用户名: 密码: 验证码:
针刺对胰岛素抵抗模型大鼠干预的信号转导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素抵抗与高血压、糖尿病、血脂异常、心脑血管疾病、肥胖、感染等多种疾病密切相关,是导致这些疾病的“共同土壤”。大量的临床研究报道证实,针刺在这些疾病的治疗中具有不可替代的优势,其作用机理与改善这些疾病中存在的胰岛素抵抗现象密切相关。通过本课题组的前期研究,我们发现针刺能有效调整胰岛素的敏感性,并认为针刺主要从受体及受体后水平调整和改善胰岛素抵抗状态。
     本研究是在课题组前期研究的基础上,以高糖高脂高盐饮食复制胰岛素抵抗动物实验模型,针对胰岛素抵抗主要的信号转导途径——PI3K途径来进行系统研究:以空腹血糖(FPG)、血浆胰岛素(FINS)、C肽、胰岛素敏感指数(ISI)为指标来观察针刺对胰岛素抵抗改善的效应;通过QT-PCR、Western blotting等检测手段,观察针刺前后胰岛素抵抗模型大鼠骨骼肌PI3K-p85、PDK1、Akt2、PKCλ/ζ的mRNA和蛋白表达的影响,从分子水平进一步探讨针刺调整胰岛素抵抗的机理。
     全文分文献研究、实验研究和小结三大部分进行。
     1文献研究
     通过对大量关于胰岛素抵抗的文献综合研究,从胰岛素抵抗的概念、胰岛素抵抗的主要信号转导途径及其各级组成蛋白的具体作用和相互联系、中医药防治胰岛素抵抗的研究现状、胰岛素的动物模型选择等几个方面阐述了胰岛素抵抗的最新研究进展,并进行了分析和评述,提出了今后的研究方向,认为针刺是改善胰岛素抵抗的有效方法之一,应加强对其作用机理的深入研究和探讨。
     2实验研究
     2.1目的
     观察针刺对胰岛素抵抗模型大鼠骨骼肌PI3K-p85、PDK1、Akt2、PKCλ/ζ的mRNA和蛋白表达的影响,从分子水平进一步探讨针刺调整胰岛素抵抗的机理。
     2.2方法
     将24只雄性SD大鼠(180-220g)按体重随机分为3组,每组8只,分别为空白组、模型组和针刺组。空白组以普通饲料喂养,其余各组则以高糖高脂高盐饲料喂养。从第6周开始,每隔1周对空白组和模型组大鼠从眼眶静脉窦采血1次,检测空腹血糖(FPG)、血浆胰岛素(FINS),并计算胰岛素敏感性指数(ISI)进行对比,当模型组大鼠ISI与空白组相比明显降低(P<0.01)时为造模成功。第12周造模成功后,空白组继续以普通饲料喂养3周,模型组继续以高脂高糖高盐饲料喂养3周,针刺组继续以高脂高糖高盐饲料喂养3周,同时给予电针治疗,穴选“内关”、“足三里”、“三阴交”和“肾俞”,1次/日。各组大鼠于治疗结束后禁食12h过夜,次晨眼眶静脉窦采血检测FPG, FINS、C-P等指标,FPG测定采用葡萄糖氧化酶法,FINS、C-P测定采用ELISA法,ISI用1/(CFPG×JFINS)公式计算;胰岛素灌注后处死,取股四头肌,用QT-PCR、Western blotting等检测手段,观察针刺前后胰岛素抵抗模型大鼠骨骼肌PI3K-p85、PDK1、Akt2、PKCλ/ζ的mRNA和蛋白表达情况。
     2.3结果
     给予高脂高糖高盐饲料喂养12周后,模型组大鼠和针刺组大鼠的FPG、FINS均较空白组显著升高(P<0.01),ISI显著下降(P<0.01),表明造模成功。经过3周针刺治疗后,针刺组的FPG、FINS、C-P较模型组显著降低(P<0.01,P<0.05),ISI较模型组显著升高(P<0.01)。
     模型组大鼠骨骼肌的PI3K-p85αmRNA和PI3K-p85蛋白表达均较空白组显著升高(P<0.01);针刺组大鼠骨骼肌PI3K-p85a mRNA和PI3K-p85蛋白表达均较模型组显著降低(P<0.01)。
     三组大鼠骨骼肌PDK1蛋白表达的差异无统计学意义(P>0.05)。
     模型组大鼠骨骼肌Akt2 mRNA表达较空白组显著降低(P<0.05);针刺组大鼠骨骼肌Akt2 mRNA表达较模型组和空白组均显著升高(P<0.01)。
     模型组大鼠骨骼肌的phospho-PKCζ/λmRNA与空白组相比均有明显下降(P<0.01),其中针刺对phospho-PKCζmRNA有显著的上调作用(P<0.01),而对phospho-PKCλmRNA无明显影响(P>0.05);胰岛素抵抗模型组大鼠的phospho-PKCζ/λ蛋白表达与空白组相比无明显变化(P>0.05),亦未发现针刺对其有明显影响(P>0.05)。
     2.4结论
     研究表明,针刺可通过影响PI3K通路的信号转导,主要是降低PI3K-p85αmRNA and PI3K-p85蛋白的过度表达、增加Akt2 mRNA和phospho-PKCζmRNA的表达,以调整和改善胰岛素抵抗状态,其具体的作用形式和途径尚未阐明,有待今后进一步探讨。
Objective
     Our aim was to observe the effects of acupuncture on PI3K-p85, PDK1, Akt2 and VKCλ/ζof insulin resistance model rats'femoris muscle, so as to further explore its underlying mechanism.
     Methods
     Twenty four male SD rats were divided randomly into three groups:the blank group, the model group and the acupuncture group. We induced insulin resistance model through the high glucose, high salt and high fat diet. From the sixth week, we tested FPG and FINS in the rat's blood every week, then figured out the ISI. When the ISI of the model group and the blank group was statistically significant (P<0.01), the model was success. Then in the next three weeks, the rats of the blank group were fed by normal diet, while the rats of the model group and the acupuncture group were fed by the high glucose, high salt and high fat diet. The rats of the acupuncture group were treated by electroacupuncture at the same time, twenty minutes per day. We chose four points:Neiguan, Zusanli, Sanyinjiao and Shenshu. After three weeks of treatment, all rats were drew blood, preparing for testing FPG, FINS and C-P. Then they were perfused by insulin before being killed. Their quadriceps femoris muscle was cut off. Finally PI3K-p85, PDK1, Akt2 and PKCλ/ζwas tested by methods such as QT-PCR, western blotting and so on.
     Results
     Insulin resistance rat model was built successfully. FPG and FINS of the model group rose evidently(P<0.01), ISI of of the model group declined remarkably(P<0.01). After treatment, FPG, FINS, ISI and C-P of the acupuncture group improved evidently(P<0.01,P<0.05).
     PI3K-p85a mRNA and PI3K-p85 protein of the model group over expressed(P<0.01), acupuncture made it descend to normal level.
     PDK1 protein expression of three groups was not statistically significant(P>0.05). Compare to the model group and the blank group, Akt2 mRNA of the acupuncture group rose significantly(P<0.01).
     Phospho-PKCζ/λmRNA of the model group reduced remarkably(P<0.01). The acupuncture group's phospho-PKCζmRNA rose(P<0.01), but its phospho-PKCλmRNA had not changed(P>0.05). Phospho-PKCζ/λ. protein expression of three groups was not statistically significant(P>0.05).
     Conclusion
     In this study, we found acupucture's regulating action to PI3K route. We presume acupuncture treat insulin resisitance model rats through reducing PI3K-p85a mRNA and PI3K-p85 protein expression, increase Akt2 mRNA and phospho-PKCζmRNA expression. The action mode and pathway of these protein were not clear yet, which need us to study further.
引文
[1]Reaven GM. Role of insulin in human disease[J]. Diabetes,1988,37(12):1595-1607.
    [2]Kaolan NM. The deadly quartet, Upper-body obesity, glucose intolerance, hypertriglyceridemia and hypertension[J]. Arch Intem Med,1989,149:1514-1520.
    [3]Reaven GM. Role of insulin resistance in human disease (syndrome X):an expanded definition[J]. Annu Rev Med,1993,44:121-131.
    [4]Stem MP. Diabetes and cardiovascular disease, The "common soil" hypothesis[J]. Diabetes,1995,4:369-374.
    [5]Cusi K, Maezono K, Oaman A et al. Insulin resistance differentially affects the pi3-kinase-and MAP kinase-me-diated signaling in human muscle[J]. J Clin Invest,2000, 105:311-320.
    [6]Anna D, Anita O, Fredrik H. Attenuation of Insulin-stimulated Insulin Receptor Substrate-1 Serine 307 Phosphorylation in Insulin Resistance of Type 2 Diabetes[J]. J Biol Chem,2005,280:34389-34392.
    [7]Jennifer J, Thierry G, Mireille C. Interleukin-1-Insulin Resistance in Adipocytes through Down-Regulation of Insulin Receptor Substrete-1 Expression[J]. Endocrinology, 2007,148:241-251.
    [8]Avia H, Yan-Fang L, Erez I. Common Inhibitory Serine Sites Phosphorylated by IRS-1 Kinases, triggered by Insulin and Inducers of Insulin Resistance[J]. J Biol Chem, 2007,280:18018-18027.
    [9]Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models[J]. J Clin Invest,2000,106:459-465.
    [10]Gang Y, Juanjuan D, Tao W. Tissue Kallikrein Reverses Insulin Resistance and Attenuates Nephropathy in Diabetic Rats by Activation of Pathosphatidylinositol 3-Kinase/Protein Kinase B and Adenosine5'-Monophosphate-Activated Protein Kinase Signaling Pathways[J]. Endocninology,2007,148:2016-2026.
    [11]Sakaue H, Nishizawa A, Ogawa W et al. Requirement for 3-phosphoinositide-dependent kinase-1(PDK-1) in insulin-induced glucose uptake in immortalized brown adipocytes [J]. J Biol Chem,2003,278:38870-38874.
    [12]Williams M R, Arthur J S, Balendran A et al. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells[J]. Curt Biol,2000,10:439-448.
    [13]Balendran A, Hare G R, Kieloch A, William s M R et al. Further evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is required for the stability and phosphorylation of protein kinase C (PKC) isoforms[J]. FEBS Lett,2000,484:217-223.
    [14]Karen T, Wendy A K, Jian an L. Analysis of Genetic Variation in Akt2/PKB-βin Severe Insulin Resistance, Lipodystrophy, Type 2 Diabetes, and Related Metabolic Phenotypes[J]. Diabetes,2007,56:714-719.
    [15]Vollenweider P, Menard B, Nicod P. Insulin resistance, defective insulin receptor substrate 2-associated phosphati-dylinositol-3'kinase activation, and impaired atypical protein kinase C (zeta/lambda) activation in myotubes from obese patients with impaired glucose tolerance[J]. Diabetes,2002,51:1052-1059.
    [16]Zhanguo G, Zhong W, Xiaoying Z. Inactivation of PCK leads to increased susceptibility to obesity and dietary insulin resistance in mice[J]. Am J Physiol Endocrinol,2007,292:E84-E91.
    [17]Maureen J C, Naira G, J SkyeL. Use of GLUT4 null mice to study skeletal muscle glucose uptake[J]. Clinical and Experimental Pharmacology and Physiology,2005,32: 308-313.
    [18]Hakam A, Adrian C, Jan F. Two phases of palmitate-induced insulin resistance in skeletal muscle:impaired GLUT4 translocation is followed by a reduced GLUT4 intrinsic activity[J]. Am J Physiol Endocrinol Metab,2007,293:E783-E793.
    [19]郑仲华,曾庆明,李玲.从脾虚痰瘀论治2型糖尿病胰岛素抵抗[J].中医研究,2007,20(11):15-16.
    [20]戴小良,王行宽.浅谈中医胰与糖尿病的关系[J].辽宁中医杂志,2002,29(1):27.
    [21]第五永长,许建秦.胰岛素抵抗中医病机探讨[J].四川中医,2008,26(1):8-9.
    [22]王利明.从痰湿论治胰岛素抵抗[J].现代中西医结合杂志,2003,12(7):783.
    [23]杨帆,黄江荣,向楠.肝脾肾功能失调与胰岛素抵抗的关系探讨[J].时珍国医国药,2009,20(6):1556-1557.
    [24]吴深涛.对胰岛素抵抗宜用益肾化瘀、疏利少阳法[J].中医杂志,2001,42(6):332-333.
    [25]李道本,王智明.从肝论治防治胰岛素抵抗治疗2型糖尿病的理论探讨[J].中国中西医结合消化杂志,2001,9(3):153-154.
    [26]于淼,朴春丽,南征.从毒损肝络探讨胰岛素抵抗、2型糖尿病炎症发病机制[J].中华实用中西医杂志,2006,19(13):1597-1598.
    [27]陈彬,刘建,向楠.化痰降浊汤对糖调节受损的临床研究[J].湖北中医杂志,2008,30(9):11-13.
    [28]陈维铭,王馨然.半夏白术天麻汤对单纯性肥胖患者胰岛素抵抗的影响[J].现 代中西医结合杂志,2004,13(2):351.
    [29]武明东,高天舒,郑曙琴等.化痰解瘀汤联合胰岛素治疗2型糖尿病疗效观察[J].中医药学刊,2005,23(4):729-730.
    [30]王亚丽.血府逐瘀汤加减对代谢综合征胰岛素抵抗的影响[J].浙江中西医结合杂志,2009,19(8):491-492.
    [31]岳桂华,彭树国,张爱珍.益气活血解毒法改善高血压胰岛素抵抗临床观察[J].中国中医药信息杂志,2007,14(9):66.
    [32]薛青,谢丹红,卫苓等.清肝泻心汤对2型糖尿病胰岛素抵抗相关因素影响的研究[J].第三军医大学学报,2007,29(7):613.
    [33]张帆,洪秀珍,刘东风.葛根素对不稳定心绞痛患者胰岛素抵抗血脂及QT离散度的影响[J].现代中医药,2007,27(5):3-4.
    [34]孙文才,周和平,徐清朴等.葛根素对粥样硬化性肾动脉狭窄患者胰岛素抵抗的影响[J].中国中医急症,2007,16(12):1471-1472.
    [35]孙卫,郑学芝,崔荣军等.葛根素对2型糖尿病大鼠胰岛素抵抗及脂肪分化相关蛋白基因表达的影响[J].医药导报,2008,27(10):1159-1161.
    [36]钟艺,谭海荣,潘竞锵等.葛根素对D-半乳糖诱导大鼠抑制蛋白非酶糖基化及增强胰岛素敏感性的作用[J].中国药物与临床,2007,7(8):576-579.
    [37]江焱.黄连素对代谢综合征胰岛素敏感性的影响[J].浙江中医药大学学报,2009,33(3):390.
    [38]高志强,冷三华,陆付耳等.小檗碱对高果糖饲养诱导大鼠胰岛素抵抗和肝脏TNF-a表达的影响[J].中国药理学通报,2008,24(11):1479-1482.
    [39]陈广,陆付耳,王增四等.小檗碱改善2型糖尿病大鼠胰岛素抵抗与PI3K、GLUT4蛋白相关性的研究[J].中国药理学通报,2008,24(8):1007-1010.
    [40]何月光,唐眷娥,罗炳辉等.黄芪及其注射液对冠心病患者胰岛素、血糖和血脂影响的研究[J].现代诊断与治疗,2005,16(4):221-223.
    [41]吴德红,王凤杰,邓娟等.黄芪多糖对实验性2型糖尿病大鼠肝脏组织中解耦联蛋白2表达的影响[J].现代中西医结合杂志,2009,18(29):3552-3554.
    [42]毛先晴,欧阳静萍,吴柯等.黄芪多糖对糖尿病KKAy小鼠肝脏脂肪变性的影响[J].中国糖尿病杂志,2008,16(4):233-236.
    [43]Yong Wu, Jing Ping, Ou Yang et al.Hypoglycemic effect of Astragalus polysaccharide and its effect on PTP-1B[J]. Acta Pharmacologica Sinica,2005,26(3): 345-352.
    [44]刘敏,欧阳静萍,吴珂等.黄芪多糖对KKAy小鼠骨骼肌蛋白激酶B丝氨酸磷酸化的影响[J].武汉大学学报(医学版),2006,27(2):135-139.
    [45]R Zhao, Q Li, B Xiao. Effect of Lycium barbarum polysaccharide the improvement of insulin resistance in NIDDM rats[J]. Yakugaku Zasshi,2005,125(12):981-983.
    [46]胡国强,杨保华,张忠泉.山药多糖对大鼠血糖及胰岛素释放的影响[J].山东中医药杂志,2004,23(4):230-231.
    [47]景常林.益胰降糖合剂治疗2型糖尿病胰岛素抵抗患者40例临床观察[J].世界中医药,2009,4(6):307-309.
    [48]范文东,章浩军,陈益升.益气化浊除湿法治疗糖尿病胰岛素抵抗30例[J].江西中医药,2009,40(314):40-41.
    [49]唐东晖,李俐,冯森坚.补阳还五汤加味治疗糖耐量减低患者IR的临床观察[J].黑龙江中医药,2006,(3):15-17.
    [50]钱俊文,柴可夫.加减抵当汤防治大鼠胰岛素抵抗的疗效和机理研究[J].中国中医药科技,2007,14(6):396-397.
    [51]李运伦.清热解毒法对SHR胰岛素抵抗的实验研究[J].中国中医急症,2007,16(11):1380-1381.
    [52]张益钧,沈利水,戴盛锋等.三黄汤与普济消毒饮干预2型糖尿病小鼠胰岛素信号错误转导的机理研究[J].中医药学报,2009,37(2):25-28.
    [53]方朝晖,王佑民,王开成等.丹蛭降糖胶囊对胰岛素抵抗大鼠PPAR-γ mRNA表达的影响[J].中国实验方剂学杂志,2006,12(4):36-39.
    [54]袁爱红,刘志诚,魏群利等.针灸治疗肥胖2型糖尿病35例[J].安徽中医学院学报,2009,28(1):28-30.
    [55]张智龙,薛莉,吉学群等.针刺对2型糖尿病胰岛素抵抗影响的临床研究[J].中国针灸,2002,22(11):723-725.
    [56]魏群利,刘志诚.针刺配合耳穴压籽治疗2型糖尿病(肥胖型)67例[J].安徽中医学院学报,2002,21(3):34-37.
    [57]曲齐生,杨善军.针刺夹脊穴对2型糖尿病患者胰岛素抵抗疗效观察[J].中医药信息,2007,24(1):50-51.
    [58]刘志诚,孙凤岷,赵东红等.针刺对单纯性肥胖瘦素和胰岛素抵抗的影响研究[J].中医药学刊,2003,21(1):40-43.
    [59]徐炳国,刘志诚.针灸对肥胖并发高血压瘦素胰岛素抵抗的影响[J].上海中医药杂志,2005,39(10):37-39.
    [60]闫润虎,白洁,杨文波等.穴位埋线结合耳压疗法治疗单纯性肥胖病[J].中国临床康复,2006,10(11):8-10.
    [61]郭玉红.针刺治疗高血压病胰岛素抵抗的临床观察[J].中医药学报,2007,35(6):51-53.
    [62]郭玉红,滕秀英,张春芳等.针刺对原发性高血压患者胰岛素抵抗及血清TNF-α水平的影响[J].中医药学报,2009,37(5):76-78.
    [63]赵东杰,范群丽.针刺对高血压病胰岛素抵抗的影响[J].中国针灸,2003,23(3):165-167.
    [64]唐胜修.头穴对中风后遗症患者胰岛素抵抗的调整作用研究[[J].安徽中医临床杂志,2002,14(3):164-165.
    [65]刘淑杰,陆金平.针刺对缺血性脑血管病胰岛素抵抗的影响[J].辽宁中医学院学报,2005,7(6):562-563.
    [66]黄鼎坚,刘彪,陈尚杰等.脑梗死针灸治疗方案的优选及对IR的影响[J].中国针灸,2005,25(2):79-81.
    [67]张慧玲,张芬梅,樊锡凤等.脉泰颗粒配合针刺择时施治对脑卒中胰岛素抵抗的影响[J].辽宁中医杂志,2007,34(11):1568-1570.
    [68]盛鹏杰,吴娈灵,陈小张等.针灸治疗多囊卵巢综合征临床观察[J].湖北中医杂志,2010,32(2):65-66.
    [69]易玮,许能贵,靳瑞.胰岛素抵抗机理及针刺干预的作用靶点[J].针刺研究,2002,27(1):73-75.
    [70]易玮,许能贵,靳瑞.针刺对实验性大鼠胰岛素抵抗的逆转作用[J].广州中医药大学学报,2003,20(3):214-215.
    [71]易玮,孙健,许能贵等.针刺对胰岛素抵抗模型大鼠肝脏和胰腺的形态学影响[J].新中医,2007,39(1):104-106.
    [72]易玮,许能贵,孙健等.针刺对胰岛素抵抗模型大鼠血清胰岛素抗体和肿瘤坏死因子α的影响[J].中国针灸,2007,27(7):525-527.
    [73]孙健,贾真,谢长才等.针刺对胰岛素抵抗模型大鼠肝脏PPARγmRNA和蛋白的影响[J].辽宁中医杂志,2009,36(7):1195-1197.
    [74]孙健,谢长才,贾真等.针刺对胰岛素抵抗模型大鼠游离脂肪酸含量的影响[J].山东中医药大学学报,2009,33(3):246-247.
    [75]Kadowaki T. Insights into insulin resistance and type 2 diabetes from knock out mouse models[J]. J Clin Invest,2000,106(4):459-465.
    [76]Kido Y, Burks D J, Withws D et al. Tissue specific insulin resistance in mice with mutations in the insulin receptor, IRS1, andIRS2[J]. J Clin Invest,2000,105(2):199-205.
    [77]Zisman A, Peroni O D, Abel E D et al. Targeted disruption of the glucose transporter selectively in muscle causes insulin resistance and glucose into lerance[J]. Nat Med,2000, 6(8):924-928.
    [78]Penicaud L, Ferre P, Terretaz J et al. Development of obesity in Zucker rats:Early insulin resistance in muscles but normal sensitivity in white adipose rats[J]. Diabetes, 1987,36(5):626-631.
    [79]Linda M, MurakamiT, Ishida K et al. Phenotype-linked amino acid alteration in leptin receptor cDNA from Zucker fatty (fa/fa) rat[J]. Biochem Biophys Res Commun, 1996,222:19-26.
    [80]Zhang Y, Proenca R, Maffei M et al. Position cloning of the mouse obese gene and its human homologue[J]. Nature,1994,372:425-432.
    [81]Eki K, Kondo T, Tseng YH et al. Central role of suppressors of cytokine signaling proteins in heptic steatosis, insulin resistance and the metabolic syndrome in the mouse[J]. Med Sci,2004,28:10422-10427.
    [82]Kawano K, Hirashima T, Mori S et al. Spontaneous Long-term hypergly cemic rat with diabetic complications-Ostuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes,1992,41(11):1422.
    [83]Ishida K et al. Which is the primary etiologic event in Ostuka Long Evans Tokushima Fatty rats, a model of spontaneous non-insulin-dependent diabetes mellitus, insulin resistance or impaired insulin secretion? [J] Metabolism,1995,44:940.
    [84]Ishiba K et al. Obesity is necessary but not sufficient for the development of diabetes mellitus[J]. Metabolism,1997,46:840.
    [85]田爱平,郭赛珊,申竹芳等.高脂饲料与胰岛素抵抗动物模型[J].中国药理学通报,2006,22(3):267-269.
    [86]Storlien L H, James D E, Burleigh K M et al. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats[J]. Am J Physiol, 1986,251:576-583.
    [87]卜石,杨文英,王听等.长期高脂饲养对大鼠葡萄糖刺激的胰岛素分泌的影响[J].中华内分泌代谢杂志,2003,19(2):25-27.
    [88]程海波,司晓晨,尚文斌等.高脂饲料和高果糖餐分别诱导胰岛素抵抗大鼠模型的胰岛素敏感性[J].中国临床康复,2006,10(7):121-123.
    [89]Storlien L H, Higgins J A, Thomas T C et al. Diet composition and insulin action in animal models[J]. Br J Nutr,2000,83(11):85-90.
    [90]吴海娅,魏丽,王深等.高脂或高糖饮食诱导胰岛素抵抗大鼠的附睾脂肪组织视黄醇结合蛋表达[J]. Shanghai Med J,2007,6(30):446-448.
    [91]程海波,司晓晨,尚文斌等.高果糖餐诱导实验性胰岛素抵抗综合征大鼠模型[J].南京中医药大学学报,2006,22(1):31-34.
    [92]潘玲,刘继林,王建等.实验性胰岛素抵抗综合征大鼠模型[J].华西医学,2000,15(4):421-422.
    [93]沈亚非,徐焱成.高糖高脂膳食和链脲佐菌素诱导2型糖尿病模型的建立[J].实用诊断与治疗杂志,2006,20(9):649-651.
    [94]洪丽莉,许冠荪,申国明等.SD大鼠2型糖尿病模型的建立[J].实验动物科学 与管理,2005,22(4):1-3.
    [95]罗谋伦,郭欲晓,胡映辉等.罗格列酮的胰岛素增敏作用和胰岛素抵抗改善作用[J].中国药理学通报,2000,16(4):425-428.
    [96]孙静,宋光明,谢文利等.小剂量地塞米松诱发的胰岛素抵抗大鼠模型[J].武警医学院学报,2008,17(1):25-28.
    [97]丁世英,申竹芳,谢明智等.MSG肥胖大鼠胰岛素抵抗特征的初步研究[J].中国药理学通报,2001,17(2):181-185.
    [98]Saini KS, Thompson C, Winterford CM et al. Streptozotocin at low doses induces apoptosis and at high doses causes necrosis in a murine pancreatic beta cell line[J]. J Biochem Mol Biol lnt,1996,39(6):1229-1236.
    [99]方朝晖,鲍陶陶,王开成等.丹蛭降糖胶囊对胰岛素抵抗大鼠PPAR-ymRNA表达的影响[J].中国实验方剂学杂志,2006,12(4):36-39.
    [100]De Fronzo R A, Tobin J D, Anadres R. Glucose clamp technique:a method for quantifying insulin excretion and resistance[J]. Am J Physiol,1979,237(3):E214-223.
    [101]程莹.胰岛素抵抗的检测方法及评价[J].中国糖尿病杂志,2003,11(4):283-284.
    [102]Caro J F. Clinical review 26. Insulin resistance in obese and nonobese man[J]. J Clin Endocrinol Metab,1991,73:691-695.
    [103]李光伟.胰岛素敏感性评估及其在临床研究中的应用[J].中华内分泌代杂志,2000,16(3):198-200.
    [104]林文注,王佩.实验针灸学[M].上海:上海科学技术出版社.1994:286.
    [105]周宇,宋光耀.饮食中碳水化合物与胰岛素抵抗[J].中国老年学杂志,2005,25(9):1137-1139.
    [106]董砚虎,付方明.胰岛素抵抗综合征防治进展[J].山东医药,2003,43(13):53-54.
    [107]许能贵,梁兴伦.针刺对自发性高血压大鼠血压及胰岛索抵抗的效应研究[J].中国针灸,1997,(8):493.
    [108]王国洪,许瑞吉,张中书等.血清C肽浓度测定临床意义探讨[J].放射免疫学杂志,2006,19(1):15-17.
    [109]葛军,俞春芳,孙卫东等.不同空腹血糖状态人群的C肽值意义[J].上海医药,2005,28(6):472-474.
    [110]Yaspelkis Ⅲ B. B., Singh M. K., Trevino B. et al. Resistance training increases glucose uptake and transport in rat skeletal muscle[J]. Acta Physiol Scand 2002,175, 315-323.
    [111]Vanbaesebroeck B, Alessi DR. The PI3-K-PDK connection:more than just a road to PKB[J]. Biochem J,2000,346:541-546.
    [112]Draznin B. Molecular mechanisms of insulin resistance:serine phosphorylation of insulin receptor substrate-1 and increased expression of p85a the two sides of a coin[J]. Diabetes,2006,55(8):2392-2397.
    [113]Barbour L A, Rahman S M, Gurevich I et al. Increased p85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess[J]. J Biol Chem,2005,280(45): 37489-37494.
    [114]Luo J, Sobkiw C L, Hirshman M F et al. Loss of class IA PI3K signaling in muscle leads to impaired muscle growth, insulin response, and hyperlipidemia[J]. Cell Metabolism,2006,3(5):355-366.
    [115]Cornier M A, Bessesen D H, Gurevich I et al. Nutritional upregulation of p85a expression is an early molecular manifestation of insulin resistance[J]. Diabetologia, 2006,49(4):748-754.
    [116]许婵婵.MicroRNAs在心血管生物学中的研究现状[J].国际心血管病杂志,2008,35(3):140-143.
    [117]B. M. Herrera, H. E. Lockstone, J. M. Taylor et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes [J]. Diabetologia,2010,53:1099-1109.
    [118]Gang Wang, Honghe Zhang, Huadong He et al. Up-regulation of microRNA in bladder tumor tissue is not common[J]. Int Urol Nephrol,2010,42:95-102.
    [119]Mora A, Komander D, Van Aalten D M et al. PDK1, the master regulator of AGC kinase signal transduction[J]. Semin Cell Develop Biol,2004,15:161-170.
    [120]Bandyopadhyay G et al. Mol Endzwrinol,1999,13:1766-1772.
    [121]Grillo S, Gremeaux T, Casamayor A et al. Peroxovanadate induces tyrosine phosphorylation of phosphoinositide-dependent protein kinase-1:Potential involvement of Src kinase[J]. Eur J Biochem,2000,267:6642-6649.
    [122]Park J, Hill M M, Hess D et al. Identification of tyrosine phosphorylation sites on 3-phosphoinositide-dependent protein kinase-1 and their role in regulating kinase activity[J]. J Biol Chem,2001,276:37459-37471.
    [123]Anderson K E, Coadwell J, Stephens L R et al. Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B[J]. Curr Biol,1998,8(12):684-691.
    [124]King C C, Newton A C. The adaptor protein Grbl4 regulates the localization of 3-phosphoinositide-dependent kinase-1 [J]. J Biol Chem,2004,279(36):37518-37527.
    [125]Lim M A, Kikani C K, Wick M J et al. Nuclear translocation of 3-phosphoinositidedependent protein kinase 1 (PDK-1):A potential regulatory mechanism for PDK-1 function[J]. Proc Natl Acad Sci USA,2003,100(24): 14006-14011.
    [126]Fujita N, Sato S, Ishida A et al. Involvement of Hsp90 in signaling and stability of 3-phosphoinositidedependent kinase-1[J]. J Biol Chem,2002,277(12):10346-10353.
    [127]Sato S, Fujita N, Tsuruo T. Regulation of kinase activity of 3-phosphoinositide-dependent protein kinase-1 by binding to 14-3-3[J]. J Biol Chem, 2002,277(42):39360-39367.
    [128]Alessi D R, James S R, Downes C P et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Ba[J]. Curr Biol,1997,7:261-269.
    [129]Alessi D R, Deak M, Cazamayor A et al.3-phosphoinositide-dependent protein kinase-1(PDK1):structural and functional homology with the Drosophila DSTPK61 kinase[J]. Curr Biol,1997,7:776-789.
    [130]Rane M J, Coxon PY, Powell D W et al. p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils[J]. J Biol Chem,2001,276(5):3517-3523.
    [131]Persad S, Attwell S, Gray V et al. Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase[J]. J Biol Chem,2001,276:27462-27469.
    [132]Toker A, Newt on A C. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site[J]. J Biol Chem,2000,275(12):8271-8274.
    [133]Feng J, Park J, Cron P et al. Identification of a PKB/Akt hydrnphobic motif Ser-473 kinase as DNA-dependent protein kinase[J]. J Biol Chem,2004,279(39):41189-41196.
    [134]Datta SR, Brunet A, Greenberg ME. Cellular survival:a play in three Akts[J]. Genes Dev,1999,13(22):2905-2927.
    [135]Sheth S B, Chaganti K, Bastepe M et al. Cyclic AMP phosphodiesterases in human lymphocytes[J]. Br J Haematol,1997,99:784-789.
    [136]Cho H, Mu J, Kim J K et al. Insulin resistance and a diabetes mellitus-like syndrome in mice Lacking the protein kinase Akt2 (PKB-beta) [J]. Science,2001,280(5): E816-824.
    [137]Smith U, Carvalho E, Mosialou E et al. PKB inhibition prevents the stimulatory effect of insulin on glucose transport and protein translocation but not the antilipolytic effect in rat adipocytes[J]. Biochem Biophys Res Commun,2000,268:315-320.
    [138]Li X, Monks B, Ge Q et al. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1 alpha transcription Coactivator[J], Nature,2007,447(7147): 1012-1016.
    [139]Han Cho, James Mu, Jason K Kim et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)[J]. Science, 2001,292(5522):1728-1731.
    [140]Yue T L, Bao W, Gu J L et al. Ronsiglitazone treatment in zuckerdiabetic fatty rats is associated with am elirated cardiac insulinresistance and protection from ischemia/reperfusion-induced myocardial injury[J]. Diabetes,2005,54(2):554-562.
    [141]Kotani K, Ogawa W, Hashiramoto M et al. Inhibition of insulin-induced glucose uptake by atypical protein kinase C isotype-specific interacting protein in 3T3-L1 adipocytes[J]. J Biol Chem,2000,275:26390-26395.
    [142]Kim J K, Fillmore J I, Sunshine M I et al. PKC-theta knockout mice are protected from fat-induced insulin resistance[J]. J Clin Invest,2004,114:823-827.
    [143]Itani S I, Zhou Q, Pories W J et al. Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity[J]. Diabetes,2000,49(8):1353-1358.
    [144]Griffin M E, Marcucci M J, Cline G W et al. Freefatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade[J]. Diabetes,1999,48(6):1270-1274.
    [145]Donnely R, QU X.Mechanisms of insulin resistance and pharmacological approaches to metabolism and diabetic complication[J]. Clin Exp Pharmacol Physiol, 1998,25(2):79-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700