用户名: 密码: 验证码:
高距离分辨海杂波背景下目标检测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究高分辨海杂波背景下的若干目标检测技术。海杂波中的目标检测一直是重要的研究课题,也是雷达信号处理中最复杂的问题之一,在军事、民用领域均有广阔的应用前景。高距离分辨海杂波表现出空时非平稳特性和非高斯特性,这些特性严重影响了海面上空的空中目标和海面漂浮目标的检测。
     基于实测IPIX雷达采集的海杂波数据,研究了海面上空的低空目标和海表面的漂浮目标的检测算法。针对目前广泛应用在海杂波背景下的自适应归一化匹配滤波检测器,分析了该检测器的内在矛盾,并提出了多种解决方案缓解这一矛盾,主要包括使用距离过采样样本、杂波抑制算法、块自适应归一化匹配滤波检测器和子带自适应归一化匹配滤波检测器,这些算法均建立在加性模型的基础上,适用于检测海面上空的低空目标。最后,为了更好地检测海面漂浮小目标,提出了非加性模型下的三特征检测算法。
     本文的主要研究成果可概括为以下五部分:
     第一部分,介绍了海杂波的模型,明确了海杂波的空间均匀性,描述了相干检测算法的发展历程,指出了长的积累时间与有限的参考样本数量之间的矛盾是自适应归一化匹配滤波检测器的内在矛盾,最后,介绍了IPIX雷达采集的实测数据,为后续的研究奠定基础。
     第二部分,研究了自适应归一化匹配滤波检测器在距离过采样背景下的性能增益。自适应归一化匹配滤波检测器的检测性能与估计的协方差矩阵密切相关。样本协方差矩阵估计器作为一种最常见的协方差估计算法,已经在独立同分布的高斯参考样本下有了彻底研究,但是在距离过采样的样本情况下却没有被研究。现役雷达系统的接收机采用距离过采样技术,参考样本在空间上是相关的。我们参考气象和海洋雷达中的距离过采样模型,建立了距离过采样杂波向量的空间相关模型,分析了样本协方差矩阵估计器的误差,得出了过采样增益。过采样增益是与过采样因子和雷达接收机带宽密切相关的。过采样增益评价自适应归一化匹配滤波检测器的性能改善。实测的雷达数据实验结果显示,距离过采样技术使得自适应归一化匹配滤波检测器的性能有了显著的改善。
     第三部分,研究了高分辨海杂波背景下的杂波抑制算法和目标检测算法。该内容分为两部分:杂波抑制和目标检测。在杂波抑制部分,利用邻近的距离单元和邻近的时间区间里的时间序列计算功率谱,提出了一个基于中值的估计器来估计高分辨海杂波的功率谱,该估计器对少量异常变化的时间序列是稳健的。基于估计的功率谱,设计了一个块自适应杂波抑制滤波器来抑制积累前的杂波。在目标检测部分,由于滤波后的残余杂波服从球不变随机向量模型,将自适应归一化匹配滤波检测器延伸到残余杂波中,得到了残余杂波的自适应归一化匹配滤波检测器。紧接着,注意到高分辨海杂波和残余杂波的近似平稳时间远小于目标回波的相干处理时间,为了积累更多的脉冲,并且同时提高检测性能,我们又提出了一个具有启发式的块自适应归一化匹配滤波检测器。最后,在实测海杂波背景下,实验结果表明,当仿真目标不位于强杂波区时,自适应归一化匹配滤波检测器和块自适应归一化匹配滤波检测器在残余杂波环境下获得了更好的检测性能,鉴于此,提出了双通道检测机制。
     第四部分,研究了高分辨海杂波背景下子带自适应归一化匹配滤波检测器。高距离分辨海杂波的空时非平稳特性限制了自适应归一化匹配滤波检测器的检测性能,具体表现在:杂波的空间非平稳性限制了可获得的参考空间样本数,杂波的时间非平稳性限制了积累时间。为了解除这个限制,提出了子带自适应归一化匹配滤波检测器,它包括一个DFT调制滤波器组和紧跟其后的一系列自适应归一化匹配滤波检测器。滤波器组的功能是将接收的时间序列低速率地分解成子带时间序列,它具有如下的优点:子带分解抑制通带外的杂波和改善杂波的短期平稳性。由于子带杂波具有更好的短期平稳性和更低的速率,子带自适应归一化匹配滤波检测器比自适应归一化匹配滤波检测器拥有更长的积累时间。实测的杂波数据实验结果显示子带自适应归一化匹配滤波检测器优于自适应归一化匹配滤波检测器。
     第五部分,研究了海面漂浮小目标的特征检测算法。海面目标改变了周围海面的散射几何结构,高分辨雷达的散射回波不再满足传统的加性模型,而是满足非加性模型。基于这个非加性模型,我们将目标检测问题转化为一种特殊的只含有一类的分类问题:纯杂波模式。提取平均功率、多普勒偏移以及多普勒带宽组成一个三维的特征向量,在三维特征空间里设计三特征检测算法。利用提出的凸包训练算法训练纯杂波模式下三维空间的检测区域,该检测区域由具有多面体结构的凸包构成,它存在快速的设计算法。利用IPIX雷达数据的实验结果表明在检测海面漂浮小目标时,三特征检测算法比已有的检测算法具有更优越的性能。
The main research in the dissertation is several target detection methods in high rangeresolution sea clutter. Detection in sea clutter is an important issue, and it is one of themost complex problems in radar signal processing. Target detection in sea clutter canpotentially be utilized in military and civil field. Due to the spatial-temporal non-stationarity and non-Gaussian property of high range resolution sea clutter, targetdetection methods become complicated for the aircrafts over the sea and the floatingtargets on the sea surface.
     Based on the real IPIX radar sea clutter, the paper focuses on the target detections forthe aircrafts over the sea and the floating targets on the sea surface. Adaptivenormalized matched filter (ANMF) detector is widely used in sea clutter for targetdetection. We analyze the intrinsic conflict in the ANMF detector, and propose someschemes to alleviate the conflict. The main work includes the utilization of range-oversampled samples, clutter suppression algorithm, B-ANMF detector, and subbandANMF detector. All the algorithms mentioned above are based on the traditionaladditive model, and are applied to detecting aircrafts over the sea. Finally, atri-features-based detection algorithm is proposed for better detecting the floatingtargets on the sea surface.
     The main content of this dissertation is summarized as follows.
     The first part introduces the model of sea clutter, defines the homogeneous sea clutter,makes a detailed analysis on the development of coherent detectors, and points out thatthe intrinsic conflict in the ANMF detector is between the long integration duration andthe finite secondary samples. Finally, we introduce the real sea clutter data collected byIPIX radar, which forms the basis for the following study.
     The second part focuses on the performance gain of ANMF detector in range-oversampling case. The performance of ANMF detector depends on the estimation ofclutter covariance matrix. As an average estimator, the sample covariance matrix (SCM)estimator has been thoroughly analyzed for independent and identically distributedGaussian clutter vectors, but not for the range-oversampled secondary samples. Manyradar systems on service use range-oversampled receivers. Thus, the secondary samplesare correlated in spatially. Referred to the range-oversampled model in the weather andoceanic radars, the spatial correlation model of range-oversampled clutter vectors isestablished, the error of the SCM estimator is analyzed, and the range-oversampling gain, relevant to the oversampling factor and the receiver’s bandwidth, is derived. Therange-oversampling gain is used to evaluate the gain of performance of ANMF detector.The experiments using real radar clutter data are made to verify the range-oversamplinggain, showing that the range-oversampling improves the performance of ANMFdetector.
     The third part is contributed to clutter suppression algorithm and target detection inhigh range resolution sea clutter. The thesis basically consists of two parts: cluttersuppression and target detection. In the part of clutter suppression, it commences with aproposal of median-based estimator to estimate the power spectrum of high resolutionsea clutter by the time series observed in adjacent range cells and time intervals. Theestimator provides a robust estimation when just a few aberrant time series happen inobservation. Based on the estimator, a block-adaptive clutter suppression filter (BACSF)is designed to suppress the clutter prior to the pulse integration. In the part of targetdetection, due to that the residual clutter, the output of the BACSF, is modeled asspherically invariant random vector (SIRV), upon applying an ANMF detector to theresidual clutter, a residual clutter’s ANMF detector is derived. Moreover, in highresolution radar background, considering that the approximately stationary intervals ofsea clutter and residual clutter are much shorter than the coherent processing interval(CPI), another heuristic B-ANMF detector is proposed. It can integrate more pulses andachieve better performance than the ANMF detector does. The chapter concludes withexperiments of simulated target against the real sea clutter. Experimental resultsdemonstrate that, when target’s Doppler frequency is beyond strong clutter region, theANMF detector and B-ANMF detector perform better in residual clutter than in clutter.Hence, a double-channel scheme is given.
     The fourth part focuses on the subband ANMF detector in high range resolution seaclutter which is spatial-temporally non-stationary. The ANMF detector is limited inperformance, because the non-stationarity in spatially of the clutter restricts the spatialsamples available and the non-stationarity in temporally restricts the integrationduration. In order to overcome this limitation, a subband ANMF detector is proposed. Itconsists of a forward DFT modulated filter bank followed by a set of ANMF detectorsin individual subbands. The forward filter bank is used to decompose received signals ofhigh rate into subband signals of low rate. The subband decomposition via the filterbank realizes clutter suppression outside each subband and improves the short-termstationarity of sea clutter. Improved short-term stationarity and the low rate of subbandsignals allow the subband ANMF detector to have much longer integration durations than the traditional ANMF detector to do. The experimental results using real sea clutterdata show that the subband ANMF detector attains a much better detection performancethan the traditional ANMF detector does.
     The fifth part is contributed to the feature detection for floating small targets on seasurface. Presence of a surface target alters the scattering geometry of the sea surfacearound the target. It is shown that the observation in the high range resolution followsthe non-additive model rather than the traditional additive one. Under the non-additivemodel, target detection boils down to a special classification problem of the clutter-onlypattern. The average power, the Doppler offset and bandwidth are extracted andarranged into a three-dimensional feature vector. The tri-features-based detector isdesigned in the three-dimensional feature space. A convex-hull training algorithm isproposed to determine a three-dimensional decision region of the clutter-only patternfrom clutter-only data. The convex-hull’s polyhedron structure of the decision regionsupports a fast decision. The experimental results using the IPIX datasets show that thetri-features-based detector attains an excellent performance than available detectors doin detecting floating small targets on sea surface.
引文
[1]丁鹭飞,耿富录.雷达原理.西安:西安电子科技大学出版社,1984.
    [2] K. D. Ward, R. J. A. Tough, S. Watts. Sea clutter: scattering, the K distributionand radar performance. Published by the institution of engineering and technique,London, United Kingdom,(Chapter4),2006.
    [3] D. Walker. Doppler modelling of radar sea clutter. IEE Proc. Radar, Sonar Navig.,2001, March,148(2):73-80.
    [4] M. W.朗(美)著.陆地和海面的雷达波散射特性.薛德铺译,北京:科学出版社,1981.
    [5] F. A. Fay, J. Clarke, R. S. Peters. Weibull distribution applied to sea-clutter. InProceedings of IEE Radar Conference,1977, October, pp.101-104.
    [6] G. V. Trunk, and S. F. George. Detection of targets in non-Gaussian sea clutter.IEEE Trans. Aerosp. Electron. Syst.,1970, September,6(5):620-628.
    [7] G. V. Trunk. Radar properties of non-Rayleigh sea clutter. IEEE Trans. Aerosp.Electron. Syst.,1972, March,8(2):196-204.
    [8] T. Nohara and S. Haykin. Canadian east coast radar trials and the K-distribution.IEE Proc. Radar Sonar Navig.,1991, April,138(2):80-88.
    [9] H. C. Chan. Radar sea-clutter at low grazing angles. IEE Proc. Radar, SonarNavig.,1990, April,137(2):102-112.
    [10] K. D. Ward, C. J. Baker, and S. Watts. Maritime surveillance radar, Part I: Radarscattering from the ocean surface. IEE Proc. Radar, Sonar Navig.,1990, April,137(2):51-62.
    [11] A. Farina, F. Gini, M. V. Greco, et.al.. High resolution sea clutter data: statisticalanalysis of recorded live data. IEE Proc. Radar, Sonar Navig.,1997, June,144(3):121-130.
    [12] L. James, Jr. Mrier. Correlated K distributed clutter generation for radar detectionand track. IEEE Trans. Aerosp. Electron. Syst.,1995, April,31(2):568-580.
    [13] E. Conte, A. Dmaio, C. Galdi. Statistical analysis of real clutter at different rangeresolutions. IEEE Trans. Aerosp. Electron. Syst.,2004, July,40(3):903-918.
    [14]刘杰,何伍福,王国宏,等.基于统计模型的海杂波建模和检测技术综述.海军航空工程学院学报,2006,5,21(3):347-352.
    [15] S. Watts. Radar detection prediction in sea clutter using the compoundK-distribution model. IEE Proceeding, Pt. F,1985, December,132(7):613-620.
    [16] F. Gini, M. V. Greco. Texture modelling, estimation, and validation usingmeasured sea clutter data. IEE Proc. Radar, Sonar Navig.,2002, June,149(3):115-124.
    [17] S. Haykin, R. Bakker, and B. W. Currie. Uncovering nonlinear dynamics-Thecase study of sea clutter. Proceedings of IEEE,2002, May,860-882.
    [18] M. Rangaswamy, D. D. Weiner and A. Ozturk. Non-Gaussian random vectoridentification using spherically invariant random processes. IEEE Trans. Aerosp.Electron. Syst.,1993, January,29(1):111-124.
    [19] M. Rangaswamy, D. D. Weiner and A. Ozturk. Computer generation of correlatednon-Gaussian radar clutter. IEEE Trans. Aerosp. Electron. Syst.,1995, January,31(1):106-115.
    [20] S. Haykin. The McMaster IPIX radar sea clutter database in1993.[Online]http://soma.crl.mcmaster.ca/ipix/.
    [21] S. Haykin. The McMaster IPIX radar sea clutter database in1998.[Online]http://soma.mcmaster.ca/ipix.php.
    [22] S. Haykin, S. Puthusserypady. Chaotic dynamics of sea clutter. John wiley&Sons, Inc.1999.
    [23] S. Haykin, X. B. Li. Detection of signals in chaos. Proceedings of IEEE,1995,January,83(1):94-122.
    [24]黄晓斌,马晓岩,万建伟.对数正态分布海杂波背景下的雷达混沌检测方法.航天电子对抗,2004,6:45-47.
    [25]马晓岩,黄晓斌,张贤达.海杂波中基于混沌预测的目标检测方法改进.电子学报,2003,6,31(6):907-910.
    [26]沈颖,刘国岁.混沌在雷达信息处理中的应用前景.南京理工大学学报,1999,8,23(4):378-381.
    [27]邹士迁,石岩,原功伟.基于海杂波混沌模型用神经网络预测器实现小目标检测.舰船电子对抗,2004,10,27(5):24-26.
    [28]刘剑,赵艳丽,罗鹏飞.基于海杂波混沌特性的目标检测.现代雷达,2004,2,26(2):56-60.
    [29]徐伟,唐霜天,周希辰.基于海杂波混沌特性的微弱目标信号检测.雷达与对抗,2007,2:27-30.
    [30]谢红梅,俞卞章.基于神经网络预测器的混沌海杂波弱信号检测.现代雷达,2004,9,26(9):50-55.
    [31] H. Leung, S. Haykin. Is there a radar clutter attractor? Appl. Phys. Lett.,1990,June,56(6):593-595.
    [32] H. Leung, T. Lo. Chaotic radar signal processing over the sea. IEEE Jour. ofOceanic Eng.,1993, July,18(3):287-295.
    [33] S. Haykin. Radar clutter attractor: implications for physics, signal processing andcontrol. IEE Proc. Radar, Sonar Navig.,1999, August,146(4):177-188.
    [34] G. Hennessey, H. Leung, A. Drospoulos, et.al.. Sea-clutter modeling using aradial-basis-function neural network. IEEE Jour. of Oceanic Eng.,2001, July,26(3):358-372.
    [35] H. Leung, N. Daubash, N. Xie. Detection of small objects in clutter using aGA-RBF neural network. IEEE Trans. Aerosp. Electron. Syst.,2002, January,38(1):98-118,.
    [36]鹏岁阳,罗鹏飞. LVQ神经网络用于海上小目标检测.雷达与对抗,2006,2:28-32.
    [37]王宏强,姜斌,黎湘,等.基于改进支持向量机的海面目标检测方法.信号处理,2007,8,23(4):598-602.
    [38]陈瑛,罗鹏飞.海杂波背景下基于RBF神经网络的目标检测.雷达科学与技术,2005,10,3(5):271-275.
    [39] J. Hu, J. B. Gao, F. L. Posner, et.al.. Target detection within sea clutter: Acomparative study by fractal scaling analyses. World Scientific,2006,14(3):187-204.
    [40] J. Hu, W. W. Tung and J. B. Gao. Detection of low observable targets within seaclutter by structure function based multifractal analysis. IEEE Trans. AntennasPropag.,2006, January,54(1):136-143.
    [41] X. K. Xu. Low observable targets detection by joint fractal properties of seaclutter: an experimental study of IPIX OHGR datasets. IEEE Trans. AntennasPropag.,2010, April,58(4):1425-1429.
    [42] T. Lo, H. Leung, J. Litva, et.al.. Fractal characterization of sea-scattered signalsand detection of sea-surface targets. Proc. Inst. Elect. Eng., F,1990,140:243-250.
    [43] M. Martorella, F. Berizzi and E. D. Mese. On the fractal dimension of sea surfacebackscattered signal at low grazing angle. IEEE Trans. Antennas Propag.,2004,May,52(5):1193-1204.
    [44]杜干.目标检测的分形方法及应用.西安电子科技大学博士论文,2000年.
    [45]杜干,张守宏.分形模型在海上雷达目标检测中的应用.电波科学学报,1998,12,13(4):377-381.
    [46]杜干,张守宏.高阶分形特征在雷达信号检测中的应用.电子学报,2000,3,28(3):90-92.
    [47]杜干,张守宏.基于多重分形的雷达目标的模糊检测.自动化学报,2001,3,27(2):174-179.
    [48]杜干,张守宏.基于分维特征的舰船目标的检测.西安电子科技大学学报,1999,8,26(4):498-501.
    [49]关键,李宝,刘加能,等.两种海杂波背景下的微弱匀加速运动目标检测方法.电子与信息学报,2009,8,31(8):1898-1902.
    [50]刘建成,王雪松,刘忠,等.基于Wigner-Hough变换的LFM信号检测性能分析.电子学报,2007,6,35(6):1212-1217.
    [51] Y. Zhang, S. Qian, T. Thayaparan. Detection of a manoeuvring air target in strongsea clutter via joint time-frequency representation. IET Signal Process.,2008,2(3):216-222.
    [52] A. Yasotharan, T. Thayaparan. Time-Frequency method for detecting anaccelerating target in sea clutter. IEEE Trans. Aerosp. Electron. Syst.,2006,October,42(4):1289-1310.
    [53] F. Jangal, S. Saillant and M. Helier. Wavelet contribution to remote sensing of thesea and target detection for a high-frequency surface wave radar. IEEEGeoscience and Remote Sensing Letters.,2008, July,5(3):552-556.
    [54]李晓玮,种劲松.基于小波分解的K-分布SAR图像舰船检测.测试技术学报,2007,21(4):350-354.
    [55]张风丽,吴炳方,张磊.基于小波分析的SAR图像船舶目标检测.计算机工程,2007,3,33(6):33-34.
    [56]罗强,罗莉,任庆利,等.一种基于小波变换的卫星SAR海洋图像舰船目标检测方法.兵工学报,2002,11,23(4):500-503.
    [57]刘立冬.相干雷达恒虚警检测算法.西安电子科技大学博士论文,2005.
    [58]胡文琳.机载雷达恒虚警率检测算法研究.国防科学技术大学博士论文,2007.
    [59]何友,关键,孟祥伟,等.雷达自动检测和CFAR处理方法综述.系统工程与电子技术,2001,1,23(1):9-13.
    [60]童健,文必洋,王颂.强海杂波背景下的舰船目标检测.武汉大学学报,2005,6,51(3):370-374.
    [61]杜鹏飞,王永良.海杂波背景中的一种恒虚警率检测方法.国防科技大学学报,2005,27(3):54-57.
    [62]张维.复杂杂波背景恒虚警检测技术研究.南京航空航天大学博士论文,2009.
    [63]郑琦,陈栋,王其冲.舰载雷达复杂环境下的CFAR选择.现代雷达,2009,4,31(4):15-18.
    [64] E. J. Kelly. An adaptive detection algorithm. IEEE Trans. Aerosp. Electron. Syst.,1986, March,22(1):115-127.
    [65] F. C. Robey, D. R. Fuhrmann, E. J. Kelly, et.al.. A CFAR adaptive matched filterdetector. IEEE Trans. Aerosp. Electron. Syst.,1992, January,28(1):208-216.
    [66] E. Conte, M. Lops, and G. Ricci. Asymptotically optimum radar detection incompound-Gaussian clutter. IEEE Trans. Aerosp. Electron. Syst.,1995, April,31(2):617-625.
    [67] F. Gini. Suboptimum coherent radar detection in a mixture of K-distributed andGaussian clutter. IEE Proceeding, Pt. F,1997, February,144(l):39-48.
    [68] E. Conte, M. Lops, and G. Ricci. Adaptive detection schemes in compound-Gaussian clutter. IEEE Trans. Aerosp. Electron. Syst.,1998, October,34(4):1058-1069.
    [69] F. Gini, M. V. Greco. Suboptimum approach to adaptive coherent radar detectionin compound-Gaussian clutter. IEEE Trans. Aerosp. Electron. Syst.,1999, July,35(3):1095-1104.
    [70] F. Gini, J. H. Michels. Performance analysis of two covariance matrix estimatorsin compound-Gaussian clutter. IEE Proceeding, Pt. F,1999, June,146(3):133-140.
    [71] F. Gini, M. V. Greco, M. Diani, et.al.. Performance analysis of two adaptive radardetectors against non-Gaussian real sea clutter data. IEEE Trans. Aerosp. Electron.Syst.,2000, October,36(4):1429-1439.
    [72] E. Conte, A. D. Maio. Covariance matrix estimation for adaptive CFAR detectionin compound-Gaussian clutter. IEEE Trans. Aerosp. Electron. Syst.,2002, April,35(2):415-426.
    [73] E. Conte, A. D. Maio. Mitigation techniques for non-Gaussian sea clutter. IEEEJour. of Oceanic Eng.,2004, April,29(2):284-302.
    [74] O. Besson, J. Y. Tourneret, and S. Bidon. Knowledge-aided Bayesian detection inheterogeneous environments. IEEE Signal Processing Lett.,2007, May,14(5):355-358.
    [75] S. Bidon, O. Besson, and J. Y. Tourneret. A Bayesian approach to adaptivedetection in nonhomogeneous environments. IEEE Trans. Signal Process.,2008,January,56(1):205-217.
    [76] W. L. Melvin. Space-time adaptive radar performance in heterogeneous clutter.IEEE Trans. Aerosp. Electron. Syst.,2000, April,36(2):621-633.
    [77] R. G. Joseph, J. B. Edward. Knowledge-Aided adaptive radar at DARPA-anoverview. IEEE Signal Processing Magazine,2006, January,41-50.
    [78] E. Conte, A. de. Maio, A. Farina, et.al.. Design and analysis of a Knowledge-Aided radar detector for Doppler processing. IEEE Trans. Aerosp. Electron. Syst.,2006, July,42(3):1058-1079.
    [79] A. de Maio, A. Farina, G. Foglia. Knowledge-Aided Bayesian radar detectors&their application to live data. IEEE Trans. Aerosp. Electron. Syst.,2010, January,46(1):170-183.
    [80] L. M. William, A. S. Gregory. An approach to Knowledge-Aided covarianceestimation. IEEE Trans. Aerosp. Electron. Syst.,2006, July,42(3):1021-1042.
    [81] B. Francesco, B. Olivier, R. Giuseppe. Knowledge-Aided bayesian covariancematrix estimation in compound-Gaussian clutter.2010IEEE InternationalConference on Acoustics Speech and Signal Processing (ICASSP),2010, May,2574-2577.
    [82] M. I. Skolnik著.雷达系统导论(第三版).左群声,徐国良,马林,等译,北京:电子工业出版社,2007, Chapter1.
    [83] I. S. Reed, J. D. Mallett, L. E. Brennan. Rapid convergence rate in adaptive arrays.IEEE Trans. Aerosp. Electron. Syst.,1974, November,10(6):853-863.
    [84] E. Conte and M. Longo. Characterization of radar clutter as a spherically invariantrandom process. Inst. Elect. Eng. Proc. F,1987, April,134(2):191-197.
    [85] C. D. Richmond. Performance of the adaptive sidelobe blanker detectionalgorithm in homogeneous environments. IEEE Trans. Signal Process.,2000, May,48(5):1235-1247.
    [86] C. D. Richmond. Performance of a class of adaptive detection algorithms innonhomogeneous environments. IEEE Trans. Signal Process.,2000, May,48(5):1248-1262.
    [87] P. L. Herselman, H. J. de Wind. Improved covariance matrix estimation inspectrally inhomogeneous sea clutter with application to adaptive small boatdetection. International Conference on Radar, Adelaide, Australia,2008,September,2-5.
    [88] M. Hurtado and A. Nehorai. Polarization diversity for detecting targets ininhomogeneous clutter. Waveform Diversity&Design,2007,382-386.
    [89] E. Magraner, N. Bertaux, P. Refregier. Detection in Gamma-distributednonhomogeneous backgrounds. IEEE Trans. Aerosp. Electron. Syst.,2010, July,46(3):1127-1139.
    [90] F. Gini, M. Greco. Covariance matrix estimation for CFAR detection in heavytailed clutter. Signal Process.,2002,82:1495-1507.
    [91] F. Pascal, Y. Chitour, J. P. Ovarlez, et.al.. Covariance structure maximumlikelihood estimates in compound-Gaussian noise: existance and algorithmanalysis. IEEE Trans. Signal Process.,2008, January,56(1):34-48.
    [92] A. Younsi, M. Greco, F. Gini, et al.. Performance of the adaptive generalisedmatched subspace constant false alarm rate detector in non-Gaussian noise: anexperimental analysis. IET Radar Sonar Navig.,2009, May,3(3):195-202.
    [93] X. F. Shuai, L. J. Kong, J. Y. Yang. Performance analysis of GLRT-basedadaptive detector for distributed targets in compound-Gaussian clutter. SignalProcess.,2010,90:16-23.
    [94] M. Rangaswamy. Statistical analysis of the nonhomogeneity detector fornon-Gaussian interference backgrounds. IEEE Trans. Signal Process.,2005, June,53(6):2101-2111.
    [95] S. Haykin. Adaptive radar signal processing. A John Wiley and Sons, INC.,2007.
    [96] G. Pailloux, P. Forster, J. P. Ovarlez, et.al.. On persymmetric covariance matricesin adaptive detection. ICASSP,2008, pp.2305-2308.
    [97] E. Conte, M. Longo, and M. Lops. Modelling and simulation of non-Rayleighradar clutter. IEE Proceeding, Pt. F,1991, April,138(2):121-130.
    [98] K. Gerlach. Outlier resistant adaptive matched filtering. IEEE Trans. Aerosp.Electron. Syst.,2002, July,38(3):885-901.
    [99] Y. I. Abramovich, N. K. Spencer, and A. Y. Gorokhov. Modified GLRT and AMFframework for adaptive detectors. IEEE Trans. Aerosp. Electron. Syst.,2007, July,43(3):1017-1051.
    [100] A. D. Maio, G. Foglia, E. Conte, et.al.. CFAR behavior of adaptive detectors: anexperimental analysis. IEEE Trans. Aerosp. Electron. Syst.,2005, January,41(1):233-251.
    [101] M. Greco, F. Gini, A.Younsi, et.al.. Nonstationary sea clutter: impact ondisturbance matrix estimate and detector CFAR. IEEE Proc. Int. Conf. Radar,Adelaide, Australia,2008, pp.558-562.
    [102] Y. L. Shi, P. L. Shui. Target detection in high-resolution sea clutter viablock-adaptive clutter suppression. IET Radar Sonar Navig.,2011, January,5(1):48-57.
    [103] E. Hefner, and V. Chandrasekar. Oversampling and whitening with the CASAradar. IEEE International Conf. on Geoscience and Remote Sensing Symposium,2006, pp.648-651.
    [104] T. Y. Yu, G. F. Zhang, A. B. Chalamalasetti, et.al.. Resolution enhancementtechnique using range oversampling. J. Atmos. Oceanic Technol.,2006, February,23:228-240.
    [105] R. J. Doviak, and D. S. Zrnic. Doppler radar and weather observations. AcademicPress,(Second edition),1993, pp.562.
    [106] X. H. Li, J. X. He, J. Wang, et.al.. A robust capon method to improve weatherradar range resolution using oversampling. ICIECS,2009, pp.1-4.
    [107] E. Hefner, and V. Chandrasekar. Whitening dual-polarized weather radar signalswith a Hermitian transformation. IEEE Trans. Geosci. Remote Sens.,2008,August,46(8):2357-2364.
    [108] M. T. Sebastian. Processing of oversampled signals in range on polarimetricweather radars with mismatched channels. J. Atmos. Oceanic Technol.,2009, July,26:1289-1301.
    [109] S. M. Torres, and D. Zrnic. Whitening in range to improve weather radar spectralmoment estimates. part I: formulation and simulation. J. Atmos. Oceanic Technol.,2003, November,20:1433-1448.
    [110] I. R. Ivic, D. Zrnic, and S. M. Torres. Whitening in range to improve weatherradar spectral moment estimates. part II: experimental evaluation. J. Atmos.Oceanic Technol.,2003, November,20:1449-1459.
    [111] F. Krahmer. Novel schemes for Sigma-Delta modulation: from improvedexponential accuracy to low-complexity design. PhD thesis in New YorkUniversity,2009.
    [112] J. A. Tague, C. I. Caldwell. Expectations of useful complex Wishart forms.Multidimensional Systems and Signal Processing,1994,5:263-279.
    [113] W. J. Plant and W. C. Keller. Evidence of Bragg scattering in microwave Dopplerspectra of sea return. J. Geophys. Res.1990,95(C9):16299-16310.
    [114] C. L. Rino, E. Eckert, A. Siegel, et.al.. X-band low-grazing-angle oceanbackscatter obtained during LOGAN1993. IEEE Jour. of Oceanic Eng.,1997,January,22(1):18-26.
    [115] J. Liu, H. Meng, and X. Wang. Radar sea clutter suppression and target detectionwith α β γ filter. ICSP2008Proceedings.2008, pp.2376-2379.
    [116] F. Gini, A. Farina, and M. Montanari. Vector subspace detection in compound-Gaussian clutter, Part II: Performance analysis. IEEE Trans. Aerosp. Electron.Syst.,2002, October,38(4):1312-1323.
    [117] K. Gerlach. A comparison of two adaptive detection schemes. IEEE Trans.Aerosp. Electron. Syst.,1994, January,30(1):30-40.
    [118] C. D. Richmond. A note on non-Gaussian adaptive array detection and signalparameter estimation. IEEE Signal Processing Lett.,1996, August,3(8):251-252.
    [119] M. L. Picciolo, and K. Gerlach. A median cascaded canceller for robust adaptivearray processing. IEEE Trans. Aerosp. Electron. Syst.,2003, July,39(3):883-900,.
    [120] M. L. Picciolo, and K. Gerlach. Reiterative median cascaded canceller for robustadaptive array processing. IEEE Trans. Aerosp. Electron. Syst.,2007, April,43(2):428-442.
    [121] P. Wu. A criterion for radar resolution enhancement with Burg algorithm. IEEETrans. Aerosp. Electron. Syst.,1995, July,31(3):897-915.
    [122] S. Haykin and D. J. Thomson. Signal detection in a nonstationary environmentreformulated as an adaptive pattern classification problem. Proceedings of IEEE,1998, November,86(11):2325-2344.
    [123] M. Greco, F. Bordoni and F. Gini. X-band sea-clutter nonstationarity: influence oflong waves. IEEE Jour. of Oceanic Eng.,2004, April,29(2):269-283.
    [124] H. S. Malvar. Fast Algorithm for the modulated complex lapped transform. IEEESignal Processing Lett.,2003, January,10(1):8-10.
    [125] P. N. Heller, T. Karp and T. Q. Nguyen. A general formulation of modulated filterbanks. IEEE Trans. Signal Process.,1999, April,47(4):986-1002.
    [126] M. R. Wilbur, T. N. Davidson, J. P. Reilly. Efficient design of oversampled NPRGDFT filterbanks. IEEE Trans. Signal Process.,2004, July,52(7):1947-1962.
    [127] H. H. Dam, S. Nordholm, A. Cantoni, et.al.. Iterative method for the design ofDFT filter bank. IEEE Trans. Circuits and Systems-II,2004, November,51(11):581-586.
    [128] K. F. C. Yiu, N. Grbic, S. Nordholm, et.al.. Multicriteria design of oversampleduniform DFT filter banks. IEEE Signal Processing Lett.,2004, June,11(6):541-544.
    [129] X. P. Zhang, M. D. Desai and Y. N. Peng. Orthogonal complex filter banks andwavelets: some properties and design. IEEE Trans. Signal Process.,1999, April,47(4):1039-1046.
    [130]陈远征,陈建军,付强.复合高斯杂波下基于GLRT的扩展目标检测.电子与信息学报,2010,6,32(6):1327-1331.
    [131]郝程鹏,侯朝焕.一种K-分布杂波背景下的双参数恒虚警检测器.电子与信息学报,2007,3,29(3):756-759.
    [132] C. P. Unsworth, M. R. Cowper, S. McLaughlin, B. Mulgrew. Re-examining thenature of radar sea clutter. IEE Proc. Radar, Sonar Navig.,2002, June,149(3):105-114,.
    [133] M. McDonald, A. Damini. Limitations of nonlinear chaotic dynamics inpredicting sea clutter returns. IEE Proc. Radar, Sonar Navig.,2004, April,151(2):105-113.
    [134]苏晓宏,索继东,柳晓鸣,等.基于线性与非线性模型的海杂波预测.大连海事大学学报,2010,11,36(4):100-102.
    [135]姜斌,王宏强,黎湘,等. S波段雷达实测海杂波混沌分形特性分析.电子与信息学报,2007,8,29(8):1809-1812.
    [136] B. Yazici, R. L. Kashyap. A class of second-order stationary self-similar processesfor1/f phenomena. IEEE Trans. Signal Process.,1997, February,45(2):356-360.
    [137] E. Perrin, R. Harba, C. Berzin-Joseph, et.al.. nth-order fractional Brownianmotion and fractional Gaussian noises. IEEE Trans. Signal Process.,2001, May,49(5):1049-1059.
    [138] X. Wang, J. Liu, H. W. Liu. Small target detection in sea clutter based on Dopplerspectrum features. Proceedings of2006CIE International Conf. radar, Shanghai,China,2006, pp.1289-1292.
    [139]王雪.海杂波背景下的目标检测.西安电子科技大学硕士论文,2007.
    [140] J. V. Toporkov, G. S. Brown. Numerical study of the extended Kirchhoff approachand the lowest order small slope approximation for scattering from ocean-likesurfaces: Doppler analysis. IEEE Trans. Antennas Propag.,2002, April,50(4):417-425.
    [141] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACMComputing Survey,2009,41(3):15-58.
    [142] S. Panagopoulos, J. S. John. Small-target detction in sea clutter. IEEE Trans.Geosci. Remote Sens.,2004, July,42(7):1355-1361.
    [143] R. O. Duda, P. E. Hart, D. G. Stork. Pattern classification. John Wiley&Sons, Inc.,Chapter10,2001.
    [144] V. Roth. Kernel fisher discriminants for outlier detection. Neural Comput.,2006,18(4):942-960.
    [145] M. de Berg, M. van Kreveld, M. Overmars, et. al.著.计算几何-算法与应用(第2版).邓俊辉译,北京:清华大学出版社,2005,9. pp.262-278.
    [146] C. B. Barber, D. P. Dobkin, H. T. Huhdanpaa. The quick hull algorithm forconvex hulls. ACM Transactions on Mathematical Software,1996,22(4):496-483.
    [147]姜斌,王宏强,黎湘,等.海杂波背景下的目标检测新方法.物理学报,2006,8,55(8):3985-3991.
    [148]关键,刘宁波,张建,等.海杂波的多重分形关联特性与微弱目标检测.电子与信息学报,2010,1,32(1):54-61.
    [149] P-L Shui, H-W Liu, Z. Bao. Range-spread target detection based on crosstime-frequency distribution features of two adjacent received signals. IEEE Trans.Signal Process.,2009, October,57(10):3733-3745.
    [150] Harry L. Van Trees. Detection, estimation, and modulation theory. John wiley&sons, INC., New York. Part I.2003.
    [151] C. B. Haselgrove. A method for numerical integration. Mathematics ofComputation,1961,15(323).
    [152] D. J. Rosenkrantz. An analysis of several heurishics for the traveling salesmanproblem. SIAM J. Comp.,1977,563-581.
    [153] A. Papoulis, and S. U. Pillai. Probability, random variables and stochasticprocesses. McGraw-Hill Higher Education,(Fourth edition), Chapter7,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700