms [J]. Pesticide Biochemistry and Physiology,1998,60:71-82.
    72. Roberts SJ, Walker A, Parekh NR, Welch SJ, Waddington MJ. Studies on a mixed bacterial culture from soil which degrades the herbicide linuron [J]. Pestic Sci,1993,39:71-78.
    73. Roberts SJ, Walker A, Cox L, Welch S. Isolation of isoproturon-degrading bacteria from treated soil via three different routes[J]. J App Microbiol,1998,85:309-316.
    74. Hance RJ. the effect of nutrients on the decomposition of the herbicides atrazine and linuron incubated with soil[J]. Pestic Sci,1973,4:817-822.
    75. Kubiak R, Ellbel H, Lambert M, Eichhorm W. Degradation of isoproturon in soil in relation to changes of microbial biomass and activity in small-scall laboratory and outdoor studies[J]. Intl Environ Anal Chem,1995,59:123-132.
    76. Perrin-Ganier C, Schiavon F, Morel JL, Schiavon M. Effect of sludge-amendment or nutrient addition on the biodegradation of the herbicide isoproturon in soil.[J]. Chemosphere,2001, 44(4):887-892.
    77. Johannesen H. Microbial degradation of herbicides aged in soil or aquifer sediments[D]. Ph.D. thesis. University of Copenhagen, Copenhagen,Denmark 2002
    78. Cullington JE, Walker. A. Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium [J]. Soil Biol Biochem,1999,31:677-686.
    79. Engelhardt Q R.Wallnofer P, Ziegler W. Degradation of the phenylamide herbicides monolinuron and solan by Fusarium oxysporum Schlecht[J]. Chemosphere,1979,10:725.
    80. Kearney PC, Plimmer JR. Metabolism of 3-4 dichloraniline in soil [J]. J Agric Food Chem,1972, 20:584.
    81. Tillmanns G:Oxidative Transformation von phenylamiden durch bodenpilze der gattung Muncorales[D]. PhD Thesis, Munchen, Germany 1976.
    82. Field JA, Reed RL, Sawyer TE, Martinez M. Diuron and its metabolites in surface water and ground water by solid phase extraction and in-vial elution [J]. J Agric Food Chem,1997,45:3897-3902.
    83.沈锡辉,刘志培,王保军,刘双江.苯酚降解菌红球菌PNAN5菌株[Rhodococcus sp. strain PNAN5)的分离鉴定、降解特性及其开环双加氧酶性质研究.环境科学学报,2004,24(3):482-486.
    84. Gennaro P, Rescalli E, Galli E. Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene ando-xylene isolated from a polycyclic aromatic hydrocarbon contaminated soil [J]. Res Microbiol,2001,152(9):641-651.
    85.钟文辉,何国庆,孙明,冯孝善,喻子牛.假单胞菌的氯儿茶酚1,2-双加氧酶基因的克隆和表达[J].中国环境科学,2004,24(2):178-179.
    86. Neidle EL, Ornston LN. Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene catA in Escherichia coli[J]. J Bacteriol 1986,168:815-820.
    87. Patel RN, Hou CT, Felix A, Lillard MO. Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus:purification and properties[J]. J Bacteriol,1976,127:536-544.
    88. Tarrand JJ, Krieg NR, Dobereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov[J]. Can J Microbiol,1978, 24(8):967-980.
    89. Magahaes FM, Baldani JI, Souto SM, Kuykendall JR, Doberiner J. A new acid-tolerant Azospirillum species[J]. Ann Acad Bras Cienc,1983,55:417-430.
    90. Reinhold-Hurek B, Hurek T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov [J]. Int J Syst Evol Microbiol,2000,50(2):649-659.
    91. Khammas KM, Ageron E, Grimont PA, Kaiser P. Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil[J]. Res Microbiol,1989,140(9):679-693.
    92. Sly LI, Stackebrandt E. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum[J]. Int J Syst Bacteriol,1999, 49(2):541-544.
    93. Barbara Eckert; Olmar Bailer Weber; Gudrun Kirchhof; Andras Halbritter; Marion Stoffels, Anton Hartmann. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus[J]. Int J Syst Bacteriol,2001,51(1):17-26.
    94. Cheng-Hui Xie; Akira Yokota. Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa[J]. Int J Syst Bacteriol,2005,55:1435-1438.
    95. Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z. Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass[J]. Int J Syst Evol Microbiol,2006, 56(6):1263-1271.
    96. Mehnaz S, Weselowski B, Lazarovits G. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays[J]. Int J Syst Evol Microbiol,2007,57(12):2805-2809.
    97. Young CC, Hupfer H, Siering C, Ho MJ, Arun AB, Lai WA, Rekha PD, Shen FT, Hung MH, Chen WM. Azospirillum rugosum sp. nov., isolated from oil-contaminated soil[J]. Int J Syst Evol Microbiol,2008,58(4):959-963.
    98. Dobereiner J. Ten years of Azospirillum. In Azospirillum Ⅱ:Genetics,Physiology, Ecology[M]. Edited by W Klingmueller Basel:Birkhaeuser 1983:9-23.
    99. Dobereiner J, Marriel IE, Nery M. Ecological distribution of Spirillum lipoferum Beijerinck[J]. Can J Microbiol,1976,22:1464-1474.
    100.Okon Y. Azospirillum as a potential inoculant for agriculture[J]. Trends Biotechnol,1985, 3:223-228.
    1. Mansour M, Feicht EA, A Behechti. Determination photostability of selected agrochemicals in water and soil [J]. Chemosphere,1999,39(3):575-585.
    2. Hoshiya TR, Hasegawa K, Hakoi L. Enhancement by nonmutagenic pesticides of GST-P positive hepatic foci development initiated with diethyllnitrosamine in the rat[J]. Cancer Lett,1993, 72(1):59-64.
    3. Nitchke L, Schussler W. Surface water pollution by herbicides from effluents of wastewater treatment plants [J] Chemosphere,1998,36(1):35-41.
    4.武丽辉.英国将逐步停止异丙隆的使用(译)[J].农药科学与管理,2007,28(10):44.
    5. Sorensen SR, Ronen Z, Aamand J. Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon [J]. Appl Environ Microbiol,2001,67(12):5403-5409.
    6. Talaat ES, Bernard L, Guy S. Isolation and characterization of an isoproturon-mineralising Methylopela sp. TES from French agricultural soil [J]. FEMS Microbiol Lett,2004,239(1):103-110.
    7. Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW. Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA [J]. Appl Environ Microbiol,2001,67(5):2270-2275.
    8. Sorensen SR, Ronen Z, Aamand J. Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. Strain SRS2 [J]. Appl Environ Microbiol,2002, 68(7):3478-3485.
    9.东秀珠,蔡妙英.常见细菌系统鉴定手册[M]北京:科学出版社2001.
    10. Holt JG, Krieg NR, Sneath PHA, Staley JT, T.Williams S. Bergey's Manual of Determinative Bacteriology[M]. Williams and Wilkins, Baltimore 1994.
    11. Marchesil JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA [J]. Appl Envirom Microbiol,1998,64(2):795-799.
    12.萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯 T.分子克隆实验指南[M].北京;科学出版社2002.
    13. Ulton S, Higgins C, Sharp P. ERIC sequences:a novel family of repeatitive elements in the genomes of the Escherichia coli, Salmonella typhimurium and other enterobactira [J]. Mol Micriobil,1991, 5(4):825-834.
    14.张瑞福.有机磷农药长期污染土壤的微生物分子生态效应[M],南京农业大学博士论文2004.
    15. Said EL, Fantroussi, Laurent Verschuere. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles [J]. Appl Environ Microbial,1999.65(3):982-988.
    16. Bending GD, Lincoln SD, Edmondson RN. Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties[J]. Environ Pollut,2006.139:279-287.
    17. Bending GD, Rodriguez-Cruz MS. Microbial aspects of the interaction between soil depth and biodegradation of the herbicide isoproturon [J]. Chemosphere,2007.66:664-671.
    18. Barriuso E, Houot S. Rapid mineralization of the S-triazine ring of atrazine in soils in relation to soil management [J]. Soil Biol Biochem,1996.28:1341-1348.
    19. Ostrofsky E, Traina S, Tuovinen O. Variation in atrazine mineralization rates in relation to agricultural management practice [J]. J Environ Qual,1997.26:647-657.
    20. Huang, X., He J, Sun J, Pan J, Sun X, Li S. Isolation and characterization of a metsulfuron-methyl degrading bacterium Methylopila sp. S113 [J]. Int Biodeter Biodegr,2007.60:152-158.
    21. Mandelbaum RT, Allan DL, Wackett LP. Isolation and characterization of a Pseudomonas sp. that mineralizes the.s-triazine herbicide atrazine [J]. Appl Environ Microbiol,1995.61:1451-1457.
    22. Radosevich M, Traina SJ, Hao YL, Tuovinen OH. Degradation and mineralization of atrazine by a soil bacterial isolate [J]. Appl Environ Microbiol,1995.61:297-302.
    23.黄星,何健,潘继杰,洪青,李顺鹏.噻吩磺隆降解菌FLX的分离鉴定及降解特性[J].中国环境科学,2006,26(2):214-218.
    24. Yabuuchi E, Yamamoto H, Terakubo S, Okamura N, Naka T, Fujiwara N, Kobayashi K, Kosako Y, Hiraishi A. Proposal of Sphingomonas wittichii sp. nov. for strain RW1(T), known as a dibenzo-p-dioxin metabolizer[J]. Int J Syst Evol Microbiol,2001,51 (2):281-292.
    25. Prakash O, Lal R. Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. Nov [J]. Int J Syst Evol Microbiol,2006,56(9):2147-2152.
    26. Kasai Y, Kishira H, Syutsubo K. Molecular detection of marime bacterial populations on beaches contamitated by the Nakhodka tanker off-spill accident [J]. Environ Microbiol,2001.3:246-255
    27. Bending GD, Lincoln SD, S(?)rensen SR, Alun J. Morgan W, Aamand J, Walker A. In-Field Spatial Variability in the Degradation of the Phenyl-Urea Herbicide Isoproturon Is the Result of Interactions between Degradative Sphingomonas spp. and Soil pH [J]. Appl Envir Microbiol,2003 69:827-834.
    28. Dai M, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723 [J]. Appl Environ Microbiol, 2004.70:2391-2397.
    29. Sharma P, Raina V, Kumari R. Haloalkane dehalogenase linB is responsible for{beta}-and {delta}-hexachlorocyclohexane transformation in Sphingobium indicum B90A[J]. Appl Environ Microbiol,2006,72:5720-5727.
    30. Fredrickson JL, Balkwill DL, Drake GR. Aromatic-degrading Sphingomonas isolates from the deep subsurfaces [J]. Appl Environ Microbiol,1995,61:1917-1922.
    31. Fujii K, Urano N, Ushio H. Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatedment plant in Tokyo[J]. Int J Syst Evol Microbiol,2001, 51:603-610.
    32. Wittich RM Wilkes H, Sinnwell V. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1 [J]. Appl Environ Microbiol,1992,58:1005-1010.
    33. Zylstra GL Kim E. Aromatic hydrocarbon degradation by Sphinomonas yanoiluyae B1J[J]. Ind Microbiol Biotechnol,1997,19:408-414.
    34. Takeuchi M., Hamana K. & Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium,Novosphingobinm and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses [J]. Int J Syst Evol Microbiol,2001.51,1405-1417.
    35. Romine MF, Stillwell LC, Wong KK. Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199 [J]. J Bacteriol,1999,181:1585-1602.
    36. Betsy M, Jeffrey T, Lawrence PW, Rod W and Michael JS. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pPAD-1 from Pseudomonas sp. strain ADP [J], J Bacteriol,2001,183:5684-5697.
    37. Dayananda S, Syed K. Transposon-like organization of the plasmid-borne organophosphate degradeation(opd) gene cluster found in Flavobacterium sp. [J]. Appl Environ Microbio, 2003.69:2533-2539.
    38. Karen PYF, Christopher BHG, Hai-Meng T. The Genes for benzene catabolism in Pseudomonas putida ML2 are flanked by two copies of the insertion element IS1489, forming a class-I-type catabolic transposon, Tn5542 [J]. Plasmid,2000.43,103-110.
    39. Top EM, Daele PV, Saeyer ND and Forney LJ. Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids [J]. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol,1998.73:87-94.
    40. Top EM, Maila MP, Clerinx M, Goris J, Vos PD and Verstraete W. Methane oxidation as a method to evaluate the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from soil by plasmid mediated bioaugmentation [J]. FEMS Microbiol Ecol,1999.28:203-213.
    41. Winnie D, Johan G, Said EL. Effect of dissemination of 2,4-dichlorophenoxyacetic acid(2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons [J]. Appl Environ Microbial,2000,66:3297-3304.
    42. Williams RP, Gott CL,. Hussaim Quadri SM, Scott RH. Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens[J]. J Bacteriol,1971.106:438-443
    43. Duncan LK, Seeley Jr HW. Temperature-sensitive dextransucrase synthesis by a Lactobacillus[J]. J Bacteriol,1963.86:1079-1083.
    44. Marr AG, Ingraham JL. Effect of temperature on the composition of fatty acids in Escherichia coli [J]. J Bacteriol,1962.84:1260-1266.
    45. Palumbo SA, Witter LD. The influence of temperature on the pathways of glucose catabolism in Pseudomonasfluorescens [J]. Can J Microbiol,1969.15:995-1000.
    46. Kornberg HL, Smith J. Temperature sensitive synthesis of isocitrate lyase in Escherichia coli [J]. Biochim Biophys Acta,1966.123:654-656.
    47. Hai S, Wang YT. Simultaneous Chromium Reduction and Phenol degradation in a cocluture of Escherichia coli ATCC 33456 and Pseudomonas putia DMP21 [J] Appl Environ Microbiol,1995, 61:2754-27581.
    48.Park HS, Lim SJ, Chang YK, Livingston AG, Kim HS. Degradation of Chloronitrobenzenes by a Coculture of Pseudomonas putia and a Rhodococcus sp.[J]. Appl Environ Microbiol,1999,65, 1083-1091.
    49. Jang JH, Hirai M, Shoda M. Enhancement of styrene removal efficiency in biofilter by mixed cultures of Pseudomonas sp. SR2 [J]. J Biosci Bioeng,2006,102:53-591.
    50. Jonathan DV, Owen PW. Physical and metabolic interactions of Pseudomonas sp. Strain JA52B45 and Rhodococcus sp. strain F92 D79 during growth on crude oil and effect of a chemical surfactant on them[J]. Appl Environ Microbiol,2001,67 (10):4874-4891.
    51. Kumar M, Leon V, Materano Ade S, Ilzins OA. Enhancement of oil degradation by coculture of hydrocarbon degrading and biosurfactant producing bacteria [J]. Pol J Microbiol,2006,55:139-1461.
    52. Pavel S, Yehuda C. Oxygen-dependent growth of the sulfate-reducing bacterium Desulfovibrio oxycline in coculture with Marinobacter sp. strain MB in an aerated sulfate-depleted chemostat. Appl Environ Microbiol,2000,66(11),5019-5023.
    53.许育新,孙纪全,李晓慧,李顺鹏,陈义.两株菌对氯氰菊酯及其降解产物3-PBA的协同代谢研究[J].微生物学报,200747:834-837.
    54. Pieuchot M, Perrin-Ganier C. Study on the mineralization and degradation of isoproturon in three soils[J]. Chemosphere,1996,3:467-478.
    55. Perrin-Ganier C, Schiavon F, Morel J L, Schiavon M. Effect of sludge-amendment or nutrient addition on the biodegradation of the herbicide isoproturon in soil[J]. Chemosphere,2001, 44(4):887-892.
    56. Widehem P, A€it-A€issa S, Tixier C, Sancelme M, Veschambre H, Truffaut N. Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2[J]. Chemosphere,2002,46:527-534.
    57. Brennan RJ, Schiestl RH. Aniline and its metabolites generate free radicals in yeast[J]. Mutagenesis, 1997,12(4):215-220.
    58. Tarrand JJ, Krieg NR, Dobereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov [J]. Can J Microbiol,1978, 24(8):967-980.
    59. Magahaes FM, Baldani JI, Souto SM, Kuykendall JR, Doberiner J. A new acid-tolerant Azospirillum species [J]. Ann Acad Bras Cienc,1983,55:417-430.
    60. Reinhold-Hurek B, Hurek T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov [J]. Int J Syst Evol Microbiol,2000,50(2):649-659.
    61. Khammas KM, Ageron E, Grimont PA, Kaiser P. Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil[J]. Res Microbiol,1989,140(9):679-693.
    62. Sly LI, Stackebrandt E:Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum[J]. Int J Syst Bacteriol,1999, 49(2):541-544.
    63. Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A. Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C(4)-grass Miscanthus[J]. Int J Syst Evol Microbiol,2001,51(1):17-26.
    64. Xie CH, Yokota A. Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa [J]. Int J Syst Evol Microbiol,2005,55(4):1435-1438.
    65. Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z. Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass [J]. Int J Syst Evol Microbiol,2006, 56(6):1263-1271.
    66. Mehnaz S, Weselowski B, Lazarovits G. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere [J]. Int J Syst Evol Microbiol,2007,57(3):620-624.
    67. Mehnaz S, Weselowski B, Lazarovits G. Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays [J]. Int J Syst Evol Microbiol,2007,57(12):2805-2809.
    68. Young CC, Hupfer H, Siering C, Ho MJ, Arun AB, Lai WA, Rekha PD, Shen FT, Hung MH, Chen WM et al. Azospirillum rugosum sp. nov., isolated from oil-contaminated soil [J]. Int J Syst Evol Microbiol,2008,58(4):959-963.
    69. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganism [J]. FEMS Microbiol Lett,1999,170:265-270.
    70. Stackebrandt E, Goebel BM. Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology [J]. Int J Syst Bacteriol,1994, 44:846-849.
    71.孙瑞,吴琳.微生物分子分类方法的简述[J].郑州铁路职业技术学院学报,2004,16(2):58-60.
    1. Sorensen SR, Ronen Z, Aamand J. Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon [J]. Appl Environ Microbiol,2001,67(12):5403-5409.
    2. Sorensen SR, Ronen Z, Aamand J. Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 [J]. Appl Environ Microbiol,2002, 68(7):3478-3485.
    3. Talaat ES, Bernard L, Guy S. Isolation and characterization of an isoproturon-mineralising Methylopela sp. TES from French agricultural soil [J]. FEMS-Microbiol Lett,2004,239(1):103-110.
    4. Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW. Degradation of substituted phenylurea herbicides by Arthrobacter globiformis Strain D47 and characterization of a plasmid-associated hydrolase gene, puhA [J]. Appl Environ Microbiol,2001,67(5):2270-2275.
    5. Cullington JE, Walker. A. Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium [J]. Soil Biol Biochem,1999,31:677-686.
    6. Ronhede S, Jensen B, Rosendahl S, Kragelund BB, Juhler RK, Aamand J. Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil [J]. Appl Environ Microbiol,2005, 71(12):7927-7932.
    7.萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯 T:分子克隆实验指南[M].北京;科学出版社2002.
    8.贾开志.久效磷降解菌的分离、鉴定及降解酶基因的克隆[D].南京农业大学博十论文,2006
    9. Edgehill RU, Finn RK. Isolation, characterization and growth kinetics of bacteria metabolizing pentachlorophenol [J]. Eur J Appl Microbiol Biotechno,1982.16:179-184
    10. Watanabe I. Isolation of pentachlorophenol decomposing bacteria from soil [J]. Soil Sci Plant Nutr, 1973.19:109-116
    11.许育新,孙纪全,李晓慧,李顺鹏,陈义.两株菌对氯氰菊酯及其降解产物3-PBA的协同代谢研究[J].微生物学报,200747:834-837
    12. Said WA, Lewis DL. Quantitative assessment of the effects of metals on microbial degradation of organic chemicals [J]. Appl Environ Microbiol,1991.57:1498-1503
    13. Kuo C, Sharak Genthener BR.Effect of added heavy metal uons on biotransformation and biodegradation of 2-Chlorophenol and 3-Chlorobenzoate in anaerobic bacterial consortia[J]. Appl Enviro Microbiol,1996.62.2317-2323
    14. Sabadie J. Behavior of four sulfonylurea herbicides in the presence of hydroxy compounds[J]. J Agric Food Chem,2000,48:4752-4756
    15. Dinelli G, Vicari A, Bonetti A, Hydrolytic dissipation of four sulfonylurea herbicides [J]. J Agric Food Chem,1997.45:1940-1945
    16. Dellamatrice PM, Monteiro RTR. Isolation of diurondegrading bacteria from treated soil [J]. Braz. Arch Biol Technol,2004.47:999-1003
    17. El-Deeb BA, Sollan SM, Ali AM, Ali KA. Detoxification of the herbicide diuron by Pseudomonoas sp [J]. Folia Microbiol,2000.45:211-216.
    18.Widehem P, Ait-Aissa S, Tixier C, Sancelme M, Veschambre H,Truffaut N. Isolation, characterization and diuron transformation capacities of a bacterial strain, Arthrobacter sp. N2[J]. Chemosphere, 2002.46:527-534.
    19. Bending GD, Lincoln SD, Sorensen SR, Morgan JAW, Aamand J, Walker A. In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH[J]. Appl Environ Microbiol,2003, 69(2):827-834.
    20.魏东斌,张爱茜,韩朔睽,王连生.磺酰脲类除草剂研究进展[J].环境科学进展,1999,7(5)34-39
    21.孙丙耀,叶建强,黄建中,李扬汉.磺酰脲类除草剂在土壤中的行为[J].农药译丛,1996,18(2),35-39
    22. Konda LN, FUleky G, Morovjan G. Sorption behaviour of acetochlor, atrazine, carbendazim, imidacloprid and isoproturon on hungarian agricultural soil [J]. Chemosphere,2002.48:545-552
    23. Hees PAW, Johansson E, Jones DL. Dynamics of simple carbon compounds in two forest soils as revealed by soil solution concentrations and biodegradation kinetics [J]. Plant Soil,2008.310:11-23
    24 Sendstad E, Hoddo T, Sveum P, Eimhjellen K, Josefson K, Nilsen O, Sommer T.. Enhanced oil biodegradation on an Arctic shoreline,1982 p.331-340. in Proceedings of the Fifth Arctic Marine Oilspill Program Technical Seminar. Environment Canada, Ottawa, Canada
    25.黄昌勇主编.土壤学[M].北京:中国农业出版社,2000
    26.Young CC, Arun AB, Kampfer P, Busse HJ, Lai WA, Chen WM, Shen FT, Rekha PD. Sphingobium rhizovicinum sp. nov., isolated from rhizosphere soil of Fortunella hindsii (Champ, ex Benth.) Swingle [J]. Int J Syst Evol Microbiol,2008.58:1801-1806
    27. Young CC, Ho MJ, Arun AB, Chen WM, Lai WA, Shen FT, Rekha PD, Yassin AF. Sphingobium olei sp. nov., isolated from oil-contaminated soil [J]. Int J Syst Evol Microbiol,2007.57:2613-2617
    28. Prakash O, Lal R. Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. [J]. Int J Syst Evol Microbiol,2006.56:2147-2152
    29. Wittich RM, Busse HJ, Kampfer P, Tiirola M, Wieser M, Macedo AJ, Abraham WR. Sphingobium aromaticiconvertens sp. nov., a xenobiotic-compound-degrading bacterium from polluted river sediment [J]. Int J Syst Evol Microbiol,2007.57:306-310.
    30. Ushiba Y, Takahara Y, Ohta H Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment [J] Int J Syst Evol Microbiol,2003.53:2045-2048
    31. Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G, Prakash O, Prabagaran SR, Shivaji S, Cullum J, Holliger C, Lal R. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. [J]. Int J Syst Evol Microbiol,2005.55:1965-1972
    1. Hance RJ. the effect of nutrients on the decomposition of the herbicides attrazine and linuron incubated with soil[J]. Pestic Sci,1973,4:817-822.
    2. Kubiak R, H E, M L, W E. Degradation of isoproturon in soil in relation to changes of microbial biomass and activity in small-scall laboratory and outdoor studies [J]. Int J Environ Anal Chem, 1995,59:123-132.
    3. Mudd PJ, Hance RJ, Wright SJL. The persistence and metabolism of isoproturon in soil [J]. Weed Res,1983,23:269.
    4. Pieuchot M, Perrin-Ganier C. Study on the mineralization and degradation of isoproturon in three soils [J]. Chemosphere,1996,3:467-478.
    5. Perrin-Ganier C, Schiavon F, Morel J L, Schiavon M. Effect of sludge-amendment or nutrient addition on the biodegradation of the herbicide isoproturon in soil[J]. Chemosphere,2001, 44(4):887-892.
    6. Sorensen SR, Ronen Z, Aamand J. Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon [J]. Appl Environ Microbiol,2001,67(12):5403-5409.
    7. Johannesen H. Microbial degradation of herbicides aged in soil or aquifer sediments[D]. Ph.D. thesis. University of Copenhagen, Copenhagen,Denmark 2002
    8. Turnbull GA, Ousley M, Walker A, Shaw E, Morgan JAW. Degradation of substituted phenylurea herbicides by Arthrobacter globiformis strain D47 and characterization of a plasmid-associated hydrolase gene, puhA [J]. Appl Environ Microbiol,2001,67(5):2270-2275.
    9. Cullington JE, Walker A. Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium [J]. Soil Biol Biochem,1999,31:677-686.
    10. Widehem P, A€it-A€issa S, Tixier C, Sancelme M, Veschambre H, Truffaut N. Isolation, characterization and diuron transformation capacities of a bacterial strain Arthrobacter sp. N2 [J]. Chemosphere,2002,46:527-534.
    11. Dellamatrice PM, Monteiro RTR. Isolation of diurondegrading bacteria from treated soil [J]. Braz. Arch Biol Technol,2004.47:999-1003
    12. El-Deeb BA, Sollan SM, Ali AM, Ali KA. Detoxification of the herbicide diuron by Pseudomonoas sp [J]. Folia Microbiol,2000.45:211-216.
    13. Ronhede S, Jensen B, Rosendahl S, Kragelund BB, Juhler RK, Aamand J. Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil[J]. Appl Environ Microbiol,2005, 71(12):7927-7932.
    14. Hoshiya TR, Hasegawa K, Hakoi L. Enhancement by nonmutagenic pesticides of GST-P positive hepatic foci development initiated with diethyllnitrosamine in the rat [J]. Cancer Lett,1993, 72(1):59-64
    15.萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T:分子克隆实验指南[M].北京;科学出版社2002.
    16. Mascolo G, Lopez A, James H, Fielding M. By-products formation during degradation of isoproturon in aqueous solution Ⅱ:Chlorination[J]. Water Res,2001,35:1705-1713.
    17.钟文辉,何国庆,孙明,冯孝善,喻子牛.假单胞菌的氯儿茶酚1,2-双加氧酶基因的克隆和表达[J].中国环境科学,2004,24(2):178-179.
    18. Neidle EL, Ornston LN. Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene catA in Escherichia coli [J]. J Bacteriol,1986,168:815-820.
    19. Patel RN, Hou CT, Felix A, Lillard MO:Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus:purification and properties[J]. J Bacteriol 1976,127:536-544.
    1.王庆仁,刘秀梅.土壤与水体有机污染物的生物修复及其应用研究进展[J].生态学报 2001,21(1):159-163.
    2.杨景辉.土壤污染与防治[M].北京:科学出版社1995.
    3.夏平,李学亚,刘斌斌.石油污染的生物修复.污染防治技术2005,19(3):37-40.
    4.滕应,骆永明,李振高.多氯联苯复合污染土壤的土著微生物修复强化措施研究.土壤2006,38(5):645-651.
    5.白建峰,林先贵,尹睿.砷污染土壤的生物修复研究进展.土壤2007,39(5):692-700.
    6. Bragg JR, Prince RC, Harner EJ, Atlas RM. Effectiveness of bioremediation for the Exxon Valdez oil spill[J]. Nature 1994,368:413-418.
    7. Pritchard PH, Mueller JG, Rogers JC, Kremer FV, Glaser JA. Oil spill bioremediation:experiences, lessons and results from the Exxon Valdez oil spill in Alaska [J] Biodegradation 1992,3:315-335.
    8. Swannell RPJ, Head IM. Bioremediation comes of age [J]. Nature 1994,368:396-397.
    9.陈祖义,石英,黄世乐.14C-绿麦隆的土壤结合残留[J].南京农业大学学报1993,31(2):31.
    10. Anderson T, Guthrie E, Walton B. Bioremediation in the rhizophere, plant roots and associated microbes clean contaminated soil [J] Environ Sci Technol 1993,27:2630-2636
    11. Chekol T, Vough LR, Chaney RL. Phytoremediation of polychlorinated biphenyl contaminated soils: The rhizosphere effect [J]. Environment International 2004,30(6):799-804.
    12. Mehmannavaz R, Prasher SO, Ahmad D. Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti [J]. Process Biochemistry 2002,37(9):955-963.
    13.刘世亮,骆永明,丁克强.土壤中有机污染物的植物修复研究进展[J].土壤2003,35(3):187-192,210.
    14. Donnelly PK, Fletcher JS.PCB metabolism by ectomycorrhizal fungi [J]. Bulletin of Environmental Contamination and Toxicology 1995,54(4):507-513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700