用户名: 密码: 验证码:
Ⅱ-Ⅵ族半导体纳米材料的制备以及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备具有新颖结构和高质量的半导体纳米材料是当前纳米科技研究与发展的基础课题。作为纳米器件的基元,半导体纳米材料的电学、光学及化学性质决定着纳米器件的性能。因此,在组装和集成纳米器件之前,需要在生长过程中或生长过程后控制这些最基本的纳米结构的晶体质量和性质以达到器件性能的要求。在众多的半导体纳米材料中,核壳型纳米复合材料、一维纳米材料以及多孔结构纳米材料是现今研究的热门。本论文紧跟国际纳米材料研究的前沿,结合本实验室现有的条件,发展运用了水/溶剂热法和化学气相沉淀法制备了一系列结构、尺寸可控的纳米材料,并研究了他们的生长机理以及相关的光学、电学等性能。主要研究结果如下:
     一、核壳型纳米复合材料
     (1)在不使用表面活性剂的情况下,采用简易且成本低廉的水热法在较低温度80℃合成了具有核壳结构的Fe/ZnO“海胆”状纳米颗粒。形成核壳结构可以使原本在常温常压下不稳定的纳米尺度Fe作为核在ZnO的包覆下变得非常稳定。从磁性能研究可以看出,制备的Fe/ZnO "海胆”状颗粒在空气中很稳定,而且具有稳定的磁性。由于Fe3+进入了ZnO晶格,从而使得ZnO的紫外激发峰焠灭,并使得与缺陷相关的峰变得更强。换句话说,ZnO的光致发光性质可以通过Fe3+调节。
     (2)首次采用简易、低廉的水热法高产率地合成了由具有闪锌矿和纤锌矿ZnS组成的核/壳型ZnS异质结构。其核是在常温下亚稳定的纤维矿结构ZnS,壳是常温下很稳定的闪锌矿ZnS。由于纤锌矿结构的ZnS与外界环境隔绝,因此具有很高的稳定性。基于实验结果,我们提出了该同质异构型ZnS核壳结构颗粒的合理生长机理。通过简单的控制Zn:S摩尔比例实现了对ZnS纳米材料光学性能(如光致发光谱以及紫外吸收谱)的调控。
     二、多孔结构纳米材料
     (3)使用Cd(NO3)2-4H2O为原料,无水乙醇以及去离子水为溶剂合成了多种纳/微米结构的镉化合物。该合成方法具有环保、简易、成本低、产率高以及重复性好等特点。不需要昂贵的器械、严格的条件及有机表面活性剂。通过改变实验参数控制合成了单晶CdO以及Cd(OH)2纳米线束、Cd5(OH)8(NO3)2(H2O)2纳米线、纳米带、微米花、微米块和微米席等。将得到的Cd5(OH)8(NO3)2(H2O)2纳米/微米结构作为前驱物在空气中煅烧,可以得到多孔CdO纳米材料。基于光降解性能的分析,得到的多孔CdO材料对亚甲基蓝有很高的降解活性。值得一提的是,我们使用的环境友好型溶剂热合成法也完全适合于合成其他的氧化物,如:MgO\CuO等等,具有很好的普适性。
     (4)发展运用上面介绍的环境友好型水/溶剂热纳米合成方法(使用Zn(NO3)2·6H2O或Ni(NO3)2·6H2O为原料,无水乙醇为溶剂),成功地合成了Zn5(OH)8(NO3)2(H2O)2和Ni3(NO3)2(OH)4微米花。通过煅烧,可以得到ZnO以及NiO多孔微米花。值得一提的是,这里采用的环境友好型水/溶剂热纳米合成方法不仅可以合成CdO、ZnO以及NiO的相关模板,还可以直接用于合成ZnO微米枣核等结构。此工作为寻找一种合理且环境友好的方法来制备和组装新型单晶纳米结构材料开辟了一条新的途径。
     三、一维纳米材料
     (5)采用高温化学气相沉积方法,成功地实现了对一维CdS纳米结构的可控生长,包括:双头纳米梳子、波浪状微/纳米纳米带、纳米带、纳米棒以及纳米线等。所有制备的CdS纳米材料产率高、结晶性好并且重复性也很高。通过对材料微结构的系统研究,探讨了影响这些一维CdS纳米结构生长的因素以及合成机理。在可控合成一维CdS纳米结构方面走出了可喜的一步,为进一步开发由纳米单元构筑特定的器件以及集合体,开辟了新的道路。由于这些CdS—维纳米材料表现出优异的光学性质,在光电子纳米器件上将会有广泛的应用。
     (6)在可控生长出单一CdS纳米材料的形貌以及尺寸的基础上,如何来扩展CdS纳米材料的性能,或者说如何连续可调CdS的带宽就成为了我们需要解决的新问题。通过一步热蒸发法我们成功地制备了形貌可调的ZnxCd1-xS纳米材料并研究了它们优越的光学性质。这与二步法热蒸发制备合金纳米晶体相比,简化了合成步骤,节约了时间、降低了成本。得到的产物形貌分别是纳米剑,超长纳米线,立方纳米柱,异质纳米带,分叉纳米棒、纳米梳子以及微米空心球等。利用低压热蒸发法制备空心球的工作尚未见文献报道。由于这些ZnxCd1-xS内米结构的独特性质使得它们可以在光电子纳米器件工业大展身手。这种价格低廉、环境友好型的方法具有普适性,可以用于制备其他的半导体纳米材料诸如MgxZn1-xS,CuxCd1·xS和CuCdMgS等等。
The growth of novel and high quality semiconductor nanomaterials in a controllable manner is foundationally important in nanotechnology and has been investigated widely. As building blocks for nanodevices, the semiconductor nanomaterials have to be specific in terms of optical, electronic and chemical properties. In view of that, researchers turned their attention to the control synthesis of nanomaterials. The goal is to tailor-make nanomaterials of specific properties (architecture, size, morphology, and growth pattern of products) for the fabrication of nanodevices. In the world of semiconductor nanomaterials, core-shell nanostructures, nanoporous materials, and one-dimensional nanomaterials are popular. Making use of the facilities in our laboratory, I systemically investigated the controlled growth of nanomaterials prepared by hydrothermal/solvothermal and thermal evaporation methods. The growth mechanisms as well as the optical and electronic properties of the as-prepared materials were investigated. The main achievements are as follows:
     Part I:Core-shell Nanostructures
     (1) Magnetic Fe/ZnO composites showing the shape of "sea urchin" were hydrothermally synthesized. The synthesis was conducted at low temperature (80℃), and there was no need of using a surfactant. The Fe nanoparticles were encapsulated inside a shell of self-assembled ZnO nanospikes. Because of the encapsulation of the Fe nanoparticles, the Fe/ZnO composites were stable in air and high in magnetization. With the incorporation of Fe3+ions inside the ZnO lattice, the UV emission band of ZnO disappeared, and the defect-related peak became strong in intensity. The results reveal that the PL properties of ZnO can be tuned by doping ZnO with Fe3+ions.
     (2) Novel core-shell nanostructures comprised of cubic sphalerite and hexagonal wurtzite ZnS were synthesized by a simple hydrothermal method. The metastable wurtzite ZnS was encapsulated by a shell of sphalerite ZnS and the wurtzite ZnS core was protected from the outside environment. A possible mechanism for the fabrication of the core-shell nanostructures was presented. By simple control of Zn:S ratio, one can tune the optical properties of ZnS nanomaterials such as excitonic absorption and PL emission.
     Part II:Nanoporous Materials
     (3) Using Cd(NO3)2·4H2O as precursor and ethanol/water as solvent, I synthesized Cd compounds with various kinds of shape and size. Unlike the conventional oil-water surfactant approach, the adopted method is biologically safe, simple and environment-benign. The approach is not expensive and requires no special equipment or organic surfactants. By varying experimental parameters, one can achieve selective growth of nanocrystals or microcrystals of Cd compounds, such as single-crystalline CdO, Cd(OH)2nanowires, Cd5(OH)8(NO3)2(H2O)2nanowires, nanobelts, microflowers, microblock and micromat. Through the calcination of Cds(OH)8(NO3)2(H2O)2in air, nanoporous CdO materials can be produced. According to the photocatalytic activity results, the prepared CdO samples are effective for the photocatalytic degradation of methylene blue. It is envisaged that the method is also suitable for the synthesis of nanostructures of other oxides such as MgO, CuO.
     (4) By means of the above described solvothermal approach that is biologically safe and environment-friendly, Zn5(OH)8(NO3)2(H2O)2and Ni3(NO3)2(OH)4microflowers were synthesized. The precursor was nickel nitrate (Ni(NO3)2·6H2O) or zinc nitrate (Zn(NO3)2·6H2O) and absolute ethanol was used as solvent. Through the calcination of the Ni3(NO3)2(OH)4and Zn5(OH)8(NO3)2(H20)2compounds at an appropriate temperature, nanoporous NiO and ZnO microcrystals were produced. It is meaningful to point out that except for preparing good precursors for the generation of NiO and ZnO nanomaterials, ZnO micromaterials could also be synthesized using this kind of environment-friendly solvothermal approach. The work would start a new chapter for the preparation and assembly of new single-crystalline materials with a reasonable and environment-friendly method.
     Part III:One-dimensional Nanomaterials
     (5) By means of thermal evaporation, I produced morphology-tunable nanostructures of single-crystalline CdS in a controlled manner. They were in the form of cuspidated double headed nanocomb, corrugated nanoribbons, nanobelts, nanorods and nanowires. The approach is low-cost and the generation of product highly reproducible. A mechanism for the growth of the CdS nanomaterias was described. The unique optical properties of the as-prepared CdS nanomaterials suggest that they could be utilized in the industry of optoelectronic nanodevices.
     (6) Being successful in the controlled growth of CdS nanostructures in terms of morphology and size, it was desirable to expand the applications of CdS; much effort was devoted to explore the band-gap tunability of CdS-based nanomaterials. I synthesized high-quality CdxZn1-xS nanocrystals with tunable morphologies and superior optical properties. Compared to the method of two-step thermal evaporation, the adopted one-step thermal evaporation method was simple, low-cost and shorter in time. The as-prepared samples were in the forms of nanoswords, super-long nanowires, cubic nanopillars, heterogeneous nanobelts, branched nanorods, nanocombs, and hollow microspheres. It is worth pointing out that to the best of our knowledge, the fabrication of these kinds of ZnxCd1-xS hollow microspheres by means of one-step thermal evaporation has never been reported before. The work would start a new way for the growth and application of hollow microspheres on Si substrates. The unique properties of the obtained ZnxCd1-xS nanomaterials suggest that they could be utilized in the industry of optoelectronic nanodevices. It is worth pointing out that the low-cost and environment-benign approach adopted in the present study could be applied to synthesize nanostructures of other compounds such as ternary MgxZn1-xS, CuxCd1-xS and quaternary CuCdMgS semiconductors.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M],科学出版社,2001.
    [2]http://www.nano.gov.sixxs.org/html/about/home_about.html
    [3]科技部,《国家纳米科技发展纲要》[2001-2010],中国基础科学,2001,10,30.
    [4]A. Henglein, Chem. Rev.1989,89,1861.
    [5]J. K. Kenneth, S Jane, K. Olga, M. Cathy, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, D. J. Zhang, J. Phys. Chem.1996,100,12142.
    [6]A. Hagfeldt, M. Graetzel, Chem. Rev.1995,95,49.
    [7]T. Trindade, P. O. Brien, N. L. Pickett, Chem. Mater.2001,13,3843.
    [8]B. Barbara, W. Wernsdorfer, Curr. O. Pin, Solid State Mater. Sci.1997,2,220.
    [9]X. Duan, Y. Huang, Y. Cui, C. M. Liber, American Scientific publishers,2003.
    [10]M. A. Reed, T. Lee, American Scientific publishers,2003.
    [11]纳米材料应用技术丛书,化学工业出版社,2001.
    [12]W. Schartl, Adv. Mater.2000,12,1899.
    [13]刘超,成国祥,离子交换与吸附,2003,19(4):374-384.
    [14]刘忠范,朱涛,张锦,纳米化学[J].大学化学,2001,16(5):1-10.
    [15]S. W. Lee, M. C. Jeong, J. M. Myoung, Appl. Phys. Lett.2007,90,133115.
    [16]J. Zhou, N. S. Xu, Z. L. Wang, Adv. Mater.2006,18,2432.
    [17]K. Kasemets, M. Romet, A. Ivask, A. Kahru, Toxicol. Lett.2008,180S, S223.
    [18]M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier, A. Kahru, Chemosphere 2008, 71,1308.
    [19]V. Aruojal, A. Kahru, H. C. Dubourguier, Toxicol. Lett.2008,180S, S220.
    [20]J. Zhou, N. S. Xu, Z. L Wang, Adv. Mater.2006,18,2432.
    [21]D. D. Guo, C. H.Wu, H. Jiang, Q. N.Li, X. M.Wang, Chen, B. A. J. Photochem. Photobiol. B 2008,93,119.
    [22]T. J. Zhou, M. Lu, Z. H. Zhang, H. Gong, W. S. Chin, B. Liu, Adv. Mater.2010,22, 403.
    [23]M. E. Aguirre, H. B. Rodriguez, E. S. Roman, A. Feldhoff, M. A. Grela, J. Phys. Chem. C2011,115,24967.
    [24]C. Q. Jin, W. Zhong, X. S. Qi, H. A. Song, C. T. Au, S. L. Tang, Y. W. Du, J. Appl. Phys.2008,103,07D520.
    [25]S. B. Kalidindi, B. R. Jagirdar, J. Phys. Chem. C 2008,112,4042.
    [26]F. Li, Y. L. Yuan, J. Y. Luo, Q. H. Qin, J. F. Wu, Z. Li, X. T. Huang, Appl. Surf. Sci. 2010,256,6076.
    [27]H. B. Zeng, Z. G. Li, W. P. Cai, B. Q. Cao, P. S. Liu, S. K. Yang, J. Phys. Chem. B 2007,111,14311.
    [28]G. Patrinoiu, M. Tudose, J. M. Moreno, R. Birjega, P. Budrugeac, R. Ene, O. Carp, J. Solid State Chem.2012,186,17.
    [29]M. Chen, L. F. Hu, J. X. Xu, M. Y. Liao, L. M. Wu, X. S. Fang, Small 2011,7,2449.
    [30]C. Zhang, L. W. Yin, L. Y. Zhang, Y. X. Qi, N. Lun, Mater. Lett.2012,67,303.
    [31]L. Ge, X. Y. Jing, J. Wang, J. Wang, S. B. Jamil, Q. Liu, F. C. Liu, M. L. Zhang, J. Mater. Chem.2011,21,10750.
    [32]H. P. Cong, S. H. Yu, Adv. Funct. Mater.2007,17,1814.
    [33]C. X. He, B. X. Lei, Y. F. Wang, C. Y. Su, Y. P. Fang, D. B. Kuang, Chem. Eur. J. 2010,16,8757.
    [34]M. Moriya, Y. Kyohei, S. Wataru, T. Yogo, Inorg. Chem.2009,48,8544.
    [35]S. Cheng, D. Yan, J. T. Chen, R. F. Zhuo, J. J. Feng, H. J. Li, H. T. Feng, P. X. Yan, J. Phys. Chem. C2009,113,13630.
    [36]Z. W. Deng, M. Chen, G. X. Gu, L. M. Wu, J. Phys. Chem. B 2008,112,16.
    [37]S. Y. Yu, H. J. Zhang, J.B. Yu, C. Wang, L. N. Sun, W. D. Shi, Langmuir 2007,23, 7836.
    [38]D. K. Yi, T.Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, J. Y. Ying, J. Am. Chem. Soc.2005,127,4990.
    [39]M. F. Zhang, S. J. Shi, J. X. Meng, X. Q. Wang, H. Fan, Y. C. Zhu, X. Y. Wang, Y. T. Qian, J. Phys. Chem. C2008,112,2825.
    [40]D. Boer, J. H. London 1958.
    [41]C. T. Kresge, M. E. Leonowiez, W. J. Roth, J. C. Vartuli, J. S Beek, Narure 1992,359, 710.
    [42]W. C. Karena, F. S. Dorina, J. H. Gregory, J. C. Peter, M. N. Tina, J. Am. Chem. Soc. 2011,133,18583.
    [43]J. Csaba,R. Norma. T. De,C. Wilaiwan,R. Krishnan, J. Phys. Chem. C 2012, 116,4234.
    [44]S. M. Zhu, H. S. Zhou, T. Miyoshi, M. Hibino, I. Honma, M. Ichihara, Adv. Mater. 2004,16,2012.
    [45]Y. J. Han, G. D. Stucky, A. Butler, J. Am. Chem. Soc.1999,121,9897.
    [46]S. S. Kim, W. Z. Zhang, T. J. Pinnavaia, Science 1998,282:1302.
    [47]Q. S. Huo, R. Leon, P. M. Petroff, G. D. Stucky, Science 1995,268.1324.
    [48]J. Fan, C. Z. Yu, J. Lei, Q. Zhang, T. C. Li, B. Tu, W. Z. Zhou, D. Y. Zhao, J. Am. Chem. Soc.2005,127,10794.
    [49]R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999,103,7743.
    [50]M. Hartmann, Chem. Mater.2005,17,4577.
    [51]X. C. Jiang, Y. L. Wang, T. Herricks, Y.N. Xia, J. Mater. Chem.2004,14,695.
    [52]Y. L. Wang, X. C. Jiang, Y. N. Xia, J. Am. Chem. Soc.2003,125,16176.
    [53]C. X. Shan, Z. Liu, Z. Z. Zhang, D. Z. Shen, S. K. Hark, J. Phys. Chem. B 2006, 110,11176.
    [54]H. D. Yu, D. S. Wang, M. Y. Han, J. Am. Chem. Soc.2007,129,2333.
    [55]H. Zhang, J. B. Wu, C. X. Zhai, X. Y. Ma, N. Du, J. B. Tu, D. R. Yang, Nanoteehnology 2008,19,035711.
    [56]P. C. Wu, W. S. Wang, Y. T. Huang, H. S. She, Y. W. Lo, T. L. Tsai, D. B. Shieh, C. S. Yeh, Chem. Eur. J.2007,13,3878.
    [57]R. J. Qi, Y. J. Zhu, G. F. Cheng, Y. H. Huang, Nanotechnology 2005,16,2502.
    [58]G. Z. Cao, Imperial College Press 2005.
    [59]R. F. Service, Science 2001,294,2442.
    [60]D. Appell, Nature 2002,419,553.
    [61]Z. L. Wang, J. Mater. Chem.2009,19,826.
    [62]A. M. Morales, C. M. Lieber, Science 1998,279,208.
    [63]W. Q. Han, S. S. Fan, Q. Q. Li, Science 1997,277,1287.
    [64]X. F. Duan, C. M. Lieber, J. Am. Chem. Soc.2000,122,188.
    [65]A. M. Morales, C. M. Lieber, Science 1998,279,208.
    [66]X. F. Duan, C. M. Lieber, Adv. Mater.2000,12,298.
    [67]B. Mandl, J. Stangl, T. Martensson, A. Mikkelsen, J. Eriksson, L. S. Karlsson, G. Bauer, L. Samuelson, W. Seifert, Nano Lett.2006,6,1817.
    [68]M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, Adv. Mater.2001, 13,113.
    [69]C. Fang, H. Foll, J. Carstensen, Nano Lett.2006,6,1578.
    [70]C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber, J. Am. Chem. Soc.2003,125,11498.
    [71]A. I. Yanson, G. R. Bollinger, H. E. Van den Brom, N. Agrait, J. M. Van Ruitenbeek, Nature 1998,395,783.
    [72]B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, K. S. Kim, Science 2001,294,348.
    [73]K. M. Ip, C. R. Wang, Q. Li, S. K. Hark, Appl. Phys. Lett.2004,84,795.
    [74]J. S. Jie, W. J. Zhang, Y. Jiang, S. T. Lee, Appl. Phys. Lett.2006,89,223117.
    [75]R. M. Ma, L. Dai, H. B. Huo, W. Q. Yang, G. G. Qin, P. H. Tan, C. H. Huang, J. Zheng, Appl. Phys. Lett.2006,89,203120.
    [76]Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001,291,1947.
    [77]Q. H. Li, Y. J. Chen, Q. Wan, T. H. Wang, Appl. Phys. Lett.2004,85,1805.
    [78]Y. C. Zhu, Y. Bando, D. F. Xue, Appl. Phys. Lett.2003,82,1769.
    [79]S. Kar, S. Chaudhuri, J. Phys. Chem. B 2005,109,3298.
    [80]S. Iijima, Nature 1991,354,56.
    [81]S. Iijima, T. Ichihashi, Nature 1993,363,603.
    [82]D. S. Bethune, C. H. Klang, Nature 1993,363,605.
    [83]H. Huang, C. H. Liu, Y. Wu, S. S. Fan, Adv. Mater.2005,17,1652.
    [84]J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. Choi, P. Yang, Nature 2003,422, 599.
    [85]Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, D. P. Yu, Appl. Phys. Lett.2003,83,1689.
    [86]J. Sha, Adv. Mater.2002,14,1219.
    [87]N. G. Chopra, R. J. Luyken, Science 1995,269,966.
    [88]L. W. Yin, Y. Bando, Y. C. Zhu, D. Golberg, M. S. Li, Appl. Phys. Lett.2004,84, 1546.
    [89]P. Mohan, J. Motohisa, T. Fukui, Appl. Phys. Lett.2006,88,133105.
    [90]Y. Li, J. Xiang, F. Qian, S. Gradeak, Y. Wu, H. Yan, D. A. Blom, C. M. Lieber, Nano Lett.2006,6,1468.
    [91]J. Y. Yu, S. W. Chung, J. R. Heath, J. Phys. Chem. B 2000,104,11864.
    [92]Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, Appl. Phys. Lett.2001, 78,2214.
    [93]Y. Wu, P. Yang, Chem. Mater.2000,12,605.
    [94]X. L. Chen, J. Y. Li, Y. G. Cao, H. Li, M. He, C. Wang, Z. Zhang, Z. Qiao, Adv. Mater. 2001,12,1432.
    [95]W. Q. Han, A. Zettl, Appl. Phys. Lett.2002,80,303.
    [96]Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001,291,1947.
    [97]S. Muthukumar, H. F. Sheng, J. Zhong, Z. Zhang, N. W. Emanetoglu, Y. C. Lu, IEEE Transactions On Nanotechnology 2003,2,50.
    [98]X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, S. K. Hark, Appl. Phys. Lett.2003,83,5533.
    [99]X. T. Zhang, K. M. Ip, Z. Liu, Y. P. Leung, Q. Li, S. K. Hark, Appl. Phys. Lett.2004, 84,2641.
    [100]F. Qian, Y. Li, S. Gradeak, D. L. Wang, Carl J. Barrelet, C. M. Lieber, Nano Lett. 2004,4,1975.
    [101]Z. X. Yang, W. Zhong, Y. Yin, X. Du, Y. Deng, C. Au, Y. W. Du, Nanoscale Res. Lett. 2010,5,961.
    [102]J. Y. Kim, J. W. Cho, S. H. Kim, Mater. Lett.2011,65,1161.
    [103]J. P. Liu, Y. Y. Li, X. T. Huang, Z. K. Li, G. G. Li, H. B. Zeng, Chem. Mater.2008, 20,250.
    [104]Z. H. Kang, E. Wang, B. D. Mao, Z. M, Su, L. Gao, S. Y. Lian, L. Xu, J. Am. Chem. Soc.2005,127,6534.
    [105]L. H. Zhang, H. Q. Yang, L. Li, R. G. Zhang, R. N. Liu, J. H. Ma, X. L. Xie, F. Gao, Inorg. Chem.2008,47,11950.
    [106]S. Sarkar, S. Patra, S.K. Bera, G.K. Paul, R. Ghosh, Mater. Lett.2010,64,460.
    [107]H. G. Choi, Y. H. Jung, D. K. Kim, J. Am. Ceram. Soc.2005,88,1684.
    [108]L. L. Chai, J. Du, S. L. Xiong, H. B. Li, Y. C. Zhu, Y. T. Qian. J. Phys. Chem. C 2007,111,12658.
    [109]F. Chen, Y. J. Zhu, K. W. Wang, K. L. Zhao, CrystEngComm 2011,13,1858.
    [110]Q. Tang, X. Liu, T. I. Kamins, G. S. Solomon, J. S. Harris, J. Crystal Growth 2003, 251,662.
    [111]R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. D. Hart, Toma Stoica, H. Luth, Nano lett.2005,5,981.
    [112]T. Stoica, R. Meijers, R. Calarco, T. Richter, H. Luth, J. Cryst. Growth 2006,290, 241.
    [113]H. Q. Cao, Y. Xu, J. M. Hong, H. B. Liu, G. Yin, B. L. Li, C. Y. Tie, Z. Xu, Adv. Mater.2001,13,393.
    [114]H. Q. Cao, Z. Xu, X. W. Wei, X. Ma, Z. L. Xue, Chem. Commun.2001,6,541.
    [115]N. I. Kovtyukhova, T. E. Mallouk, T. S. Mayer, Adv. Mater.2003,15,780.
    [116]D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, J. Phys. Chem.1996,100, 14037.
    [117]L. Sun, P. C. Searson, C. L. Chien, Appl. Phys. Lett.1999,74,2803.
    [118]X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng, L. X. Zhao, Chem. Mater.2001,13,2511.
    [119]R. Tenne, Angew Chem. Int. Ed.2003,42,5124.
    [120]G. R. Patake, F. Krumeich, R. Nesper, Angew Chem. Int. Ed.2002,41,2446.
    [121]A. M. Morales, C. M. Lieber, Science 1998,21,208.
    [122]Y. Cui, X. F. Duan, J. T. Hu, C. M. Lieber, J. Phys. Chem. B 2000,104,5213.
    [123]J. Xiang, W. Lu, Y. J. Hu, Yue Wu, H. Yan, C. M. Lieber, Nature 2006,441,489.
    [124]R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, M. Metz, IEEE Elec. Dev. Lett.2004,25,408.
    [125]A. Ritenour, S. Yu, M. L. Lee, N. Lu, W. Bai, A. Pitera, E. A. Fitzgerald, D. L. Kwong, IEDM Tech. Dig.2003,433.
    [126]I. Aberg, C. Chle' irigh, O. O. Olubuyide, X. Duan, J. L. Hoyt, IEDM Tech. Dig. 2004,173.
    [127]S. Ju, A. Facchetti, Y. Xuan, J. Liu, M. Ishikawa, P. Ye, C. Zhou, T. J. Marks, D. B. Janes, Nat. Nanotechnol.2007,2,378.
    [128]B. Z. Tian, X. L. Zheng, Thomas J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, C. M. Lieber, Nature 2007,449,885.
    [129]E. C. Garnett, P. Yang, J. Am. Chem. Soc.2008,130,9224.
    [130]M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Science 2001,292,1897.
    [131]F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z. L.Wang, C. M. Lieber, Nat. Mater.2008,7,701.
    [132]B. Hua, J. Motohisa, B. Kobayashi, Y. S. Hara, T. Fukui, Nano Lett.2009,9,112.
    [133]M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, P. Yang, Science 2004,305,1269.
    [134]X. F. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature 2003,421,241.
    [135]M. A. Zimmler, J. Bao, I. Shalish, W. Yi, J. Yoon, V. Narayanamurti, F. Capasso, Nanotechnology 2007,18,235205.
    [136]M. A. Zimmler, J. Bao, I. Shalish, W. Yi, J. Yoon, V. Narayanamurti, F. Capasso, Nanotechnology 2007,18,395201.
    [137]M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, F. Capasso, Nano Lett.2008,8,1695.
    [138]E. Lai, W. Kim, P. Yang, Nano Res.2008,1,123.
    [139]A. B. Greytak, C. J. Barrelet, Y. Li, C. M. Lieber, Appl. Phys. Lett.2005,87, 151103.
    [140]K. Kihyun, K. Hyunsuk, K. G. Tae, L. J. Soo, M. Byungdon, C. Kyoungah, S. M. Young, K. Sangsig, Appl. Phys. Lett.2004,84,4376.
    [141]Z. Y. Fan, D. Dutta, C.-J. Chien, H.-Y. Chen, E. C. Brown, Appl. Phys. Lett.2006, 89,213110.
    [142]C. Yang, C. J. Barrelet, F. Capasso, C. M. Lieber, Nano Lett.2006,6,2929.
    [143]H. Pettersson, J. Tra2gardh, A. I. Persson, L. Landin, D. Hessman, L. Samuelson, Nano Lett.2006,6,229.
    [144]Z. L. Wang, J. H. Song, Science 2006,312,242.
    [145]R. Yang, Y. Qin, C. Li, G. Zhu, Z. L. Wang, Nano Lett.2009,9,1201.
    [146]S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. S. Yang, Z. L Wang, Nat. Nanotechnol.2010,5, 366.
    [147]Y. C. Zhao, L. Song, K. Deng, Z. Liu, Z. X. Zhang, Y. L. Yang, C. Wang, H. F. Yang, A. Z. Jin, Q. Luo, C. Z. Gu, S. S. Xie, L. F. Sun, Adv. Mater.2008,20,1772.
    [148]W. I. Park, G. C. Yi, M. Kim, S. L. Pennycook, Adv. Mater.2002,14,1841.
    [149]Y. Liu, M. Liu, Adv. Funct. Mater.2005,15,57.
    [150]Y. Zhang, J. Cryst. Growth 2004,264,363.
    [151]F. M. Davidson, R. Wiacek, B. A. Korgel, Chem. Mater.2005,17,230.
    [152]S. R. Niranjan, S. Kittitat, Y. Yang, R. Grimm, R. Michiels, M. Zacharias, J. Phys. Chem. C 2010,114,10323.
    [153]X. F. Duan, C. M. Lieber, Adv. Mater.2000,12,298.
    [154]X. F. Duan, C. M. Lieber, J. Am. Chem. Soc.2000,122,188.
    [155]A. M. Morales, C. M. Lieber, Sicence 1998,279,208.
    [156]Y. Wu, P. Yang, Chem. Mater.2000,12,605.
    [157]C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L.C. Chen, J.Y. Peng, Y. F. Chen, J. Am. Chem. Soc.2001,123,2791.
    [158]C. C. Chen, C. C. Yeh, Adv. Mater.2000,12,738.
    [159]M. Yazawa, M. Kohuchi, A. Muto, K. Hiruma, Adv. Mater.1993,5,577.
    [160]X. Duan, C. M. Lieber, Adv. Mater.2000,12,298.
    [161]Y. J. Chen, J. B. Li, Y. S. Han, X. Z. Yang, J. H. Dai, J. Cryst. Growth 2002,245, 163.
    [162]M. H. Huang, Y. Wu, H. Feick, E. Webber, P. Yang, Adv. Mater.2000,13,113.
    [163]M. Q. He, P. Z. Zhou, S. N. Mohammad, J. Cryst. Growth 2001,231,357.
    [164]E. I. Givargizov, J. Cryst. Growth 1975,31,20.
    [165]Y. Y. Wu, P. D. Yang, J. Am. Chem. Soc.2001,123,3165.
    [166]M. S. Gudiksen, C. M. Lieber, J. Am. Chem. Soc.2000,122,8801.
    [167]Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. F. Wang, C. M. Lieber, Appl. Phys. Lett. 2001,78,2214.
    [168]M. S. Gudiksen, J. F. Wang, C. M. Lieber, J. Phys. Chem. B 2001,105,4062.
    [169]F. Cansell, B. Chevalier, A. Demourgues, J. Etourneau, C. Even, Y. Garrabos, V. Pessey, S.Petit, A. Tressaud, F. Weill, J. Mater. Chem.1999,9,67.
    [170]M. Rajamathi, R.seshadri, Curr. Opin. Solid. State Mater. Sci.2002,6,337.
    [171]G. Demazeau, J. Mater. Chem.1999,9,15.
    [172]J. Li, Z. Chen, R. J. Wang, Coord. Chem. Rev.1999,707,190.
    [173]T. Adschiri, Y. Hakuta, K. Arai, Ind. Eng. Chem. Res.2000,39,4901.
    [174]A. Cabanas, J. A. Darr, E. Lester, M. Poliakoff, Chem. Commum.2000,11,901.
    [175]A. Cabanas, J. A. Darr, E. Lester, M. Poliakoff, J. Mater. Chem.2001,11,561.
    [176]A. Cabanas, M. Poliakoff, J. Mater. Chem.2001,11,1408.
    [177]X. Meng, W. Xu, S. Tang, W. Pang, Chin. Chem. Lett.1992,3,69.
    [1]Y. W. Zhao, T. Zheng, J. Q. Xiao, J. Appl. Phys.2003,93,801.
    [2]J. R. Liu, M. Itoh, K. Mac, Appl. Phys. Lett.2006,88,062503.
    [3]F. Caruso, M. A. Caxuso, H. Mohwald, Science 1998,282,1111.
    [4]K. H. Sertehoo, D. Avnir, Chem. Mater.2003,15,1690.
    [5]X. Zhang, Z. Lu, M. Wen, H. Liang, J. Zhang, Z. Liu, J. Phys. Chem. B 2005,109, 1101.
    [6]P. M. Ajayan, S. Iijima, Nature 1993,361,333.
    [7]S. O. Obaer, N. R. Jana, C. J. MuPrhy, Nano. Lett.2001,1,601.
    [8]K. S. Mayya, D. I. Gittins, F. Caruso, A. M. Dibaj, Nano. Lett.2001,1,727.
    [9]Y. Yin, Y. Lu, Y. Xia, Y. Sun, Nano. Lett.2002,2,427.
    [10]L. B. Luo, S. H. Yu, H. S. Qian, T. Zhou, J. Am. Chem. Soc.2005,127,2822
    [11]J. Y. Gong, L. B. Luo, S. H. Yu, H. S. Qian, L. F. Fei, J. Mater. Chem.2006,16,101.
    [12]J. C. Y u, X. L. Hu, Q. Li, L. Z. Zhang, Chem. Comm.2005,2704.
    [13]K. Kasemets, M. Romet, A. Ivask, A. Kahru, Toxicol. Lett.2008,180S, S223.
    [14]M. Heinlaan, A. Ivask, I. Blinova, H. C. Dubourguier, A. Kahru, Chemosphere 2008, 71,1308.
    [15]V. Aruojal, A. Kahru, H. C. Dubourguier, Toxicol. Lett.2008,180S, S220.
    [16]J. Zhou, N. S. Xu, Z. L. Wang, Adv. Mater.2006,18,2432.
    [17]D. D. Guo, C. H. Wu, H. Jiang, Q. N. Li, X. M. Wang, B. A. Chen, J. Photochem. Photobiol. B 2008,93,119.
    [18]L. Vayssieres, K. Keis, A. Hagfeldt, S. T. Lindquist, Chem. Mater.2001,13,4395.
    [19]H. G. Yang, H. C. Zeng, J. Phys. Chem. B 2004,108,3492.
    [20]D. H. Zhang, Z. Q. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, C. W. Zhou, Nano Lett.2004,4,2151.
    [21]L. E. Greene, M. Law, D. H. M. Tan, Montano, J. Goldberger, G. Somorjai, P. D.Yang, Nano Lett.2005,5,1231.
    [22]Z. W. Liu, C. K. Ong, T. Yu, Z. X. Shen, Appl. Phys. Lett.2006,88,053110.
    [23]H. S. Bhatti, R. Sharma, N. K. Verma, Radiat. Eff. Defects Solids 2006,161,113.
    [24]Y. Guo, X. B. Cao, X. M. Lan, C. Zhao, X. D. Xue, Y. Y. Song, J. Phys. Chem. C 2008,112,8832.
    [25]E. Oh, S. H. Jung, K. H. Lee, S. H. Jeong, S. G. Yu, S. Rhee, J. Mater. Lett.2008,62, 3456.
    [1]W. Schartl, Adv Mater.2000,12,1899.
    [2]刘超,成国祥,离子交换与吸附2003,19,374.
    [3]刘忠范,朱涛,张锦,大学化学2001,16,1.
    [4]S. Biswas, S. Kar, Nanotechnology 2008,19,045710.
    [5]H.C. Ong, R. P. H. Chang, Appl. Phys. Lett.2001,79,3612.
    [6]T. K. Tran, W. Park, W. Tong, M. M. Kyi, B. K. Wagner, C. J. Summers, J. Appl. Phys. 1997,81,2803.
    [7]L. Yin, Y. Bando, Nat. Mater.2005,4,883.
    [8]K. Murakoshi, H. Hosokawa, N. Tanaka, M. Saito, Y. Wada, T. Sakata, H. Mori, S. Yanagida, Chem. Commun.1998,321.
    [9]F. Gu, C. Z. Li, S. F. Wang, M. K. Lu, Langmuir 2006,22,1329.
    [10]L. Chai, D. Jin, S. Xiong, H. Li, Y. Zhu, Y. Qian, J. Phys. Chem. C2007,111,12658.
    [11]W. Yu, P. F. Fang, S. J. Wang, Appl. Surf. Sci.2009,255,5709.
    [12]B. Liu, H. C. Zeng, J. Am. Chem. Soc.2003,125,4430.
    [13]D. Farah, E. S. Raymond, J. Am. Chem. Soc.2009,131,424.
    [14]J. Nanda, S. Sapra, D. D. Sarma, Chem. Mater.2000,12,1018.
    [15]X. Z. Liu, J. H. Cui, L. P. Zhang, W. C. Yu, F. Guo, Y. T. Qian, Mater. Lett.2006,60, 2465.
    [1]V. R. Shinde, H. S. Shim, T. P. Gujar, H. J. Kim, W. B. Kim, Adv. Mater.2008,20, 1008.
    [2]J. J. Miao, R. L. Fu, J. M. Zhu, K. Xu, J. J. Zhu, H. Y. Chen, Chem. Commun.2006, 3013.
    [3]W. D. Shi, C. Wang, H. S. Wang, H. J. Zhang, Cryst. Growth Des.2006,6,915.
    [4]X. L. Liu, C. Li, S. Han, J. Han, C. W. Zhou, Appl. Phys. Lett.2003,82,1950.
    [5]Z. Y. Jia, Y. W. Tang, L. J. Luo, B. H. Li, Cryst. Growth Des.2008,8,2116.
    [6]H. Z. Zhong, Y. C. Li, Y. Zhou, C. H. Yang, Y. F. Li, Nanotechnology 2006,17,772.
    [7]T. Ghoshal, S. Biswas, P. M. G. Nambissan, G. Majumdar, S. K. De, Cryst. Growth Des.2009,9,1287.
    [8]P. X. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao, Z. L. Wang, Science 2005, 309,1700.
    [9]Y. Sun, G. M. Fuge, M. N. R. Ashfold, Chem. Phys. Lett.2004,396,21.
    [10]X. F. Duan, C.M. Lieber, Adv. Mater.2000,279,208.
    [11]Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, J. M. Kim, Adv. Mater.2000,12,746.
    [12]Z. X. Yang, W. Zhong, C. T. Au, X. Du, H. A. Song, X. S. Qi, X. J. Ye, M. H. Xu, Y. W. Du, J. Phys. Chem. C 2009,113,21269.
    [13]Z. X. Yang, W. Zhong, C. T. Au, J. Y. Wang and Y. W. Du, CrystEngComm 2011, 13,1831.
    [14]S. H. Park, H. J. Kim, J. Am. Chem. Soc.2004,126,14368.
    [15]A. Gulino, G. Tabbi, A. A. Scalisi, Chem. Mater.2003,15,3332.
    [16]R. Ferro, I. A. Rodriguez, Sol. Energy Mater. Sol. Cells 2000,64,363.
    [17]M. Ristic, S. Poporic, S. Music, Mater. Lett.2004,58,2494.
    [18]T. K. Subramanyam, S. Uthanna, N. B. Srinivasulu, Mater. Lett.1998,35,214.
    [19]A. K. Srivastava, S. Pandey, K. N. Sood, S. K. Halder, R. Kishore, Mater. Lett.2008, 62,727.
    [20]Z. Guo, M.Q. Li, J. H. Liu, Nanotechnology 2008,19,245611.
    [21]I. Ichinose, K. Kurashima, T. Kunitake, J. Am. Chem. Soc.2004,126,7162
    [22]Y. H. Luo, J. Huang, I. Ichinose, J. Am. Chem. Soc.2005,127,8296
    [23]I. Ichinose, J. Huang, Y. H. Luo, Nano Lett.2005,5,97
    [24]Y. H. Luo, J. Huang, J. Jin, X. Peng, W. Schmitt, I. Ichinose, Chem. Mater.2006,18, 1795
    [25]V. R. Shinde, H. S. Shim, T. P. Gujar, H. J. Kim, W. B. Kim, Adv. Mater.2008,20, 1008
    [26]I. Ichinose, K. Kurashima, T. Kunitake, J. Am. Chem. Soc.2004,126,7162.
    [27]Y. H. Luo, J. Huang, I. Ichinose, J. Am. Chem. Soc.2005,127,8296.
    [28]C. Zhang and Y. Zhu, Chem. Mater.2005,17,3537.
    [29]B. Bai, W. Guan, Z. Li, G. Puma, Mater. Res. Bull.2011,46,26.
    [30]H. B. Lu, L. Liao, H. Li, Y. Tian, D. F. Wang, J. C. Li, Q. Fu, B. P. Zhu, Y. Wu, Mater. Lett.2008,62,3928.
    [31]X. Zhang, Z. H. Ai, F. L. Jia, L. Z. Zhang, X. X. Fan, Z. G. Zou, Mater. Chem. Phys. 2007,103,162.
    [32]J. Q. Yu, Y. Zhang, A. Kudo, J. Solid State Chem.2009,182,223.
    [33]H. Q. Jiang, M. Nagai, K. Kobayashi, J. Alloys Compd.2009,479,821.
    [34]W. F. Yao, H. Iwai, J. H. Ye, Dalton Trans.2008,1426.
    [35]Z. Gui, J. Liu, Z. Wang, L. Song, Y. Hu, W. Fan, D. Chen, J. Phys. Chem. B 2005, 109,1113.
    [36]B. Zhao, X. K. Ke, J. H. Bao, C. L. Wang, L. Dong, Y. W. Chen, H. L. Chen, J. Phys. Chem. C 2009,113,14440.
    [1]L. X. Yang, Y. J. Zhu, H. Tong, Z. H. Liang, W. W. Wang, Cryst. Growth Des.2007, 7,2716.
    [2]J. J. Wang, H. Pang, J. Z. Yin, L. N. Guan, Q. Y. Lu, F. Gao, CrystEngComm 2010,12, 1404.
    [3]H. Pang, Q. Y. Lu, Y. Z. Zhang, Y. C. Li, F. Gao, Nanoscale 2010,2,920.
    [4]H. Liang, L. Liu, Z. J. Yang, Y. Z. Yang, Cryst. Res. Technol.2010,45,661.
    [5]J.W. Lang, L. B. Kong, W. J. Wu, M. Liu, Y. C. Luo, L. Kang, J. Solid State Electrochem.2009,13,333.
    [6]B. Zhao, X. K. Ke, J. H. Bao, C. L. Wang, L. Dong, Y. W. Chen, H. L. Chen, J. Phys. Chem. C2009,113,14440.
    [7]L. P. Zhu, G. H. Liao, Y. Yang, H. M. Xiao, J. F. Wang,S. Y. Fu, Nanoscale Res. Lett. 2009,4,550.
    [8]D. B. Kuang, B. X. Lei, Y. P. Pan, X. Y. Yu, C. Y. Su, J. Phys. Chem. C2009,113, 5508.
    [9]Z. X. Yang, W. Zhong, Y. X. Yin, X. Du, Y. Deng, C. T. Au, Y. W. Du, Nanoscale Res. Lett.2010,5,961.
    [10]N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Adv. Mater. 2002,14,418.
    II1] A. R. Hutson, Phys. Rev. Lett.1960,4,505.
    [12]T. Sivakumar, K. Shanthi, T. Newton Samuel, Bioprocess Eng,2000,23,579.
    [13]J. B. Cui, C. P. Daghlian, U. J. Gibson, R. Pusche, P. Geithner, L. Ley, J. Appl. Phys. 2005,97,044315.
    [14]S. Xu, Z. L. Wang, Nano Res.2011,4,1013.
    [15]S. Xu, Y. Qin, C. Xu, Y. G. Wei, R. S. Yang, Z. L. Wang, Nat. Nanotechnol.2010,5, 366.
    [16]D. Wang, X. F. Chu, M. L. Gong, Nanotechnology 2007,18,185601.
    [17]J. Park, E. Kang, S. U. Son, H. M. Park, M. K. Lee, J. Kim, K. W. Kim, H. J. Noh, J. H. Park, C. J. Bae, J. G. Park, T. Hyeon, Adv. Mater.2005,17,429.
    [18]J. A. Dirksen, K. Duval, T. A. Ring, Sens. Actuators, B 2001,80,106.
    [19]X. Wang, L. Li, Y. G. Zhang, S. T. Wang, Z. D. Zhang, L. F. Fei, Y. T. Qian, Cryst. Growth Des.2006,6,2163.
    [20]M. C. A. Fantini, F. F. Ferreira, A. Gorenstein, Solid State Ionics 2002,867,152.
    [21]K. Liu, M. J. Anderson, J. Electrochem. Soc.1996,143,124.
    [22]G. Mattei, P. Mazzoldi, M. L. Post, D. Buso, M. Guglielmi, A. Martucci, Adv. Mater. 2007,19,561.
    [23]X. M. Ni, Y. F. Zhang, D. Y. Tian, H. G. Zheng, X. W. Wang, J. Cryst. Growth,2007, 306,418.
    [24]Y. C. Qiu, W. Chen, S. H. Yang, J. Mater. Chem.2010,20,1001.
    [25]V. R. Shinde, H. S. Shim, T. P. Gujar, H. J. Kim, W. B. Kim, Adv. Mater.2008,20, 1008.
    [26]Z. Gui, J. Liu, Z. Wang, L. Song, Y. Hu, W. Fan, D. Chen, J. Phys. Chem. B 2005, 109,1113.
    [27]Z. Gui, R. Fan, W. Mo, X. Chen, L. Yang, S. Zhang, Y. Hu, Z. Wang, W. Fan, Chem. Mater.2002,14,5053.
    [28]X. Y. Li, F. H. Zhao, J. X. Fu, X. F. Yang, J. Wang, C. L. Liang, M. M. Wu, Cryst. Growth Des.2009,9,409.
    [29]C. Dfaz-Guerra, A. ReOn, J. A. GarcIa, J. Piqueras, Phys. Status Solidi A 1997,163, 497.
    [30]Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng, Appl. Phys. Lett.2001,78, 407.
    [31]S. Sepulveda-Guzman, B. Reeja-Jayanc, E. de la Rosad, A. Torres-Castro, V. Gonzalez-Gonzalez, M. Jose-Yacamane, Mater. Chem. Phys.2009,115,172.
    [32]A. D. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, J. Phys. Chem. B2000,104,1715.
    [33]J. Q. Hu, Y. Bando, J. H. Zhan, Y. B. Li, T. Sekiguchi, Appl. Phys. Lett.2003,83, 4414.
    [34]U. K. Gautam, L. S. Panchakarla, B. Dierre, X. S. Fang, Y. Bando, T. Sekiguchi, A. Govindaraj, D. Golberg, C. N. R. Rao, Adv. Funct. Mater.2009,19,131.
    [35]K. Govender, D. S. Boyle, P. B. Kenway, P. J. OBrien, J. Mater. Chem.2004,14, 2575.
    [36]E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. D. Yang, Nano Lett.2005,5,1231.
    [37]S. H. Jung, E. Oh, K. H. Lee, Y. Yang, C. G. Park, W. Park, S. H. Jeong, Crystal Growth Des.2008,8,265.
    [38]X. Y. Li, F. H. Zhao, J. X. Fu, X. F. Yang, J. Wang, C. L. Liang, M. M. Wu, Crystal Growth Des.2009,9,409.
    [39]X. L. Zhang, R. Qiao, R. Qiu, J. C. Kim, Y. S. Kang, Crystal Growth Des.2009,9, 2907
    [40]Y. X. Liu, Y. C. Liu, C. L. Shao, R. Mu, J. Phys. D:Appl. Phys.2004,37,3025.
    [41]P. K. Samanta, S. K. Patra, P. Roy Chaudhuri, Phys. E 2009,41,664.
    [1]W. Lu, C. M. Lieber, Nat. Mater.2007,6,841.
    [2]Z. X. Yang, W. Zhong, C. T. Au, X. Du, H. A.Song, X. S. Qi, X. J. Ye, M. H. Xu, Y. W. Du, J. Phys. Chem. C 2009,113,21269.
    [3]V. Biju, T. Itoh, M. Ishikawa, Chem. Soc. Rev.2010,39,3031.
    [4]J. Watt, N. Young, S. Haigh, A. Kirkland, R. D. Tilley, Adv. Mater.2009,21,2288.
    [5]T. Ghoshal, S. Biswas, P. M. G. Nambissan, G. Majumdar, S. K. De, Cryst. Growth Des.2009,9,1287.
    [6]G. Shen, J. H. Cho, J. K. Yoo, G. C. Yi, C. J. Lee, J. Phys. Chem. B 2005,109,9294.
    [7]T. Y. Zhai, X. F. Fang, L. Li, Y. Bando, D. Golberg, Nanoscale 2010,2,168.
    [8]L. Li, P. C. Wu, X. S. Fang, T. Y. Zhai, L. Dai, M. Y. Liao, Adv. Mater.2010,22, 3161.
    [9]R. Agarwal, C. J. Barrelet, C. M. Lieber, Nano Lett.2005,5,917.
    [10]T. Gao, Q. H. Li, T. H. Wang, Appl. Phys. Lett.2005,86,173105.
    [11]R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, G. G. Oin, Nano Lett.2007,7,3300.
    [12]Z. Y. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, A. Javey, Nat. Mater. 2009,8,648.
    [13]T. Y. Zhai, Z. J. Gu, H. Z. Zhong, Y. Dong, Y. Ma, H. B. Fu, Y. F. Li, J. N. Yao, Cryst. Growth Des.2007,7,488.
    [14]L. F. Dong, J. Jiao, M. Coulter, L. Love, Chem. Phys. Lett.2003,376,653.
    [15]S. T. Chen, X. L. Zhang, Q. H. Zhang, W. H. Tan, Nanoscale Res. Lett.2009,4, 1159.
    [16]Y. W. Wang, G. W. Meng, L. D. Zhang, C. H. Liang, J. Zhang, Chem. Mater.2002, 14,1773.
    [17]M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, Adv. Mater.2001, 13,113.
    [18]Weller, H. Angew. Chem., Int. Ed.1993,32,41.
    [19]J. Nanda, S. Sapra, D. D. Sarma, Chem. Mater.2000,12,1018.
    [20]J. P. Ge, Y. D. Li, Adv. Funct. Mater.2004,14,157.
    [21]F. Gao, Q. Y. Lu, S. H. Xie, D. Y. Zhao, Adv. Mater.2002,14,1537.
    [22]H. Q. Cao, G. Z. Wang, S. C. Zhang, X. R. Zhang, D. Rabinovich, Inorg. Chem.2006, 45,5103.
    [23]X. L. Wang, Z. C. Feng, D. Y. Fan, F. T. Fan, C. Li, Cryst. Growth Des.2010,10, 5312.
    [24]L. Xu, Y. Su, D. Cai, Y. Q. Chen, Y. Feng, Mater. Lett.2006,60,1420.
    [25]T. Uchihara, H. Kato, Miyagi, E. J. Photochem. Photobiol. A 2006,181,86.
    [26]Z. X. Yang, W. Zhong, Y. Deng, C. T. Au and Y. W. Du, Cryst. Growth Des.2011, 11,2172.
    [27]Y. C. Zhu, Y. Bando, D. F. Xue and D. Golberg, Adv. Mater.2004,16,831.
    [28]G. Z. Shen, C. J. Lee, Cryst. Growth Des.2005,5,1085.
    [29]D. Xue, S. Zhang, Chem. Phys. Lett.1998,287,503.
    [30]I. D. Brown, D. Altermatt, Acta Crystallogr. Sect. B:Struct. Sci.1985,41,244.
    [31]S. Krylyuk, A. V. Davydov, I. Levin, ACS Nano.2011,5,656.
    [32]H. Weller, Angew. Chem., Int. Ed. Engl.1993,32,41.
    [33]N. Pinna, K. Weiss, J. Urban, M. P. Pileni, Adv. Mater.2001,13,261.
    [34]Y. W. Wang, G. W. Meng, L. D. Zhang, C. H. Liang, J. Zhang, Chem. Mater.2002, 14,1773.
    [35]B. Liu, G. Q. Xu, L. M. Gan, C. H. Chew, W. S. Li, Z. X. Shen, J. Appl. Phys.2001, 89,1059.
    [36]C. R. Wang, K. M. Ip, S. K. Hark, Q. Li, J. Appl. Phys.2005,97,054303.
    [37]T. Gao, T. H. Wang, J. Phys. Chem. B 2004,108,20045.
    [38]W. F. Liu, C. Jia, C. G. Jin, L. Z. Yao, W. L. Cai, X. G. Li, J. Cryst. Growth 2004, 269,304.
    [39]J. P. Ge, Y. D. Li, Adv. Funct. Mater.2004,14,157.
    [40]F. Gao, Q. Y. Lu, S. H. Xie, D. Y. Zhao, Adv. Mater.2002,14,1537.
    [41]L. Spanhel, M. Haase, H. Weller, A. Henglein, J. Am. Chem. Soc.1987,109,5649.
    [42]M. G. Bawendi, P. J. Carroll, W. L. Wilson, L. E. Brus, J. Chem. Phys.1992,96, 946.
    [43]Y. F. Hao, G. W. Meng, Z. L. Wang, C. H. Ye, L. Zhang, Nano Lett.2006,6,1650.
    [44]Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001,291,1947.
    [45]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, Adv. Mater.2003,15,353.
    [46]G. Z. Shen, C. J. Lee, Cryst. Growth Des.2005,3,1085.
    [47]Q. Li, C. Wang, Appl. Phys. Lett.2003,83,359.
    [48]Y. C. Zhu, Y. Bando, D. F. Xue, Appl. Phys. Lett.2003,82,1769.
    [1]X. Peng, Ace. Chem. Res.2010,43,1387.
    [2]R. C. Somers, M. G. Bawendi, D. G. Nocera, Chem. Soc. Rev.2007,36,579.
    [3]C. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev.2005,105,1025.
    [4]M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel, J. Am. Chem. Soc.2008,130,16770.
    [5]N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, U. Banin, Science 2002,295,1506.
    [6]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. S. Gambhir, S. Weiss, Science 2005,307,538.
    [7]X. H. Zhong, Y. Y. Feng, W. Knoll, M. Y. Han, J. Am. Chem. Soc.2003,125,13559.
    [8]L. Z. Wang, Y. Jiang, C. Wang, W. H. Wang, B. L. Cao, M. Niu, Y. T. Qian, J. Alloys Compd.2008,454,255.
    [9]W. J. Zhang, X. H. Zhong, Inorg. Chem.2011,50,4065.
    [10]X. Zhong, M. Han, Z. Dong, T. White, W. Knoll, J. Am. Chem. Soc.2003,125, 8589.
    [11]C. Y. He, Q. Wu, X. Z. Wang, Y. L. Zhang, L. J. Yang, N. Liu, Y. Zhao, Y. N. Lu, Z. Hu, Acs. Nano.2011,5,1291.
    [12]B. M. Wong, F. Leonard, Q. M. Li, G. T. Wang, Nano Lett.2011,11,3074.
    [13]T. Uematsu, S. Taniguchi, T. Torimoto, S. Kuwabata, Chem. Commun.2009,45, 7485.
    [14]T. Torimoto, T. Adachi, K-i. Okazaki, M. Sakuraoka, T. Shibayama, B. Ohtani, A. Kudo, S. Kuwabata, J. Am. Chem. Soc.2007,129,12388.
    [15]T. Torimoto, S. Ogawa, T. Adachi, T. Kameyama, K. Okazaki, T. Shibayama, A. Kudo, S. Kuwabata, Chem. Commun.2010,46,2082.
    [16]H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, O. S. Matsuo, M. Miyazaki, H. Maeda, Chem. Mater.2006,18,3330.
    [17]D. Pan, D. Weng, X. Wang, Q. Xiao, W. Chen, C. Xu, Z. Yang, Y. Lu, Chem. Commun.2009,45,4221.
    [18]X. Wang, D. Pan, D. Weng, C. Y. Low, L. Rice, J. Han, Y. Lu, J. Phys. Chem. C 2010,114,17293.
    [19]S. M. Zhou, Y. S. Feng, L. D. Zhang, J. Cryst. Growth.2003,252,1.
    [20]W. Z. Wang, W. Zhu, H. L. Xu, J. Phys. Chem. C 2008,112,16754.
    [21]M. W. DeGroot, K. M. Atkins, A. Borecki, H. Rosner, J. F. Corrigan, J. Mater. Chem. 2008,18,1123.
    [22]Y. K. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, S. T. Lee, Adv. Mater. 2005,17,1372.
    [23]T. Y. Zhai, Z. J. Gu, W. S. Yang, X. Z. Zhang, J. Huang, Y. S. Zhao, D. P. Yu, H. B. Fu, Y. Ma, J. N. Yao, Nanotechnology 2006,17,4644.
    [24]T. Y. Zhai, X. Z. Zhang, W. S. Yang, Y. Ma, J. F. Wang, Z. J. Gu, D. P. Yu, H. Yang, J. N. Yao, Chem. Phys. Lett.2006,427,371.
    [25]W. J. Li, D. Z. Li, W. J. Zhang, Y. Hu, Y. H. He, X. Z. Fu, J. Phys. Chem. C 2010, 114,2154.
    [26]D. W. G. Ballentyne, B. Ray, Physica 1961,27,337.
    [27]A. R. Denton, N. W. Ashchroft, Phys. Rev. A 1991,43,3161.
    [28]G. shimaoka, Y. Suzuki, Appl. Phys. Sci.1997,113,528.
    [29]L. Vegard, H. Schjelderup, Phys. Z 1917,18,93.
    [30]J. K. J. Furdyna, Appl. Phys.1988,64, R29.
    [31]Z. W. Pan,Z. R. Dai, Z. L. Wang, Science 2001,291,1947.
    [32]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, Adv. Mater.2003,15,353.
    [33]G. Z. Shen, C. J. Lee, Cryst. Growth Des.2005,3,1085.
    [34]Y. J. Hsu, S. Y. Lu, J. Phys. Chem. B 2005,109,4398.
    [35]B. G. Yacobi, D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids, Plenum Press, New York,1990.
    [36]T. Sekiguchi, J. Q. Hu, Y. Bando, J. Electron Microsc.2004,53,203.
    [37]A. Urbieta, P. Fernandez, J. Piqueras, Appl. Phys. Lett.2004,85,5968.
    [38]U. K. Gautam, L. S. Panchakarla, B. Dierre, X. S. Fang, Y. Bando, T. Sekiguchi, A. Govindaraj, D. Golberg, C. N. R. Rao, Adv. Funct. Mater.2009,19,131.
    [39]X. H. Huang, G. H. Li, B. Q. Cao, M. Wang, C. Y. Hao, J. Phys. Chem. C 2009,113, 4381.
    [40]P. C. Chang, C. J. Chien, D. Stichtenoth, C. Ronning, J. G. Lu, Appl. Phys. Lett.2007, 90,113101.
    [41]I. Shalish, H. Temkin, V. Narayamuri, Phys. Rev. B 2004,69,245401.
    [42]N. Pan, X. P. Wang, M. Li, F. Q. Li, J. G. Hou, J. Phys. Chem. C 2007,111,17265.
    [43]T. Y. Zhai, X. S. Fang, Y. Bando, B. Dierre, B. D. Liu, H. B. Zeng, X. J. Xu, Y. Huang, X. L. Yuan, T. Sekiguchi, D. Golberg, Adv. Funct. Mater.2009,19,2423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700