用户名: 密码: 验证码:
土壤中水溶态铜镍的植物毒害及其预测模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在大量实验数据的基础上(采用17个代表我国土壤理化性质分布规律的土样,3个植物品种(大麦、西红柿、小白菜)以及两种土壤处理方法(淋洗、非淋洗)),建立了土壤溶液性质与水溶性铜(Cu)和镍(Ni)的植物毒害阈值之间的经验回归模型,查明了影响水溶性Cu和Ni植物毒性的土壤溶液性质主控因子,同时分析淋洗处理对重金属植物毒性的影响。基于竞争吸附模型的理论,通过土壤性质和土壤中重金属含量之间的多元回归,建立不同pH值范围的土壤中重金属的固-液相分配模型,该经验模型可以很好的预测土壤中水溶性重金属的含量。同时,在整个土壤固-液相中,应用两种化学形态分析机理模型,WHAMVI和Visual MINTEQ3.0,模拟分析了土壤中重金属的形态分布,通过优化模型输入参数,模型预测的结果比较合理。
In the present study, bioassays of barley root elongation, tomato shoot and bokchoy were performed in17representive Chinese soils with added Cu/Ni salts, whichhad or had not undergone a leaching treatment. The effect of leaching on soluble Cuand Nitoxicitywas investigated and empirical relationships between soil pore waterproperties and soluble Cu and Ni toxicity were developed, meanwhile the mainfactors in pore water influencing soluble metal phytotoxicity were alsodetermined.The solid-solution partitioning model of Cu and Ni were developed basedoncompetition and adsorption modelin three pH ranges of soils (pH <7,78) through multiple regression between soil properties and soil metalcontents, which could provided precise predictions of soil soluble metalconcentrations.Additionally, the whole soil speciation including bulk of soilsproperties and total soils Ni or Cu contents were analyzed by mechanic speciationmodels WHAM VI and Visual MINTEQ3.0. For speciation calculation results, theycould provide reasonable estimations by optimization of inputs parameters.
引文
1.黄琳,蔡鲁晟,贾莹.我国环境中有害重金属的来源与分布及防治对策[J].科技情报开发与经济,2007,17(7):11~13.黄琳,蔡鲁晟,贾莹.我国环境中有害重金属的来源与分布及防治对策[J].科技情报开发与经济,2007,17(7):11~13.
    2.谢婧,吴健生,郑茂坤,等.基于不同土地利用方式的深圳市农用地土壤重金属污染评价[J].生态毒理学报,2010,5(2):202~207.
    3.谢小进,康建成,闫国东,等.黄浦江中上游地区农用土壤重金属含量特征分析[J].中国环境科学,2010,30(8):1110~1117.
    4.邹建美,孙江,戴伟,等.北京近郊耕作土壤重金属状况评价分析[J].北京林业大学学报,2013,35(1):132~138.
    5.王莹,陈玉成,李章平.我国城市土壤重金属的污染格局分析[J].环境化学,2012,31(6):763~770.
    6.廖晓勇,陈同斌,武斌,等.典型矿业城市的土壤重金属分布特征与复合污染评价--以―镍都‖金昌市为例[J].地理研究,2013,25(5):843~852.
    7.胡小娜,南忠仁,刘晓文,等.金昌城市居民区土壤重金属分布特征研究[J].干旱区资源与环境,2011,25(1):180~184.
    8.李琼,徐兴华,左余宝,等.污泥农用对痕量元素在小麦-玉米轮作体系中的积累及转运的影响[J].农业环境科学学报,2009,28(10):2042~2049.
    9.刘强,陈玲,邱家洲,等.污泥堆肥对园林植物生长及重金属积累的影响[J].同济大学学报(自然科学版),2011,38(6):870~875.
    10.韩卉,杨玉宝,李季,等.污泥农用重金属积累及其在土壤中的形态变化研究[A].2012年环境污染与大众健康学术会议[C].2012.
    11. Cai Q Y, Mo C H, Wu Q T, et al.Concentration and speciation of heavy metals in six differentsewage sludge-composts [J].Journal of Hazardous Materials,2007,147(3):1063~1072.
    12. Walter I, Martínez F, Cala V. Heavy metal speciation and phytotoxic effects of threerepresentative sewage sludges for agricultural uses [J]. Environmental Pollution,2006,139(3):507~514.
    13.石太宏,陈可.电镀重金属污泥的无害化处置和资源化利用[J].污染防治技术,2007,20(2):48~52.
    14.谢彤莹.重庆市凤凰电镀工业园电镀污泥资源化利用研究[硕士学位论文].重庆大学,重庆,2009.
    15.芮玉奎,申建波,张福锁,等.应用ICP-MS测定KCl肥料中重金属元素含量[J].农业环境科学学报,2008,28(10):2428~2430.
    16.陈林华,倪吾钟,李雪莲,等.常用肥料重金属含量的调查分析[J].干旱区资源与环境,2009,26(2):223~227.
    17.张国军,邱栋梁,刘星辉. Cu对植物毒害研究进展[J].福建农林大学学报(自然科学版),2004,33(3):289~294.
    18.刘国栋.植物营养元素-Ni[J].植物营养与肥料学报,2001,7(1):103~108.
    19.龙新宪,杨肖娥.植物镍营养[J].土壤通报,2000,31(1):39~43.
    20.康立娟,刘迎春,李立英,等.镍对水稻生长发育影响和残留规律的研究.农业环境保护,1997,16(3):135~137.
    21.鲁艳,何明珠,马全林,等.镍胁迫对7种旱生植物种子萌发及幼苗生长的影响[J].种子,2009,28(6):26~33.
    22.赵娜,周米平.镍胁迫对玉米苗根系生长及膜保护系统的影响[J].安徽农业科学,2011,(10):5821~5823.
    23.陈玉胜,陈亚华,王桂萍,等.硫对水稻种子萌发过程中铜毒害的缓解效应[J].南京农业大学学报,2007,30(2):44~48.
    24.黄锦孙,韦东普,郭雪雁.田间土壤外源铜镍在小麦中的累积及其毒害研究[J].环境科学,2012,33(4):1369~1375.
    25.腾葳,柳琪,李倩,等.重金属污染对农产品的危害与风险评估[M].北京:化学工业出版社,2010:110~116.
    26. Wang S L, Nan Z R, Liu X W, et al. Accumulation and bioavailability of copper and nickel inwheat plants grown in contaminated soils from the oasis, northwest China [J]. Geoderma,2009,152(3-4):290~295.
    27. Seregin I V, Kozhevnikova A D, Kazyumina E M, et al. Nickel toxicity and distribution inmaize roots [J]. Russian Journal of Plant Physiology,2003,50(5):711~717.
    28.涂从.紫色土中镍植物毒性的研究[J].中国环境科学,1996,16(6):456~460.
    29.周婷,王胜利,南忠仁,等.干旱区绿洲土壤中Ni在芹菜中的富集迁移[J].干旱区资源与环境,2011,25(12):171~176.
    30. Steenbergen N T T M, Iaccino F, De Winkel M, et al. Development of a biotic ligand modeland a regression model predicting acute copper toxicity to the earthworm Aporrectodeacaliginosa [J]. Environmental Science and Technology,2005,39(15):5694~5702.
    31.高怀友,赵玉杰,师荣光,等.区域土壤环境质量评价基准研究[J].农业环境科学学报,2005,24(增刊):342~345.
    32. Antunes P M C, Berkelaar E J, Boyle D, et al. The biotic ligand model for plants and metals:technical challenges for field application [J]. Environmental Toxicology and Chemistry,2006,25(3):875~882.
    33. Thakali S, Allen H E, Di Toro D M, et al. A terrestrial biotic ligand model.1. Developmentandapplication to Cu and Ni toxicity to barley root elongation in soils [J]. EnvironmentalScience and Technology,2006,40(22):7085~7093.
    34. Thakali S, Allen H E, Di Toro D M, et al. A terrestrial biotic ligand model. Terrestrial bioticligand model.2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes insoil [J]. Environmental Science and Technology,2006,40(22):7094~7100.
    35. Lock K, Van Eeckhout H, De Schamphelaere K A C, et al. Development of a biotic ligandmodel (BLM) predicting nickel toxicity to barley (Hordeum vulgare)[J]. Chemosphere,2007,66(7):1346~1352.
    36. Li B, Zhang X, Wang X D, et al. Refining a biotic ligand model for nickel toxicity to barleyroot elongation in solution culture [J]. Ecotoxicology and Environmental Safety,2009,72(6):1760~1766.
    37. Wang X D, Hua L, Ma Y B. A biotic ligand model predicting acute copper toxicity for barley(Hordeum vulgare): Influence of calcium, magnesium, sodium, potassium and pH [J].Chemosphere,2012,89(1):89~95.
    38.李宇庆,陈玲,仇雁翎,等.上海化学工业区土壤重金属元素形态分析[J].生态环境,2004,13(2):154~155.
    39. Evans L J. Chemistry of metal retention by soils [J]. Evironmental Science and Technology,1989,23(9):1046~1056.
    40. SauvéS, Hendershot W, Allen H. Solid-solution partitioning of metals in contaminated soils:dependence on pH, total metal burden, and organic matter [J]. Evironmental Science andTechnology,2000,34(7):1125~1131.
    41. SauvéS, Manna S, Turmel M C, et al. Solid-Solution Partitioning of Cd, Cu, Ni, Pb, and Zn inthe Organic Horizons of a Forest Soil [J]. Evironmental Science and Technology,2003,37(22):5191~5196.
    42.万红友,周生路,赵其国.苏南经济快速发展区土壤Ni的形态分布影响因素--以昆山市为例[J].农业环境科学学报,2010,29(10):1953~1959.
    43. Elzinga E J, Sparks D, L. Nickel sorption mechanisms in a pyrophyllite-montmorillonitemixture [J]. Journal of Colloid and Interface Science,1999,213(2):506~512.
    44. Elzinga E J, Sparks D L. Reaction condition effects on nickel sorption mechanisms inillite-water suspensions [J]. Soil Science Society of America Journal,2001,65(1):94~101.
    45. McNear D H, Chaney R L, Sparks D L.The effects of soil type and chemical treatment onnickel speciation in refinery enriched soils: A multi-technique investigation [J]. Geochimica etCosmochimica Acta,2007,71(9):2190~2208.
    46. Temminghoff E J M, Van Der Zee S E A T M, De Haan F A M. Copper mobility in acopper-contaminated sandy soil as affected by pH and dissolved organic matter [J].Environmental Science and Technology,1997,31(4):1109~1115.
    47. Alva A K, Huang B, Paramasivam S. Soil pH affects copper fractionation and phytotoxicity[J]. Soil Science Society of America Journal,2000,64(2):955~962.
    48. Ginocchio R, Rodriguez P H, Badilla-ohlbaum R, et al. Effect of soil copper content and pHon copper uptake of selected vegetables grown under controlled conditions [J]. EnvironmentalToxicology and Chemistry,2002,21(8):1736~1744.
    49. Weng L P, Wolthoorn A, Lexmond T M, et al. Understanding the effects of soilcharacteristics on phytotoxicity and bioavailability of nickel using speciation models [J].Environmental Science and Technology,2004,38(1):156~162.
    50. Smolders E, Buekers J, Oliver I, et al. Soil properties affecting toxicity of zinc to soilmicrobial properties in laboratory-spiked and field-contaminated soils [J]. EnvironmentalToxicology and Chemistry,2004,23(11):2633~2640.
    51. Rooney C P, Zhao F J, McGrath S P. Soil factors controlling the expression of copper toxicityto plants in a wide range of European soils [J]. Environmental Toxicology and Chemistry,2006,25(3):726~732.
    52. Rooney C P, Zhao F J, McGrath S P. Phytotoxicity of nickel in a range of European soils:influence of soil properties, Ni solubility and speciation [J]. Environmental Pollution,2007,145(2):596~605.
    53. Broos K, Warne M S J, Heemsbergen D A, et al. Soil factors controlling the toxicity of copperand zinc to microbial processes in Australian soils [J]. Environmental Toxicology andChemistry,2007,26(4):583~590.
    54. Warne M St J, Heemsbergen D A, Stevens D, et al. Modeling the toxicity of copper and zincsalts to wheat in14soils [J]. Environmental Toxicology and Chemistry,2008,27:786~792.
    55. Oorts K, Ghesquiere U, Smolders E. Leaching and aging decrease nickel toxicity to soilmicrobial processes in soils freshly spiked with nickel chloride [J]. Environmental Toxicologyand Chemistry,2007,26(6):1130~1138.
    56. Li B, Ma Y B, McLaughlin M J, et al. Influences of soil properties and leaching on coppertoxicity to barely root elongation [J]. Environmental Toxicology and Chemistry,2010,29(4):835~842.
    57. Li B, Zhang H T, Ma Y B, et al. Influences of soil properties and leaching on nickel toxicity tobarley root elongation [J]. Ecotoxicology and Environmental Safety,2011,74(3):459~466.
    58.柴世伟,温琰茂,张云霓,等.广州郊区农业土壤重金属含量与土壤性质的关系[J].农村生态环境,2004,20(2):55~58.
    59.罗冬莲,阮金山,许翠娅,等.福建主要贝类养殖区表层沉积物重金属和有机质的含量及其相关性[J].海洋环境科学,2004,23(1):33~36.
    60.徐宁彤,谷思玉,刘胜利,等.有机质对黑土中Cd、Cu、Zn、As的吸附解吸行为的影响[J].黑龙江水利科技,1999,1(1):58~59.
    61.王浩,章明奎.污染土壤中有机质和重金属互相作用的模拟研究[J].浙江大学学报(农业与生命科学版),2009,35(4):460~466.
    62.章明奎,方利平,周翠.污染土壤中有机质结合态重金属的研究[J].生态环境,2005,14(5):650~653.
    63. Sauvé S, McBride M B, Norvell W A, et al. Copper solubility andspeciation of in-situcontaminated soils: Effects of copper level, pH andorganic matter [J]. Water, Air, and SoilPollution,1997,100(1-2):133~149.
    64. McBride M B, Sauvé S, Hendershot W. Solubility control of Cu, Zn, Cd and Pbincontaminated soils [J]. European Journal of Soil Science,1997,48(2):337~346.
    65. Tipping E, Rieuwerts J, Pan G, et al. The solid-solution partitioning of heavy metals (Cu,Zn,Cd, Pb) in upland soils of England and Wales [J]. Environmental Pollution,2003,125(2):213~225.
    66. Gustafsson J P, Pechova P. Modeling metal binding to soils: The role of naturalorganic matter[J]. Evironmental Science and Technology,2003,37(12):2767~2774.
    67.钟晓兰,周生路,黄明丽.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,2009,18(4):1266~1273.
    68. Weng L P, Lexmond T M, Wolthoorn A, et al. Phytotoxicity and bioavailability of nickel:chemical speciation and bioaccumulation [J]. Environmental Toxicology and Chemistry,2003,22(9):2180~2187.
    69.赵其国.中国东部红壤地区土壤退化的时空变化、机理及调控[M].北京:科学出版社,2000.
    70. Trivedi P, AxeL. Ni and Zn sorption to amorphous versus crystalline iron oxides: MacroscopicStudies [J]. Journal of Colloid and Interface Science,2001,244(2):221~229.
    71. Trivedi P, Axe L. Predicting divalent metal sorption to hydrous Al, Fe, and Mnoxides [J].Environmental Science and Technology,2001,35(9):1779~1784.
    72.郭平.长春市土壤重金属污染机理与防治对策研究[D].吉林大学,长春,2005.
    73. He H P, Guo J G, Xie X D. Adsorp tion mechanism of expansible layered clay minerals tocopper ion [J]. Environmental Science,2000,21(4):47~51.
    74.吴平霄.黏土矿物材料与环境修复[M].北京:化学工业出版社,2004:8~23.
    75.王湖坤,龚文琪.黏土矿物材料在重金属废水处理中的应用[J].工业水处理,2006,26(4):4~7.
    76.张金池,姜姜,朱丽珺,等.黏土矿物中重金属离子的吸附规律及竞争吸附[J].生态学报,2007,27(9):3811~3819.
    77.谭文峰,周素珍,刘凡,等.土壤中铁铝氧化物与黏土矿物交互作用的研究进展[J].土壤,2007,39(5):726~730.
    78.范拴喜.土壤重金属污染与控制.北京:中国环境科学出版社,2011:38~41.
    79.张璇,华珞,王学东,等.不同pH值条件下镍对大麦的急性毒性[J].中国环境科学2008,28(7):640~645.
    80.李淑芬,俞元春,何晟.土壤溶解有机碳的研究进展[J].土壤与环境,2002,11(4):422~429.
    81.李先国,范晓明,彭学伟,等.天然水环境中的溶解有机物及其光化学降解对重金属生物可利用性的影响[J].中国海洋大学学报,2010,40(1):75~81.
    82. Irving H, Williams R J P. The Stability of Transition-metal Complexes [J]. Journal of theChemical Society,1953:3192~3210.
    83. Weng L P, Temminghoff E J M, Van Riemsdijk W H. Contribution of individual sorbents tothe control of heavy metal activity in sandy soil [J]. Environmental Science and Technology,2001,35(22):4436~4443.
    84. Weng L P, Temminghoff E J M, Lofts S, et al. Complexation with dissolved organic matterand solubility control of heavy metals in a sandy soil [J]. Environmental Science andTechnology,2002,36(22):4804~4810.
    85. Nolan A L, Ma Y B, Lombi E, et al. Speciation and isotopic exchange ability of Ni in soilsolution [J]. Journal of Environmental Quality,2009,38(2):485~492.
    86. Tipping E, Rey-castro C, Bryan S E, et al. Al (III) and Fe (III) binding by humic substances infreshwaters, and implications for tracemetal speciation [J]. Geochimica et Cosmochimica Acta,2002,68(18):3211~3224.
    87. Guthriea J W, Hassana N M, Salama M S A, et al. Complexation of Ni, Cu, Zn, and Cd byDOC in some metal-impacted fresh water lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciationmodel, WHAM V and VI [J]. Analytica Chimica Acta,2005,528(12):205~218.
    88. Christensen J B, Christensen T H. The effect of pH on the complexation of Cd, Niand Zn bydissolved organic carbon from leachate-polluted groundwater [J]. Water Research,2000,34(15):3743~3754.
    89. Pagenkopf G K. Gill surface interaction model for tracemetaltoxicity to fishes: Role of complexation, pH and water hardness [J]. Evironmental Science and Technology,1983,17(6):342~347.
    90. Morel F M M. Princip les of Aquatic Chemistry [M]. NY: WileyInterScience,1983:301~308.
    91. Lock K, De Schamphelaere K A C, Because S, et al. Development and validation of an acutebiotic ligand model (BLM) predicting cobalt toxicity in soil to the potworm Enchytraeusalbidus [J]. Soil Biology and Biochemistry,2006,38(7):1924~1932.
    92. Lock K, Criel P, De Schamphelaere K A C, et al. Influence of calcium, magnesium, sodium,potassium and pH on copper toxicity to barley (Hordeum vulgare)[J]. Ecotoxicology andEnvironental Safety,2007,68(2):299~304.
    93. Lock K, De Schamphelaere K A C, Becaus S, et al. Development and validation of aterrestrial biotic ligand model predicting the effect of cobalt on root growth of barley(Hordeum vulgare)[J]. Environt Pollution,2007,147(3):626~633.
    94. Clifford M, McGeer J C. Development of a biotic ligand model for the acute toxicity of zincto Daphnia pulex in soft waters [J]. Aquatic Toxicology,2009,91:26~32.
    95. Hatano A, Shoji R. A new model for predicting time course toxicity of heavy metals based onBioticLigand Model (BLM)[J]. Comparative Biochemistry and Physiology, Part C,2010,151:25~32.
    96.李连祯,罗小三,周东美.土壤溶液中Ca2+降低Cd2+对赤子爱胜蚓的毒性[J].中国环境科学,2007,27(5):681~685.
    97.罗小三,李连祯,周东美.陆地生物配体模型(t-BLM)初探:镁离子降低铜离子对小麦根的毒性[J].生态毒理学报,2007,2(1):41~48.
    98.王学东,马义兵,华珞.铜对大麦(Hordeum vulgare)的急性毒性预测模型--生物配体模型[J].环境科学学报,2008,8(8):1704~1712.
    99. Koster M, de Groota A, Vijver M, et al. Copper in the terrestrial environment: Verification of alaboratory-derived terrestrial biotic ligand model to predict earthworm mortality with toxicityobserved in field soils [J]. Soil Biology and Biochemistry,2006,38:1788~1796.
    100. Oste L A, Temminghoff E J, van Riemsdijk W H. Solid-solution partitioning of organicmatter in soils as influenced by an increase in pH or Ca concentration [J]. EvironmentalScience and Technology,2002,36(2):208~214.
    101.李丹丹,汪鹏,李连祯,等.不同阳离子影响下小麦根吸收镉的动力学过程[J].生态毒理学报,2010,5(4):580~586.
    102. Kinraide T B. Plasma membrane surface potential (PM) as adeterminant of ion bioavailability:a critical analysis of new andpublished toxicological studies and a simplified method forthecomputation of plant PM [J]. Environmental Toxicology and Chemistry,2006,25(12):3188~3198.
    103. Wang P, Zhou D M, Kinraide T B, et al. Cell membrane surface potential (ψ0) plays adominant role in the phytotoxicity of copper and arsenate [J]. Plant Physiology,2008(4),148:2134~2143.
    104. Kinraide T B, Wang P. The surface charge density of plant cell membranes (r): an attempt toresolve conflicting values for intrinsic σ [J]. Journal of Experimental Botany,2010,61:2507~2518.
    105. Kopittke P M, Blamey F P C, Asher C J, et al. Trace metal phytotoxicity in solution culture: areview [J]. Journal of Experimental Botany,2010,61(4):945~954.
    106. Wang P, Kopittke P M, De Schamphelaere K A C, et al. Evaluation of an electrostatic toxicitymodel for predicting Ni2+toxicity to barley root elongation in hydroponic cultures and in soils[J]. New Phytologist,2011,192(2):414~427.
    107. Wang P, De Schamphelaere K A C, Kopittke P M, et al. Development of an electrostaticmodel predicting copper toxicity to plants [J]. Journal of Experimental Botany,2012,63(2):659~668.
    108. Wang P, B. Kinraide T B, Smolders E, et al. An electrostatic model predicting Cu and Nitoxicity to microbial processes in soils [J]. Soil Biology&Biochemistry,2013,57:720~730.
    109. Ma Y B, Lombi E, Oliver I W, et al. Long-term aging of copper added to soils [J].Evironmental Science and Technology,2006,40(20):6310~6317.
    110. Ma Y B, Lombi E, Oliver I W, et al. Short-term natural attenuation of copper in soils: effectsof time, temperature, and soil characteristics [J]. Environmental Toxicology and Chemistry,2006,25(3):652~658.
    111.王小庆,韦东普,黄占斌,等.物种敏感性分布在土壤中镍生态阈值建立中的应用研究[J].农业环境科学学报,2012,31(1):92~98.
    112.何兰兰,角媛梅,王李鸿,等. Pb、Zn、Cu、Cd的超富集植物研究进展[J].环境科学与技术,2009,32(11):120~123.
    113.陈英旭.土壤重金属的植物污染化学[M].北京:科学出版社,2008:2~10.
    114. Gandois L, Probst A, Dumat C. Modelling trace metal extractability and solubility in Frenchforest soils by using soil properties [J]. European Journal of Soil Science,2010,61(2):271~286.
    115. Gummuluru S, Krishnamutri R, Jaidu R. Solid-solution speciation of copper and zinc in soils[J]. Environmental Science and Technology,2002,36:2645~2651.
    116. Groenenberg J E, R mkens P F A M, Comans R N J, et al. Transfer functions forsolid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: derivation ofrelationships for free metal ion activities and validation with independent data [J]. EuropeanJournal of Soil Science,2010,61(1):58~73.
    117.罗小三.土壤(溶液)中重金属的化学形态和植物有效性及毒性研究[D].中国科学院南京土壤研究所,南京,2008.
    118.金亮.苏北部分地区土壤-水稻系统中重金属分配与食物安全风险分析与模拟[D].南京农业大学,南京,2007.
    119.张红振,骆永明,宋静,等.基于中性盐提取的土壤重金属固液分配与自由态金属离子浓度测定[J].环境科学学报,2010,30(1):124~132.
    120. Bryana S E, Tipping E, Hamilton-Taylor J. Comparison of measured and modelled copperbinding by naturalorganic matter in freshwaters [J]. Comparative Biochemistry andPhysiology Part C: Toxicology&Pharmacology,2002,133(1-2):37~49.
    121. Unsworth E R, Warnken K W, Zhang H, et al.Model Predictions of Metal Speciation inFreshwaters Compared to Measurements by In Situ Techniques [J]. Environmental Scienceand Technology,2006,40(6):1942~1949.
    122. Sj stedt C S, Gustafsson J P, K hler S J. hemical Equilibrium Modeling of Organic Acids,pH, Aluminum, and Iron in Swedish Surface Waters [J]. Evironmental Science andTechnology,2010,44(22):8587~8593.
    123. Ytreberg E, Karlsson J, Hoppe S, et al. Effect of organic complexation on copperaccumulation and toxicityto the estuarine red macroalga Ceramium tenuicorne: atest of thefree ion activity model [J]. Environmental Science and Technology,2011,45(7):3145~3153.
    124. Peijnenburg W J, Zablotskaja M, Vijver M G. Monitoring metal in terrestrial environmentswithin a bioavailability framework and a focus on soil extraction [J]. Ecotoxicology andEnvironmental Safety,2007,67(2):163~179.
    125.陈怀满,郑春荣,周东美.关于我国土壤环境保护研究中一些值得关注的问题[J].农业环境科学学报,2004,23(6):1244~1245.
    126.夏家淇,骆永明.我国土壤环境质量研究几个值得探讨的问题.生态与农村环境学报,2007,23(1):1~6.
    127.夏家淇主编.土壤环境质量标准详解[M].北京:中国环境科学出版社,1996.
    128. Guo X Y, Ma Y B, Wang X D, et al. Re-evaluating the effects of organic ligands on coppertoxicity to barley root elongation in culture solution [J]. Chemical Speciation andBioavailability,2010,22(1):51~59.
    129. Strawn D G, Baker L L. Speciation of Cu in a Contaminated Agricultural Soil Measured byXAFS, μ-XAFS, and μ-XRF [J]. Environmental Science and Technology,2008,42(1):37~42.
    130. Degryse F, Smolders E, Parker D R. Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils:concepts, methodologies, prediction and applications-a review [J]. European Journal of SoilScience,2009,60(4):590~612.
    131. Cuss C W, Guéguen C, Hill E, et al. Spatio-temporal variation in the characteristics ofdissolved organic matter in the streams of boreal forests: Impacts on modelled copperspeciation [J]. Chemosphere,2010,80(7):764~770.
    132. Salam A K, Helmke P A. The pH dependence of free ionic activities and total dissolvedconcentrations of copper and cadmium in soil solution [J]. Geoderma,1999,83(3-4):281~291.
    133. Wang X D, Li B, Ma Y B, et al. Development of a biotic ligand model for acute zinc toxicityto barley root elongation [J]. Ecotoxicology and Environmental Safety,2010,73(6):272~1278.
    134. Van Laer L, Smolders E, Degryse F, et al. Speciation of nickel in surface waters measuredwith the Donnan membrane technique [J]. Analytica Chimica Acta,2006,578:195~202.
    135. Yen Le T T, PeijnenburgW J G M, Jan Hendriks A, et al. Predicting effects of cations oncopper toxicity to lettuce (Lactuca sativa) by the biotic ligand model. EnvironmentalToxicology and Chemistry,2012,31(2):355~359.
    136. Luo X S, Li L Z, Zhou D M. Effect of cations on copper toxicity to wheat root: Implicationsfor the biotic ligand model [J]. Chemosphere,2008,73(3):401~406.
    137. Stevens D P, McLaughlin M J, Heinrich T. Determining toxicity of lead and zinc runoff insoils: salinity effects on metal partitioning and on phytotoxicity [J]. EnvironmentalToxicology and Chemistry,2003,22:3017~3024.
    138. Oorts K, Ghesquiere U, Swinnen K. Soil properties affecting the toxicity of CuCl2and NiCl2for soil microbial processes in freshly spiked soils [J]. Environmental Toxicology andChemistry,2006,25:836~844.
    139. Bowman G M, Hutka J. Particle Size Analysis. In Mckenzie N, Coughlan K, Cresswell H,eds, Soil Physical Measurement and Interpretation for Land Evaluation. CSIRO Publishing,Collingwood, Victoria, Australia,2002:224~239.
    140. Thibault D H, Sheppard M I. A disposable system for soil pore-water extraction bycentrifugation [J]. Communications in Soil Science and Plant Analysis,1992,23(13-14):1629~1641.
    141. Haanstra L, Doelman P, Oude Voshaar J H. The use of sigmoidal dose response curves in soilecotoxicological research [J]. Plant and Soil,1985,84(2):293~297.
    142. Schabenberger O, Tharp B E, Kells J J, et al. Statistical tests for hormesis and effectivedosages in herbicide dose response [J]. Agronomy Journal,1999,91(4):713~721.
    143. Maas E, Hoffman G. Crop salt tolerance-Current assessment [J]. Journal of Irrigation andDrainage Engineering,1977,(103):115~134.
    144. Costantini D, Metcalfe N B, Monaghan P. Ecological processes in a hormetic framework [J].Ecology Letters,2010,13(11):1435~1447.
    145. Kefford B J, Zalizniak L, Warne M St J, et al. Is the integration of hormesis and essentialityinto ecotoxicology now opening Pandora's Box [J]? Environmental Pollution,2008,151(3):516~23.
    146. Calabrese E J. Paradigm lost, paradigm found: the re-emergence of hormesis as afundamental dose response model in the toxicological sciences [J]. Environmental Pollution,2005,138(3):379~411.
    147. Spurgeon D J, Svendsen C, Kille P, et al. Responses of earthworms (Lumbricus rubellus) tocopper and cadmium as determined by measurement of juvenile traits in a specificallydesigned test system [J]. Ecotoxicology and Environmental Safety,2004,57(1):54~64.
    148.郭雪雁,马义兵,李波.陆地生态系统中低剂量毒物刺激作用及拟合模型的研究进展[J].生态学报,2009,29(8):4408~4419.
    149. Qiu J W, Tang X, Zheng C B, et al. Copper complexation by fulvic acid effects coppertoxicity to the larvae of the polychaete Hydroides elegans [J]. Marine Environmental Research,2006,64(5):563~573.
    150. Gardea-Torresdey J L, Tang L, Salvador J M. Copper adsorption by esterified andunesterified fractions of Sphagnum peat moss and its different humic substances [J]. Journalof Hazardous Materials,1996,48(1-3):191~206.
    151. Linbo T L, Baldwin D H, McIntyre J K, et al. Effects of water hardness, alkalinity, anddissolved organic carbon on the toxicity of copper to the lateral line of developing fish.Environmental Toxicology and Chemistry,2009,28(7):1455~1461.
    152. Arnold W R, Diamond R L, Smith D S. The Effects of Salinity, pH, and Dissolved OrganicMatter on Acute Copper Toxicity to the Rotifer, Brachionus plicatilis (L‘‘Strain)[J].Archives of Environmental Contamination and Toxicology,2010,59(2):225~234.
    153. Schwartz M L, Vigneault B. Development and validation of achronic copper biotic ligandmodel for Ceriodaphnia dubia [J]. Aquatic Toxicology,2007,84(2):247~254.
    154. De Schamphelaere K A C, Janssen C R. Development and field validation of a biotic ligandmodel predicting chronic copper toxicity to Daphnia magna [J]. Environmental toxicologyand chemistry,2004,23(6):1365~1375.
    155. Kozlova T, Wood C M, McGeer J C. The effect of water chemistry on the acute toxicity ofnickel to the cladoceran Daphnia pulex and the development of a biotic ligand model [J].Aquatic Toxicology,2009,91:221~228.
    156. Deleebeeck N M E, De Schamphelaere K A C, Janssen C R. Effects of Mg2+and H+on thetoxicity of Ni2+to the unicellular green alga Pseudokirchneriella subcapitata: Modeldevelopment and validation with surface waters [J]. Science of the Total Environment,2009,407:1901~1914.
    157. Deleebeeck N M E, De Schamphelaere K A C, Janssen C R. A bioavailability modelpredicting the toxicity of nickel to rainbow trout (Oncorhynchus mykiss) and fathead minnow(Pimephales promelas) in synthetic and natural waters [J]. Ecotoxicology and environmentalsafety,2007,67(1):1~13.
    158. Hoang T C, Tomasso J R, Klaine S J. Influence of water quality and age on nickel toxicity toFathead Minnows (Pimephales Promelas)[J]. Environmental Toxicology and Chemistry,2004,23(1):86~82.
    159. Tipping E. Humic Ion Binding Model VI: An improved description of the interactions ofprotons and metal ions with humic substances[J]. Aquatic geochemistry,1998,4:3~48.
    160. TippingE, Lofts S, Lawlor A J. Modelling the chemical speciation of trace metals in thesurface waters of the Humber system [J]. Science of the Total Environment,1998,210-211:63~77.
    161.李波,马义兵,刘继芳,等.西红柿铜毒害的土壤主控因子和预测模型研究[J].土壤学报,2010,47(4):665~673.
    162.张洪涛,李波,刘继芳,等.西红柿镍毒害的土壤主控因子和预测模型研究[J].生态毒理学报,2009,4(4):569~576.
    163. Zhao L Y L, Schulin R, Nowack B. The effects of plants on the mobilization of Cu and Zn insoil columns [J]. Environmental Science&Technology,2007,41(8):2770~2775.
    164. Kinraide T B, Pedler J F, Parker D R. Relative effectiveness of calcium and magnesium in thealleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium and low pH[J]. Plant and Soil,2004,259(1-2):201~208.
    165. Ma E, Fu S S, Zhang H. Effects of Excessive Mg2+on the Germination Characteristics ofCrop Seeds [J]. Agricultural Science and Technology,2008,9(2):26~29.
    166.邹春琴,李振声,李继云.植物高效利用K素资源的研究进展[J].中国生态农业学报,1999,7(3):10~14.
    167. Gorai M, Neffati M. Germination responses of Reaumuria vermiculata to salinity andtemperature [J]. The Annals of applied biology,2007,151(1):53~59.
    168. Doig L E, Liber K. Influence of dissolved organic matter on nickel bioavailability andtoxicity to Hyalella azteca in water-only exposures [J]. Aquatic Toxicology,2006,76(3-4):203~216.
    169.李波.外源重金属铜、镍的植物毒害及预测模型研究[D].中国农业科学院,北京,2010.
    170.罗丹,胡欣欣,郑海锋,等.镍对蔬菜毒害临界值的研究[J].生态环境学报,2010,19(3):584~589.
    171.孙权,何振立,杨肖娥,等.铜对小白菜的毒性效应及其生态健康指标[J].植物营养与肥料学报,2007,13(2):324~330.
    172.王小庆.中国农业土壤中铜和镍的生态阈值研究[D].中国矿业大学(北京),北京,2012.
    173.唐新莲,顾明华,潘丽梅,等.氮、磷、钾、锌配施对小白菜产量和品质的效应[J].中国土壤与肥料,2007,(3):47~51.
    174.陈秀虎,杨敏,黎晓峰.磷、钾和不同氮源对小白菜产量和品质的影响与分析[J].江西农业大学学报,2008,30(3):443~448.
    175.李娟,林琼.不同供硫水平对水稻生长和养分吸收的影响[J].中国农业科学,2006,22(11):214~217.
    176.谢迎新,朱云集,郭天财,等.施用硫肥对冬小麦光合生理特性及产量的影响[J].植物营养与肥料学报,2009,15(2):403~409.
    177.刘中良,刘世琦,张自坤.水培条件下硫对大蒜营养品质和鲜重的影响[J].中国农学通报,2010,26(10):207~211.
    178.雷利斌,章力干,马友华,等.加硫尿素对小白菜产量和品质的影响[J].安徽农学通报,2006,12(6):149~150.
    179.霍捷.无机硫降低小白菜叶片硝酸盐累积的效应及机理研究[硕士论文].河北农业大学,河北,2012.
    180.徐芬芬. CaCl2对盐胁迫下小白菜生长和相关生理特性的影响[J].热带作物学报,2012,(4):642~645.
    181. Fairbrother A, Wenstel R W, Sappington K, et al. Framework for metals risk assessment [J].Ecotoxicology and Environmental Safety,2007,68(2):145~227.
    182. Tye A M, Young S, Crout N M J, et al. Speciation and solubility of Cu, Ni and Pb incontaminated soils [J]. European Journal of Soil Science,2004,55(3):579~590.
    183. Dijkstra J J, Meeussen J C L, Comans R N J. Leaching of heavy metals from contaminatedsoils: An experimental and modeling study [J]. Evironmental Science and Technology,2004,38(16):4390~4395.
    184. Ponizovsky A A, Thakali S, Allen H E, et al. Effect of soil properties on copper release in soilsolutions at low moisture content [J]. Environmental Toxicology and Chemistry,2006,25(3):671~682.
    185. Parat C, Cornu J Y, Schneider A, et al. Comparison of two experimental speciation methodswith a theoretical approach to monitor free and labile Cd fractions in soil solutions [J].Analytica Chimica Acta,2009,648(2):157~161.
    186. Gustafsson J P, Van Schaik J W J. Cation binding in a mor layer: batch experiments andmodelling [J]. European Journal of Soil Science,2003,54(2):295~310.
    187. Gustafsson J P. Modeling the acid-base properties and metal complexation of humicsubstances with the Stockholm Humic Model [J]. Journal of Colloid and Interface Science,2001,244(1):102~112.
    188. Thakali S. Terrestrial biotic ligand model (TBLM) for copper, and nickel toxicities to plants,invertebrates, and microbes in soils [D]. University of Delaware, Newark,2006.
    189.沈仁芳.铝在土壤-植物中的行为及植物的适应机制[M].北京:科学出版社,2008:6~13.
    190. AxeL, Trivedi P. Intraparticle Surface Diffusion of Metal Contaminants and their Attenuationin Microporous Amorphous Al, Fe, and Mn Oxides [J]. Journal of Colloid and InterfaceScience,2002,247(2):259~265.
    191. Contin M, Mondini C, Leita L, et al. Enhanced soil toxic metal fixation in iron (hydr) oxidesby redox cycles [J]. Geoderma,2007,140(1-2):164~175.
    192. Buekers J, Van Laer L, Amery F, et al. Role of soil constituents in fixation of soluble Zn, Cu,Ni and Cd added to soils [J]. European Journal of Soil Science,2007,58(6):1514~1524.
    193. Tipping E, Berggren D, Mulder J. Modelling the solid–solution distributions of protons,aluminium, base cations and humic substances in acid soils [J]. European Journal of SoilScience,1995,46(1):77~94.
    194. Mandal R, Hassan N M, Murimboh J, et al.Chemical Speciation and Toxicity of NickelSpecies in Natural Waters from the Sudbury Area (Canada)[J]. Evironmental Science andTechnology,2002,36(7):1477~1484.
    195. Bonten L T C, Groenenberg J E, Weng L P, et al. Use of speciation and complexation modelsto estimate heavy metal sorption in soils [J]. Geoderma,2008,146(1-2):303~310.
    196. Luo L, Ma Y B, Zhang S Z, et al. An inventory of trace element inputs to agricultural soils inChina [J]. Journal of Environmental Management,2009,90(8):2524~2530.
    197. Wu C F, Luo Y M, Zhang L M. Variability of copper availability in paddy fields in relationto selected soil propertiesin southeast China [J]. Geoderma,2010,156:200~206.
    198. Nóvoa-Mu oz J C, Queijeiro J M G, Blanco-Ward D, et al. Total copper content and itsdistribution in acid vine yards soils developed from granitic rocks [J]. Science of the TotalEnvironment,2007,378:23~27.
    199. Tipping E, Woof C, Kelly M, et al. Solid-solution distributions of radio nuclides in acid soils:application of the WHAM chemical speciation model [J]. Environmental Science andTechnology,1995,29:1365~1372.
    200.胡红青,陈松,李妍,等.几种土壤的基本理化性质与Cu2+吸附的关系[J].生态环境,2004,13(4):544~545,548.
    201.黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490~497.
    202.白庆中,宋燕光,王晖.有机物对重金属在粘土中吸附行为的影响[J].环境科学,2000,(5):64~67.
    203.鲁安怀,卢晓英,任子平,等.天然铁锰氧化物及氢氧化物环境矿物学研究[J].地学前缘(中国地质大学,北京),2000,7(2):473~483.
    204.刘瑞,秦善,鲁安怀,等.锰氧化物和氢氧化物中的孔道结构矿物及其环境属性[J].矿物岩石,2003,23(4):28~33.
    205.刘志光,徐仁扣.几种有机化合物对土壤中铁与锰的氧化物还原和溶解作用[J].环境化学,1991,10(5):43~50.
    206. Nolan A L, McLaughlin M J, Mason S D. Chemical speciation of Zn, Cd, Cu, and Pb in porewaters of agricultural and contaminated soils using Donnan dialysis [J]. Evironmental Scienceand Technology,2003,37(1):90~98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700