用户名: 密码: 验证码:
黄胞胶基复合高吸水性树脂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高吸水树脂(SAR)由于吸水保水性能强,同时具有吸附微量重金属离子的能力,而被广泛应用在农林业、日用化学品、医疗卫生、污水处理等多个领域,然而其自身较高的生产成本和难降解性等缺陷阻碍了它的大规模推广开发。因此寻找廉价可降解的制备原材料,探索新的绿色环保合成工艺,加快高吸水树脂的基础应用研究,具有极为重要的现实意义。
     在课题组前期研究工作的基础上,以保证产品成本低廉和高耐盐性为目的,采用具有生物降解性能的黄胞胶(XG)为改性材料,丙烯酸(AA)与2-丙烯酰胺基-2-甲基丙磺酸(AMPS)或丙烯酰胺(AM)为反应单体,并在聚合过程中引入廉价的膨润土,通过接枝共聚反应制备了具有优异性能的改性黄胞胶/膨润土复合高吸水树脂。讨论了影响复合吸水树脂的吸(盐)水倍率的各种因素,并对树脂的保水能力、生物降解性能、吸液能力和吸附重金属离子的能力等进行了考察。最后通过各种现代仪器分析手段对复合吸水树脂的结构进行了初步表征。主要研究内容和结果如下:
     (1)以黄胞胶和膨润土为原料,AA和AM为接枝共聚单体,采用水溶液聚合法制备了耐盐性好的XG-g-P(AA-co-AM)/膨润土复合高吸水性树脂。首先对该自由基聚合反应的机理进行了探讨,然后以单体质量为基准,通过单因素和正交试验考察了影响复合树脂吸水性能的各种因素,并得到复合树脂的适宜合成工艺为:m(AA):m(AM)=5:1,丙烯酸中和度为75%,w(膨润土)=5%,w(引发剂)=1.0%,w(交联剂)=0.08%,此时树脂的最高吸水倍数和吸0.9%食盐水倍数分别达863.8g/g和109.4g/g,另外复合吸水树脂在25℃、50℃、75℃温度下都具有较好的保水性能。
     (2)利用AA和AMPS为聚合单体,span60和tween80为分散剂,采用反相悬浮聚合法成功制备了XG-g-P(AA-co-AMPS)/膨润土复合高吸水树脂,以单体质量为基准,通过单因素实验和正交试验优化得出树脂的较佳制备工艺为:分散剂质量分数为环己烷的为3%,m(AMPS):m(AA)=1:3,w(引发剂)=0.8%,反应时间为4h,聚合温度为75℃,在此工艺下合成的树脂最大吸水倍数达881.3g/g,最大吸盐水倍数达到120.2g/g,可以重复多次使用。
     (3)对XG-g-P(AA-co-AMPS)/膨润土复合高吸水树脂的吸液性能进行了考察。结果表明:复合吸水树脂在不同液体中的吸液率由低到高排列为:尿液<0.9%食盐水<自来水<纯净水;在等浓度的金属阳离子盐溶液中,复合树脂的平衡吸液率顺序为AlCl_3     (4)研究了在不同pH值、不同溶液初始浓度,不同温度等的条件下XG-g-P(AA-co-AMPS)/膨润土复合高吸水树脂对重金属离子Cd2+和Ni~(2+)的静态吸附行为和吸附动力学等吸附特性。得到结论如下:在实验范围内,复合树脂对Cd2+和Ni~(2+)的吸附量在pH=7附近达到最大,而且饱和吸附容量Ni~(2+)>Cd2+;该吸附过程为吸热的过程;复合树脂对Cd2+和Ni~(2+)的静态吸附行为同时满足Freundlich和Langmuir等温方程;其吸附动力学行为可以用拟二级动力学模型方程描述;通过脱附实验表明:随着脱附时间延长、HCl浓度增加,脱附率逐渐升高,但脱附率随浓度升高变化不大。
Being excellent properties of water-absorbing and water-retention, theability of adsorption micro heavy metal ions, super absorbent resins have beenwidely used in forestry and agriculture, daily chemicals, medical health, sewagetreatment field, etc. However, its high production costs and difficult degradationhave restricted its large-scale promotion and development. Therefore, looking forlow-priced and biodegradable raw material,exploring new environmentallyfriendly synthesis technology and speeding up the foundation research of superabsorbent materials have a very important and realistic significance.
     In this paper, on the basis of the preliminary researches of our laboratory,inorder to ensure that the products have low-cost raw and high anti-saltperformance, xanthan gum(XG)with biodegradability was used as the modifiedmaterial, acrylic acid(AA),2-acrylamido-2-methylpropanesulfonic acid(AMPS)or acrylamid(eAM)as monomers, while adding inexpensive bentonite during theprocess of polymerization, the modified XG/Bentonite composite superabsorbent resins with excellent performances were prepared through graftcopolymerization. The various influence factors to the ability of water-absorbingand salt-resistant rate of the resin were discussed, while the water-preservingcapacity, biodegradability, absorbent and heavy metal ions adsorption capacity ofthe resin were studied. Finally, through a variety of modern instrumental analysismethords, the structure of the super absorbent resins were preliminarycharacterized.The main research contents and results were drawn as follows:
     (1)Using XG and bentonite as raw materials, AA and AM as graftcopolymerization monomers, XG-g-P(AA-co-AM)/Bentonite composite superabsorbent resin with good salt-resistant was prepared by aqueous solutionpolymerization. First, the mechanism of graft copolymerization was discussed.Then, the influence factors on composite super absorbent resin were studied viasingle factor test and orthogonal experiment,while the optimum reactionconditions of preparing composite super absorbent resin were obtained when m (AA): m(AM)=5:1,w(bentonite)=5%、w(initiator)=1.0%、w(crosslinker)=0.08%based on the quality of monomerˊ, and AAˊneutralizationdegree was75%,while the best water absorption was up to863.8g/g and0.9%NaCl solution up to109.4g/g.Also,the composite resins at the measuredtemperatures of25℃、50℃and75℃had good water-retention capacity.
     (2)XG-g-P(AA-co-AMPS)/Bentonite composite super absorbent resinwas successfully synthesized via inverse suspension polymerization by using AAand AMPS as monomers, span60and tween80as dispersing agent.The bestsuitable conditions of synthetizing composite resins were optimized by singlefactor tests and orthogonal tests when mass fractions of dispersing agents were3%of the cyclohexanes’,m(AMPS): m(AA)=1:3, w(initiator)=0.8%ofthe monomer’s, reaction time4hours, polymerization temperature75℃,thesuper absorbent resins under the optimum conditions had good repeatingabsorbability, the highest water absorption up to881.3g/g and0.9%NaClsolution up to120.2g/g.
     (3)The absorbtion properties of the XG-g-P(AA-co-AMPS)/Bentonitecomposite super absorbent resin in various solutions were investigated. Theresults showed that the absorption of the resins in different liquids arranged asfollows: urine<0.9%saline     (4)The static adsorption behaviors、adsorption kinetics and otheradsorption characteristics of XG-g-P(AA-co-AMPS)/Bentonite composite superabsorbent resins to heavy metal ions Cd~(2+)and Ni~(2+)were discussed systematicallyunder the different initial concentrations of metal ions、 pH values andtemperatures. The conclusions showed that within the experimental ranges,themaximum adsorption capacities of composite resin for Cd~(2+)and Ni~(2+)occurswhen pH=7,and the saturated adsorption capacity of Ni~(2+)greater than Cd~(2+); theadsorption process was exothermic process; the isothermal adsorption behaviorsof Cd~(2+)and Ni~(2+)obeyed both Langmuir and Freundlich isotherm equation; theadsorption kinetic behavior could be well described by pseudo-second orderkinetics model; the desorption tests explained that the desorption rate of composite super absorbent resins for Cd~(2+)and Ni~(2+)gradually increased with theincreases of initial concentrations of HCl and desorption time,but the desorptionrate with the concentrations change was slight.
引文
[1]李仲谨,杨连利,苏秀霞,等.保水剂的发展现状及未来开发方向[J].咸阳师范学院学报,2003,18(6):30-32.
    [2]张亚涛,张林,陈欢林.聚(丙烯酸-丙烯酰胺)/水滑石纳米复合高吸水性树脂的制备及表征[J].化工学报,2008,59(6):1565-1569.
    [3] Luo Yong.Preparation of super absorbent poly-acrylate polymer by aqueoussolutionpolymerization[J].China Synthetic Rubber Industry,1998,21(3):146.
    [4] Kabiri K Zohuriaan-Mehr M J.Macromol.Mater.Eng.,2004,289:653.
    [5] Flory P J.Principles of Polymer Chemistry,New York,Cornel University Press[J].1953.
    [6] G. F.Fanta,R. C. Burr,C. R.Russell, et.al. Graft copolmers of starch.I Copolymerlzatlonof gelatlnlzed wheat starch with arylonltrile.Formation of copolymer and effect of solventon copolymer composition[J].Appl. Polymer Sci1966,10(5):929-937.
    [7]田春雷,刘振宇,武洪文.高吸水性材料应用及研究进展[J].包装工程,2007,28(12):270-272.
    [8]杨连利,李仲谨,邓娟利.保水剂的研究进展及发展新动向[J].材料导报,2005,19(6):42-44.
    [9]刘江,沈卫东,宋思洪,等.基于高吸水/保水材料的红外隐身复合材料的可行性研究及效能评价[J].应用光学,2011,32(1):144-148.
    [10]陈雪萍,瓮志学,黄志明.高吸水性树脂的结构与吸水机理[J].化工新型材料,2002,30(3):19-21.
    [11] Johnson M S,Veltkamp C J.Structure and agricultural polyacrylamides[J].Journal of thefunctioning ofwater-storing Science ofFood andAgriculture,1985,36:789.793.
    [12]林润雄,姜斌,黄毓礼.高吸水性树脂吸水机理的探讨[J].北京化工大学学报,1998,25(3):20-25.
    [13] Loretta Y,Harver W B,John M P.Buffer effects on aqueous swelling kinetics ofpolyelectrolyte gels[J].Journal of applied polymer science,1992,45:1411-1423.
    [14]龙明策,王鹏,郏彤,等.高吸水性树脂溶胀热力学及吸水机理[J].化学通报,2002(10):705-709.
    [15]许晓秋,刘延栋,李景庆,等.高吸水树脂的工艺与配方[M].第一版,北京:化学工业出版社,2004.
    [16]潘祖仁,于在璋.自由基聚合[M].北京:化学工业出版社,1983.
    [17] Omidian Hetc.Synthesis and characterization of acrylic-based superabsorbents[J].Journal of applied polymer science,1993,50:185l-1855.
    [18] G Sackman.Process for the continuous production of super-absorbent polymers fromPAN emulsions[P].EP783005,1977.
    [19]田巍,白福臣,李天一,等.高吸水树脂的发展与应用[J].辽宁化工,2009,38(1):38-42.
    [20]龙明策,王鹏,郑彤.高吸水性树脂的合成及其应用[J].高分子材料科学与工程,2002,18(5):31-35.
    [21]田义龙,付国瑞.高吸水性树脂的性能研究[J].化工新型材料,2003,31(9):22-25.
    [22]邹新禧.超强吸水剂(第二版)[M].北京:化学工业出版社,2001.
    [23]何叶丽.高吸水性聚合物性能指标与测试方法[J].化工新型材料,1998,26(12):22-24.
    [24]田义龙,张敬平,付国瑞.高吸水性树脂[J].塑料,2003,32(6):75-77.
    [25]李红,张丽芳,高德玉,等.高吸水复合材料吸水速度的研究[J].化学工程师,2007,137(2):11-13.
    [26]乌兰.高吸水性树脂的性能及应用[J].山东化工,2005,34(6):11-14.
    [27]薛红艳,陈闻欣.高吸水性树脂的分类、性能及应用[J].科技风,2010(24):286-287.
    [28] D A Kidwell,Superabsorbem polymers-media for the enzymatic detection of ethylalcohol in urine[J].Analytical Biochemistry,1989,182(21):257-261.
    [29] Hoffman A.Hydrogels for biomedical applications[J].Advance Drug Delivery Reviews,2002,43:3-12.
    [30]郝雪莲.高吸水性树脂的研究与进展[C].中国化工学会.第九届全国化学工艺年会论文集.北京:中国石化出版社,2005,1428-1435.
    [31]刘赛.聚(2-丙烯酰胺-2-甲基丙磺酸)型高吸水性树脂的合成及吸液吸附性能研究
    [D].湘潭:湘潭大学,2007.
    [32]阎辉,张丽华,周秀苗.高吸水性树脂的性能及研究进展[J].华北工学院学报,2001,22(6):430-434.
    [33]王正辉,廖宗文.高吸水树脂的合成及在农业上的应用[J].广东化工,2005(1):70-72.
    [34]乌兰.高吸水性树脂在农业上的应用与前景展望[J].中国水土保持,2006(4):45-46.
    [35]张立珍,包永照,王欣,等.高吸水性树脂在土壤保水方面的应用[C].全国第十一次工业表面活性剂技术经济与应用开发会议论文集.南京,2002:276-278.
    [36] D C Harsh,S H Gehrke,Controlling the swelling characteristics of temperature-sensitivecellulose ether hydrogels[J].Journal of Controlled Release,1991,17(2):175-185.
    [37]谢建军,刘新容,梁吉福,等.吸水树脂吸附分离研究进展[J].高分子通报,2007(9):52-57.
    [38]刘晓政.新型螯合树脂的合成及在重金属检测中的应用[D].浙江:浙江工商大学,2009.
    [39]祁晓华.有机-无机复合高吸水性树脂的研究进展[J].科技信息,387-399.
    [40]闫辉,周秀苗.耐盐性高吸水树脂[J].化工新型材料,200l,29(12):l1-13.
    [41]张宇,叶华,赵建青.耐盐性高吸水树脂的研究进展[J].合成材料老化与应用,2003,32(3):42-46.
    [42]江照洋.SA-IP-SPS互穿网络高吸水树脂的合成与性能研究[D].西安:西安科技大学,2009.
    [43]李建颖.高吸水与高吸油性树脂[M].北京:化学工业出版社,2005.
    [44]田春雷,刘振宇,武洪文.高吸水性材料应用及研究进展[J].包装工程,2007,28(12):270-272.
    [45]谢建军,陶国华,罗迎社.我国高吸水树脂发展中存在的问题与趋势[J].精细化工中间体,2008,38(4):7-11.
    [46]郭瑞,丁恩勇.黄原胶的结构、性能与应用[J].牙膏工业,2007(1):36-39.
    [47]谭旖宁.黄原胶的生物合成及其在食品工业中的应用进展[J].食品工程,2010,(2):9-11.
    [48] Pandey P K, Banerjee J, Taunk K, et al. Graft copolymerization of acrylic acid ontoxanthum gum using a potassium monopersulfate/Fe2+redox Pair[J]. Journal of AppliedPolymer Science,2003,89:1341-1346.
    [49]江丽丽,张庆徐,世艾.黄原胶降解的研究进展[J].微生物学通报,2008,35(8):1292-1296.
    [50]程磊,李仲谨,王磊.黄原胶-丙烯酰胺接枝共聚物对Cr3+的吸附性能[J].精细化工,2009,26(10):1012-1015.
    [51]王爱琴,张俊平.有机-无机复合高吸水性树脂[M].北京:科学出版社,2006:85-88.
    [52]万涛,何文琼,葸全寿,等.反相悬浮聚合膨润土复合聚丙烯酸钠-丙烯酰胺高吸水性树脂的研究[J].弹性体,2003,13(2):8-12.
    [53]林少敏,蔡俊萍.改性膨润土在污水处理巾的应用研究[J].科技信息,2011(22):396-397.
    [54]韩红青,朱岳.膨润土改性及其应用研究[J].无机盐工业,2011,43(10):5-8.
    [55]孙洪良,朱利中.表面活性剂改性的螯合剂有机膨润土对水中有机污染物和重金属的协同吸附研究[J].高等学校化学学报,2007,28(8):1475-1479.
    [56]佘希林,宋国君,王俊霞,等.插层法制备聚合物/粘土纳米复合材料及其应用进展[J].高分子材料科学与工程,2003,19(1):32-39.
    [57]滕菁.高聚物/无机物纳米复合材料[J].安徽教育学院学报,2001,19(3):47-59.
    [58]龙剑英,宋湛谦.淀粉三元接枝复合型高吸水性树脂的合成及性能研究[J].林产化学与工业,2002,22(4):1-4.
    [59]陈振斌,柳明珠,马松梅.正交设计在合成高吸水树脂中的应用[J].兰州大学学报(自然科学版),2005,41(2):60-63.
    [60]张传娟.天然高分子改性聚(丙烯酸钠-丙烯酰胺)/膨润土高吸水性复合材料的研究[D].厦门:华侨大学,2006.
    [61]王爱勤,张俊平.有机-无机复合高吸水性树脂[M].北京:科学出版社,2006.
    [62]凌辉,沈上越,范力仁,等.伊利石/丙烯酸-丙烯酰胺高吸水复合材料的研制[J].功能材料,2007,3(38):446-450.
    [63]尹国强,崔英德,陈循军.羽毛蛋白接枝聚丙烯酸-丙烯酰胺树脂的合成与吸水性能[J].化工学报,2008,59(8):2134-2139.
    [64]张小红,崔英德.可生物降解海藻酸钠高吸水性树脂的性能与结构[J].高分子材料科学与工程,2006,22(4):91-93.
    [65] Jockish K A,Brown S A,Bauer T W,et al.Biological response to chopped carbonreinforced PEEK [J].J Biomed Mater Res,1992,26:133-146.
    [66]廖列文,刘正堂,黎新明,等.AA/AMPS共聚物水凝胶的吸液性能[J].化工进展,2008,27(5):729-732.
    [67]李宏亮,李冰.丙烯酰胺与2-丙烯酰胺基-2-甲基丙磺酸反相乳液聚合的研究[J].化学与黏合,2005,27(5):267-269.
    [68]朱文,靖符,新李光.AM/AMPS/木薯淀粉吸水树脂的研究[J].化工中间体,2009(12):40-42.
    [69]朱学文,廖列文,崔英德.丙烯酸和AMPS共聚合成高吸水性树脂[J].郑州轻工业学院学报(自然科学版),2004,19(1):8-10.
    [70]苏秀霞,李宜洋,李仲谨,等.XG-g-P(AA-co-AM)/AC复合高吸水性树脂的制备与性能[J].化工进展,2011,30(7):1556-1560.
    [71]马希晨,聂新卫,刘宪军.反相悬浮共聚法制备速溶型阴离子淀粉接枝絮凝剂及其应用于印染废水处理[J].大连轻工业学院学报,2004,23(3):157-159.
    [72]张俊平,刘瑞凤,王爱勤.PAM/凹凸棒粘土复合高吸水性树脂的吸水性能[J].高分子材料科学与工程,2006,22(5):151-157.
    [73]吴季怀,林建明,魏月琳,等.高吸水保水材料[M].北京:化学工业出版社,2005:131-132.
    [74] Omidian H,Hashemi S A,Sammes P G.Modified acrylic-based superabsorbent polymerseffect of temperature and initiator concentration[J].Polymer,1998,39(915):3459-3466.
    [75]谢建军,李晟,何新,等.壳聚糖接枝丙烯酸-丙烯酰胺高吸水树脂吸液性能[C].2010年国际水溶性高分子研讨会(中国),2010:151-157.
    [76]李增新,薛淑云.廉价吸附剂处理重金属离子废水的研究进展[J].环境污染治理技术与设备,2006,7(1):6-10.
    [77]郜瑞莹,陈灿,王建龙.酿酒酵母吸附Zn2+和Cd2+的动力学[J].清华大学学报(自然科学版),2007,47(6):897-900.
    [78] B A Bolto, Pawlowski. Waster water treatment by ion exchange[M]. London:E and F.N.Spon Ltd,1987:263-279.
    [79]杨黎燕,李仲谨,赵新法.交联淀粉微球对Co2+吸附行为的研究[J].离子交换与吸附,2010,26(5):401-408.
    [80]洪英,钟泽辉,郭宾.壳聚糖印迹聚合物对Zn2+的吸附动力学[J].化工进展,2011,30(6):1296-1298.
    [81]陈灿,周芸,胡翔.啤酒酵母对废水中Cu2+的生物吸附特性[J].清华大学学报(自然科学版),2008,48(12):2093-2095.
    [82]谭光群,袁红雁,刘勇,等.麦秆对重金属Pb2+和Cr3+吸附性能的研究[J].化学研究与应用,2011,23(7):840-845.
    [83]何明,尹国强,王品,等.羽毛蛋白接枝丙烯酸-丙烯酰胺高吸水性树脂的吸附性能[J].化工新型材料,2010,38(8):69-71.
    [84]杨瑞成,申鹏,杨娟,等.淀粉接枝聚丙烯酸高吸水树脂吸附CuSO4的行为和动力学[J].应用化工,2010,39(12):1823-1829.
    [85]谢建军,刘赛.PAMPS高吸水性树脂吸附性能[J].高分子材料科学与工程,2008,24(4):151-154.
    [86]何新建,谢建军,张绘营,等.KLPAAM复合高吸水树脂吸附[J].化工学报,2011,62(4):1162-1168.
    [87]王帅.聚酯基硫脲树脂的合成及其对贵金属离子的吸附分离性能[D].长沙:中南大学,2008.
    [88] Langmuir I. The adsorption of gases on plane surfaces of glass, mica andplatinum[J].Journal of the American Chemistry Society,1918,40(9):1361-1403.
    [89] Freundich H.Over the adsorption in solution[J].Journal of Physical Chemistry,1906,57:385-470.
    [90] Lagergren S.About the theory of so called adsorption of soluble substances [M].Kungliga svenska vetenskapskademiens Handingar,1898(24):1-6.
    [91] Ho S L,Mckey G.Pseudo-second order model for sorption processes[J].ProcessBiochem,1999(34):451-465.
    [92]杨宏孝,凌芝,颜秀茹.无机化学[M].北京:高等教育出版社,2002:230-232.
    [93]黄美荣,李舒.重金属离子天然吸附剂的解吸与再生[J].化工环保,2009,29(5):385-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700