用户名: 密码: 验证码:
垃圾渗滤液生物脱氮技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾填埋场对环境的影响主要是垃圾渗滤液问题。垃圾渗滤液是由垃圾分解以及和降水的原因形成的一种高浓度的有机废水。它成份复杂,可生化性差,水质和水量波动性大,其中含有苯环等二十多种有毒有害致癌有机物。垃圾渗滤液未经无害化处理,排放到河流、水库和土壤中,会严重污染农作物和水生物,并通过食物链直接或间接进入人体组织与细胞中,导致各种疾病的产生,危害人类的身体健康和生态环境,而且对周围的地下水和地表水均会造成严重的环境污染。
     在系统分析了城市垃圾渗滤液的水质特征及国内外处理技术后,总结了近年来城市垃圾渗滤液处理工艺的最新成果,认识到渗滤液的处理首先要对其中的高浓度氨氮进行处理。这也对处理工艺的选择提出了更高的要求。
     通过对各种生物脱氮工艺的研究比较,发现亚硝酸型硝化-反硝化工艺不仅可以有效解决高浓度氨氮的生物抑制作用,而且可以减少大量的能源消耗,该工艺的关键是对亚硝化阶段的条件控制以及优质菌种的固定。
     为解决这个问题,在实验室对各条件参数对亚硝化阶段的影响,特别是氨氮的去除规律作了比较详尽的研究,并且对驯化后的高效污泥中的混合菌群做了初步的分离纯化,最后通过固定化技术将其固定,保证了菌群数量和质量的相对稳定,并为其规模化工业生产奠定了基础。
     混培物筛选分离后,共得到了6株菌种,并着重研究了温度、pH和DO的影响。得出在温度为30-35℃,pH值为8.0,DO<1.2mg/L的条件下,最适合混培物的生长,氨氮的去除率可达80%以上,从而有效地降低抑制作用,使得后续反硝化能够顺利进行。
     在固定化实验中,通过正交实验对影响固定化细胞制备主要因素包埋剂、添加剂、包泥量以及交联时间进行条件分析,发现PVA作为固定化包埋剂的适宜包埋条件为:PVA浓度为9%、CA浓度为1.0%,包泥量为1:1、包埋时间为24h,包埋固定的小球具有较高的细菌活性,较好的强度及传质性能。
Leachate is the major environmental problem of landfill. It is a kind of high-density organic waste water. The decomposition of municipal garbage and the precipitation are the principal caused that produce the leachate. At present, the treatment of leachate is still a world-wide problem because of the complex component, worse biodegradability and much fluctuation of water quality and water quantity. Almost twenty kinds of poisonous, hazardous carcinogenic substances such as aromatic amine have been detected in leachate. Leachate should pollute the cropper and aquatic severely if it discharged into rivers, reservoirs and soil without any innocent treatment. And it should invade human' s body, caused various disease, badly endangered the health of the residents and environment. In addition, both the ground water and the surface water would be badly polluted around the landfill place.
    Based on the systematic analysis of the research results on the leachate characteristics and its treatment methods at home and abroad, it is convinced that ammonia-nitrogen should be removed and limited prior to the biological process . It put forward higher requirement on the selection of the treatment process.
    By comparison different biological nitrogen removal process , it has been approbated that high strength ammonia-nitrogen present in landfill leachate had severely inhibition effect to the microbe in the nitrous nitrification-denitrification process and a large number of energy had been retrenched. The key to nitrous - denitrification process was to control the condition during the nitrification phrase and immobilize the bacteria.
    To solve the problem, a large number of experiments about suitable parameters during the nitrosation phrase, especially about the removal rules
    
    
    
    of ammonia-nitrogen were performed. Mixed bacterium in the actived sludge was separated primary and immobilized. All of these assured the quantity of bacterium in leachate and established the base of industrialization manufacture.
    Six kind of bacteria were isolated from the mixture, and it was approved is that when the temperature was 30-35 , pH was 8. 0, DO<1. 2mg/L, the condition was adapted to Nitrosomas and the rate of remove about ammoniate was more than 80%. The repression to microbe should be reduced effectively and the following denitrification should be trouble-free operation.
    In immobilization experiments, the important parameters such as embed material, additive, the rate between sludge and embed material quality (W/V) and cross linkage time were studied. It was approved that the immobilized spherule had high biological activity, strength and mass transfer capability when PVA concentration was 9. 0%, CA concentration was 1. 0%, W/V was 1:1 and the cross linkage time was 24 hours.
引文
[1]陈玉成,李章平.城市生活垃圾渗滤水的污染及全过程控制[J].环境科学动态,1995(4):15~17.
    [2]刘克鑫.我国有机垃圾资源及其能源回收技术.中国生物质能技术研究与开发.北京.中国科技出版社,1992:99-106
    [3]张无敌.试论生物质能[J].江苏沼气.1994.(2):7-10
    [4]冯孝善.城市垃圾厌氧消化技术讨论[J].中国沼气.1992.10(1):1-4
    [5]李军.生活垃圾渗滤液浸出模拟实验[J].环境卫生工程.1999,9(4):150.
    [6]Takashi IKEGUCHI.Treatment and Disposal of Waste[J]. the Textbook (5-1) of theSeminar on Comprehensive Solid Waste Management. May-July, 2000: 22.
    [7]杨霞,杨朝晖等.城市生活垃圾填埋场渗滤液处理工艺的研究[J].环境工程.2000,18(5):12~14.
    [8]金永麒,阿苏.卫垃圾填埋场渗沥液处理中活性污泥的驯化与调试[J].环境科学与技术.2001,94(2):35~36.
    [9]沈耀良,王宝贞.垃圾填埋场渗滤液处理特性的分析[J].江苏环境科技.1999.2:5~7.
    [10]沈耀良等.废水生物处理新技术[J].理论与应用.中国环境科学出版社.1999:14.
    [11]赵庆良等.垃圾渗滤液中的氨氮对微生物活性的抑制作用[J].环境污染与防治.1998,20(6):26.
    [12]胡孙林等.氨氮废水处理技术[J].现代化工.2001,21(6):48.
    [13]吴高安,伍沅.义等.焦化污水催化湿式氧化净化技术[J].工业水处理.1996,16(6):11~13.
    [14]孙石.净化处理高浓度有机废水的催化湿式氧化法技术[J].云南化工.1996.4:53~57.
    [15]吕锡武,稻森悠平等.氨氮废水处理过程中的好氧反硝化研究[J].给水排水.2000,26(4):17~20.
    [16]李汝琪,孔波.曝气生物滤池处理生活污水试验[J].环境科学.1999,20(5):69~71.
    [17]Haniki, Ketal. Nitification at Low Level of Dissolved Oxygen with and without Organic Loading in a Sysoended Growth Reactor [J]. Wat Res. 1990, 24(3): 297-302.
    
    
    [18]YangL, AllemanJE. Investigation of Batchwise Nitrite Build-up by an Enriched Nititication Culture [J]. Wat Sci Tech. 1992,26(5/6): 997-1005.
    [19]SenPriyali, Dentel StevenK.Simultaneous Nitrification-denitrification in a Fluidized Bed Reactor[J]. Wat Sci Tech. 1998, 38(1): 247-254.
    [20]Rogalla F, etal. Upscaling a Compact Nitrogen Removal Process [J]. Wat Sci Tech. 1992. 26: 1067-1076.
    [21]Watanabe W, etal. Simultaneous Nitrification and Deintrification in Micro-aerobic Biofilms [J]. Wat Sci Tech. 1992, 26: 511-522.
    [22]Wartchw D. Nitrification and Denitrification in Combined Activated Systems [J] . Wat SciTech. 1990, 22(7/9): 199-206.
    [23]Steven R,etal. The Impact of Organic Mater on Nitric oxide Formation by Nitrosomonas Eurpaea [J].Arch Microbiol,1992,158:439-443.
    [24]Broda E. Two Kinds of Lithotrophs Missing in Nature[J]. Zallg Mikrobiol. 1997, 58: 1746-1763.
    [25]Graaf AA, etal. Metabolic Pathway of Anaerobic Ammonium Oxidation on the Basis of 15Nstudies in a Fluidized Bed Reactor [J]. Microbiology. 1997, 143: 2415-2421.
    [26]Schmidt Ingo, Bock Eberhard. Anaerobic Ammonia Oxidation with Nitrogen Dioxide by Nitrosomonas Eutropha[J]. Arch Microbiol. 1997, 167: 106-11.
    [27]Strous Marc, etal. Key Physiology og Anaerobic Ammonium Oxidation[J]. Appl Environ Microbiol. 1999, 65(7): 3248~3250.
    [28]郑平等.厌氧氨氧化菌基质转化特性的研究[J].浙江农业大学学报.1997,23(4):409~413.
    [29]居乃琥.固定化细胞技术研究和应用的现状与展望[J].工业微生物.1989,19(1):25.
    [30]王建龙等.固定化微生物技术在难降解有机物治理中的研究进展.环境科学研究.1999.12:60~64.
    [31]张蔚文,张灼.固定化微生物在废水处理中的应用与研究[J].上海环境科学.1991,10(10):20.
    [32]陈铭,周晓云.固定化细胞技术在有机废水中的应用与前景[J].水处理技术.1997,23(2):98.
    [33]王建龙等.生物固定化技术与水污染控制[M].科学出版社.2002.7:2~7.
    [34]蒋宇红等.几种固定化细胞载体的比较[J].环境科学.1993,14(2):11.
    [35]闵航等.聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件[J].环境科学.1994,
    
    15(5):10.
    [36]兰淑澄等.城市(镇)污水A~2/O生物处理新工艺[J].国家“七五”科技攻关环境保护项目论文集.1993.19.
    [37]王磊,兰淑澄.微生物固定化技术在污水处理脱氮中的应用[J].环境科学.1995.16(6):76.
    [38]周定等.固定化细胞在废水处理中的应用及前景[J].环境科学.1993,14(5):51.
    [39]葛文准,荣日文辉.固定化微生物处理氨氮废水[J].上海环境科学.1995,14(4):10.
    [40]Kazuhiro T, Masakazu N, etal. Application of Immobilized Nitrifiers Getto Removal of Hi gh Ammonium Nitrogen [J]. Wat Sci Tech,. 1994,29(9): 241.
    [41]森直道.包括固定化法微生物用下水窒素除去技术[J].公害对策.1991,27(11):1043.
    [42]市村国宏,光架桥小生.树脂包括固定化法硝化菌固定化[J].用水废水.1987,29(8):20.
    [43]角野立夫.包括固定化法排水处理[J].用水废水.1987,29(8):13.
    [44]中村裕纪.包括固定化法微生物用排水中窒素除去技术[J].公害对策.1986,22(2):27.
    [45]Tramper J, etal. Operating performance of nitrobacter agills immobilized incarrageenan[J]. Enzyme and Microbial Technology. 1986,8(8): 447.
    [46]Tramper J, etal. Characterization of nitrobacter agills immobilized in calciumalginate [J]. Enzyme and Microbial Technology. 1986, 8(8): 472.
    [47]曹国民,赵庆祥.固定化微生物在好氧条件下同时硝化和反硝化[J].环境工程.2000,10(18):17~19
    [48]唐光临.亚硝化反硝化生物脱氮[J].工业水处理.2001,11(21):11~13.
    [49]Alician V Quinlan. Optimum temperature shift for nitrobacter wino gradskyi effect of dissolved oxygen and nitrite concentration [J].. Wat. Res.. 1986, 20(5): 611~613.
    [50]Hyungseok Yoo. Nitriogen removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently -aerated reactor[J]. Wat. Res. 1999, 33(1):146.
    [51]Haniki, Ketal. Nitification at Low Level of Dissolved Oxygen with and without Organic Loading in a Sysoended Growth Reactor [J] . Wat Res, 1990,24(3):297-302.
    
    
    [52]Hanaki K, Hong Z And Matsuo T. Production of nitrous oxide gas during denitrification of waste water. Water Science and Technology, 1992, 26.1027
    [53]Marshall Spector. Production and decomposition of nitrous oxide during biological denitrification. Water Environ Res, 1998, 70.1096-1098
    [54]Zheng Hong, etal. Greenhouse gas N2O production during denitrification in waste water treatment. Wat Sa Tech, 1993, 28 (7): 203-207
    [55]Lloyd Hand Ketchum Jr. Design and physical features of sequencing batch reactors. Water Science and Technology, 1997, 35 (1): 11-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700