用户名: 密码: 验证码:
基于遥感和GIS的河漫滩洪水淹没分析与建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洪水,作为常见的自然现象之一,不仅影响着人们的生活和生产,也影响着自然界多种生物群体的生存与繁荣。作为洪水最重要的性质,洪水淹没一直是洪水研究重点关注的问题。对洪水淹没的研究包括对洪水淹没的探测、对淹没范围的制图、以及以淹没概率估测和淹没范围预测为代表的洪水淹没建模。随着空间技术的发展,地理信息系统(Geographic Information System, GIS)和遥感(Remote Sensing, RS)技术在其中的应用日益突出,相关研究方法日益丰富和成熟。不过,就目前看来,依然有很多问题值得进一步研究。首先是基于遥感技术探测洪水淹没的精度和稳定性问题,以及遥感影像自身空间分辨率和时间分辨率之间的相互制约对洪水淹没探测和制图的影响。其次,对一个区域来说,不仅需要探测在某次洪水中是否被淹没,而且需要分析其被洪水淹没的概率,但目前只有一些单纯基于时间序列流量数据分析洪水概率的方法,结合遥感和GIS方法的应用很少,因而就很难获取具有空间特征的洪水淹没概率。最后,对河漫滩区域来说,是否被洪水淹没与上游来水有密切关系,但同时又和地形有关。目前的一些研究基于河道观测流量和河漫滩淹没之间的相关关系建立了经验关系模型,但这些模型大多未考虑地形因素,对淹没范围及水深的分析与建模缺乏足够的理论支持。
     本文在分析了国内外已有研究的基础之上,提出基于RS和GIS的河漫滩洪水淹没分析与建模方法,方法涵盖了洪水淹没的探测、制图和建模等方面。论文的主要研究内容和成果如下:
     (1) MODIS (Moderate-resolution Imaging Spectroradiometer)数据具有覆盖范围广、重复周期短、易获取等优点,是比较理想的大范围洪水淹没探测工具。本文详细介绍了MODIS数据及其在洪水淹没探测中的应用,并概括了利用MODIS数据探测洪水淹没的方法,重点介绍了水体指数法。考虑到现有的指数方法大多需要人为地调整水体分割的阈值,导致它们不太适合对洪水淹没范围的自动提取,本文引入开放水体似然性(Open Water Likelihood, OWL)指数,它的特点是其在时间序列遥感影像上一致和稳定的表现。本文利用更高空间分辨率的同期Landsat影像,对MODIS影像上基于OWL指数的水体判读的精度和可靠性进行了分析和论证,分析结果显示利用OWL指数从MODIS影像中提取水体具有较高的精度和较好的稳定性,可以使用统一的阈值对影像上的淹没范围进行自动识别。
     (2)水文站观测流量数据最大的优点是其具有很长的历史记录,而遥感技术的特点是其可以快速获取洪水淹没的空间分布。本文提出了基于时间序列观测流量数据和MODIS数据的河漫滩洪水淹没时空分析方法,充分发挥两类数据各自的优势,实现了对大区域尺度洪水淹没的时间和空间特征的分析。本文以澳大利亚的Murray-Darling Basin (MDB)作为实验区,首先对该实验区基于河道网络数据和水文站位置信息进行了一个分区的工作,保证了在各个分区内观测流量和遥感探测的洪水淹没之间的密切联系。基于这个分区框架,本文利用时间序列观测流量数据和MODIS数据得到了这个大的流域盆地内的包括淹没持续时间、年际淹没模式、淹没频率和淹没概率等洪水淹没特征。
     (3)考虑到当前的基于河道流量数据和河漫滩淹没范围经验关系模型的洪水淹没建模方法在理论基础上的不足,本文引入地形数据,提出了河段尺度的基于观测流量数据、Landsat影像以及数字高程模型(Digital Elevation Model, DEM)数据的洪水淹没连通性及水深分析与建模方法。该方法被应用于MDB内的一段典型河段,得到了该区域内下游河漫滩淹没状况与上游水文站观测流量之间的相关关系,并以此预测不同流量条件下河漫滩区域的各处是否被淹没及淹没的水深。
     (4)在利用遥感影像进行洪水淹没制图的时候,混合像元问题是制约制图精度的重要因素,尤其是对于MODIS这种空间分辨率相对较低的遥感数据。本文从混合像元分解与重构的角度探讨了提高洪水淹没制图精度的可行性,提出了基于DEM改进的河漫滩洪水淹没亚像元制图算法,并利用实验数据对该算法的结果进行了分析和评价。分析结果表明,相较于传统的亚像元制图算法,改进的算法得到的淹没范围无论在形态上还是在精度上都有了明显的提高。
Flood is one of the most common natural phenomena across lots of regions in the world. It not only affects the living and production of human being, but also affects the survival and prosperity of flora and fauna communities along the rivers and around the lakes. As a most important characteristic of flood, inundation has always been a focus in flood studies. Researches on flood inundation involve sensing, mapping and modeling of flood inundation represented by inundation probability estimation and inundation extent prediction. With the development of space technologies, Geographic Information System (GIS) and Remote Sensing (RS) are playing a more and more important role in these studies, with increasing number of related researches emerging. However, there are still a lot of issues that need to be investigated. The first one is the accuracy and stability issue of inundation detection using remote sensing technology, as well as the impact from mutual restrain of spatial and temporal resolutions of remotely sensed imagery on flood inundation detection and mapping. In addition to that, for a specific region, analysing the historical inundation as well as future inundation probability is equally important. However, there are only some flood frequency analysis methods utilizing time-series observed flow data to reveal the flood probability. Few of these methods used GIS and remote sensing technologies, which hampered the derivation of flood inundation probability that has spatial characteristics. One more thing, for floodplain area, inundation has a close relationship with the water quantity upstream, as well as the terrain. Several studies have established empirical relationship models between in-channel observed flow and floodplain inundation, but these models did not take the terrain into consideration. Therefore, the analysis and modeling of floodplain inundation based on these relationship models did not have strong theoretical basis.
     After elaborated the progress of flood inundation studies, this thesis proposed a floodplain inundation analysis and modeling method based on RS and GIS. The method involved the sensing, mapping and modeling of flood inundation. Main contents and contributions of this thesis were summarized as follows:
     (1) MODIS (Moderate-resolution Imaging Spectroradiometer) data have several advantages such as broad coverage, short revisit time and high accessibility, which makes them an ideal tool for flood inundation detection over broad areas. This thesis made a detailed introduction on the MODIS data, and then described its application in flood inundation detection. The methods for inundation delineation from MODIS image were summarized, represented by the water index methods. It was found that most of these methods were not suitable for automatic delineation because they generally required human intervention. Therefore, an Open Water Likelihood (OWL) index was introduced here. An advantage of the OWL index is that it appears to be stable and consistent on a time-series of images. Using Landsat images which cover the same period but have a much higher resolution, a comprehensive evaluation was then conducted to ensure its accuracy and reliability in flood inundation detection from MODIS OWL imagery. Evaluation results demonstrated that inundation extents detected from a time-series of MODIS imagery using OWL index have high accuracy and strong stability, which means a universal threshold is applicable to automatically delineate inundation extent.
     (2) Observed flow data have a long record history, while remotely sensed data are able to reflect the spatial distribution of flood inundation quickly and efficiently. This thesis thus proposed a method for analyzing the spatio-temporal dynamics of floodplain inundation using a combination of these two types of data. This method made use of the advantages of both data to derive the spatial and temporal characteristics of flood inundation at large basin scale. The Murray-Darling Basin (MDB) in Australia was selected as a case study area. A zoning process was conducted using stream network data and gauge location data, in order to ensure the close relationship between the observed flow and remotely sensed inundation within each zone. Based on the zoning results, a series of flood inundation characteristic maps, including inundation duration map, annual inundation map, inundation frequency map and inundation probability map, were derived for this big river basin through the method of combining time-series observed flow data and MODIS imagery.
     (3) Existing flood inundation modeling methods that are based on the empirical relationship models between in-channel observed flow and floodplain inundation did not have strong theoretical basis. Therefore, through introducing terrain data, this thesis proposed an analysis and modeling method for flood inundation connectivity and depth at river reach scale using a combination of observed flow data, Landsat imagery and DEM (Digital Elevation Model) data. This method was then applied to a typical river reach in MDB. The relationship between downstream floodplain inundation and upstream observed gauge flow was established with stronger theoretical basis. Based on this relationship, inundation conditions including connectivity and depths over the floodplain area can be predicted under different flow conditions.
     (4) When remotely sensed data are utilized for flood inundation mapping, the existence of mixed pixel is an important but unavoidable factor that limits the mapping accuracy, especially for those data with coarse spatial resolutions such as MODIS. This thesis investigated the feasibility of using DEM to improve the resolution and accuracy of flood inundation maps through the method of pixel unmixing and reconstruction. It then proposed a DEM-based modified sub-pixel mapping algorithm for enhancing floodplain inundation mapping. Test data were employed to evaluate the performance of this algorithm. Evaluation results demonstrated that the modified algorithm is able to derive a better inundation map than the traditional algorithm, either in the form of shape or accuracy.
引文
[1]WIKI.洪水 [M/OL].2013-3-1, http://en.wikipedia.org/wiki/Flood.
    [2]LIU R Y, LIU N. Flood area and damage estimation in Zhejiang, China [J]. Journal of Environmental Management,2002,66(1):1-8.
    [3]HIRSCHBOECK K K, ELY L, MADDOX R A. Hydroclimatology of meteorologic floods [M]//WOHL E. Inland Flood Hazards:Human, Riparian and Aquatic Communities. UK; Cambridge University Press.2000:39-72.
    [4]中国宁波网.“菲特”台风造成全市直接经济损失超333亿元[M/OL].2014-1-2,http://news.cnnb.com.cn/system/2013/10/12/007870750.shtml.
    [5]蒋卫国,李京,王琳.全球1950-2004年重大洪水灾害综合分析[J].北京师范大学学报(自然科学版),2006,42(5):530-533.
    [6]吴琳.基于GIS和数据库技术的洪水灾害信息系统研究[D].西安:西北大学,2005.
    [7]STEPHEN L. Flood hazards [J]. Issues,2007,78:8-10.
    [8]国家防汛抗旱总指挥办公室等.中国水旱灾害[M].北京:中国水利水电出版社,1997.
    [9]孙可可,陈进.典型洪水和干旱过程对湖泊湿地的生态作用[J].长江科学院院报,2013,5:5-8.
    [10]APFM. Environmental aspects of integrated flood management [R]. Geneva, Switzerland: Associated programme on flood management,2006.
    [11]TOCKNER K, MALARD F, WARD J V. An extension of the flood pulse concept [J]. Hydrological Processes,2000,14:2861-2883.
    [12]DLWC. A review of recent studies investigating biological & physical processes in the Macqarie Marshes [R]. NSW:Department of Land and Water Conservation,2000.
    [13]KOZLOWSKI T T. Flooding and plant growth [M]. San Diego, California:Academic Press,1984.
    [14]JUNK W, BAYLEY P, SPARKS R. The flood pulse concept in river-floodplain systems [J]. Canadian special publication of fisheries and aquatic sciences,1989,106:110-127.
    [15]文俊.区域水资源可持续利用预警系统研究[M].北京:中国水利水电出版社,2006.
    [16]李琼.洪水灾害风险分析与评价方法的研究及改进[D].武汉:华中科技大学,2012.
    [17]姜树海,范子武,吴时强.洪灾风险评估和防洪安全决策[M].北京:中国水利水电出版社,2005.
    [18]张硕辅,薛光达,曾务书.湖南省洪水风险分析防洪风险图编制及其应用[J].湖南水利水电,2001,1:22-24.
    [19]周成虎,万庆,黄诗峰,陈德清.基于GIS的洪水灾害风险区划研究[J].地理学报,2000,1:15-24.
    [20]丁志雄.基于RS与GIS的洪涝灾害损失评估技术方法研究[D].北京:中国水利水电科学研究院,2004.
    [21]陈秀万.洪涝灾害损失评估系统——遥感与GIS技术应用研究[M].北京:中国水利水电出版社,1999.
    [22]曹永强等.洪水灾害损失评估方法及其应用研究[J].辽宁师范大学学报(自然科学版),2006,9:12-17.
    [23]余萍.蓄滞洪区洪灾损失评估方法的研究及应用[D].天津:天津大学,2007.
    [24]DUTTA D, HERATH S, MUSIAKE K. A mathematical model for flood loss estimation [J]. J Hydrol,2003,277(1-2):24-49.
    [25]SMITH D I. Flood damage estimation-a review of urban stage-damage curves and loss functions [J]. Water SA,1994,20(3):231-238.
    [26]MERZ B, KREIBICH H, SCHWARZE R, THIEKEN A. Review article'Assessment of economic flood damage'[J]. Nat Hazards Earth Syst Sci,2010,10(8):1697-1724.
    [27]许凯.基于GIS的洪水灾害损失评估方法研究[D].武汉:华中科技大学,2012.
    [28]CASANOVA M, BROCK M. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? [J]. Plant Ecology,2000,147(2): 237-250.
    [29]董哲仁,张晶.洪水脉冲的生态效应[J].水利学报,2009,3:281-288.
    [30]余晓,李翀,王昊,王义成.额尔古纳河洪水淹没模拟及湿地植被变化分析[J].水利学报,2011,11:1308-1315.
    [31]ALSDORF D, BATES P, MELACK J, WILSON M, DUNNE T. Spatial and temporal complexity of the Amazon flood measured from space [J]. Geophys Res Lett,2007,34(8): L08402.
    [32]SAF B. Regional Flood Frequency Analysis Using L Moments for the Buyuk and Kucuk Menderes River Basins of Turkey [J]. Journal of Hydrologic Engineering,2009,14(8): 783-794.
    [33]SHI P, CHEN X, QU S M, ZHANG Z C, MA J L. Regional Frequency Analysis of Low Flow Based on L Moments:Case Study in Karst Area, Southwest China [J]. Journal of Hydrologic Engineering,2010,15(5):370-377.
    [34]SECKIN N, HAKTANIR T, YURTAL R. Flood frequency analysis of Turkey using L-moments method [J]. Hydrological Processes,2011,25(22):3499-3505.
    [35]PAPA F, PRIGENT C, ROSSOW W B. Monitoring Flood and Discharge Variations in the Large Siberian Rivers From a Multi-Satellite Technique [J]. Surv Geophys,2008,29(4-5): 297-317.
    [36]ALSDORF D E, LETTENMAIER D P. Tracking Fresh Water from Space [J]. Science, 2003,301(5639):1491-1494.
    [37]邬伦,刘瑜,张晶,马修军,韦中亚,田原.地理信息系统--原理、方法和应用[M].北京:科学出版社,2005.
    [38]王震宇,孙振谦.黄河下游河势及洪水遥感监测技术[C]//第七届全国水动力学学术会议暨第十九届全国水动力学研讨会会议论文集,中国北京,2005.
    [39]杨存建,魏一鸣,陈德清.基于星载雷达的洪水灾害淹没范围获取方法探讨[J].自然灾害学报,1998,7(3):45-50.
    [40]BARBER D G, HOCHHEIM K P, DIXON R, MOSSCROP D R, MCMULLAN M J. The role of Earth observation technologies in flood mapping:A Manitoba case study [J]. Can J Remote Sens,1996,22(1):137-143.
    [41]HORRITT M S, MASON D C, LUCKMAN A J. Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model [J]. International Journal of Remote Sensing,2001,22(13):2489-2507.
    [42]HESS L L, MELACK J M, NOVO E M L M, BARBOSA C C F, GASTIL M. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin [J]. Remote Sensing of Environment,2003,87(4):404-428.
    [43]骆承政.中国历史大洪水调查资料汇编[M].北京:中国书店出版社,2006.
    [44]刘仁义,刘南.基于GIS的复杂地形洪水淹没区计算方法[J].地理学报,2001,1:1-6.
    [45]杨军,贾鹏,周廷刚,张敏,刘微.基于DEM的洪水淹没模拟分析及虚拟现实表达[J].西南大学学报(自然科学版),2011,10:143-148.
    [46]孙海,王乘.利用DEM的“环形”洪水淹没算法研究[J].武汉大学学报(信息科学版),2009,8:948-951.
    [47]RANGO A, SALOMONSON V V. Regional flood mapping from space [J]. Water Resources Research,1974,10(3):473-484.
    [48]SANYAL J, LU X X. Application of remote sensing in flood management with special reference to monsoon Asia:A review [J]. Natural Hazards,2004,33(2):283-301.
    [49]MATGEN P, SCHUMANN G, HENRY J B, HOFFMANN L, PFISTER L. Integration of SAR-derived river inundation areas, high-precision topographic data and a river flow model toward near real-time flood management [J]. Int J Appl Earth Obs Geoinf,2007, 9(3):247-263.
    [50]DI BALDASSARRE G, SCHUMANN G, BRANDIMARTE L, BATES P. Timely Low Resolution SAR Imagery To Support Floodplain Modelling:a Case Study Review [J]. Surv Geophys,2011,32(3):255-269.
    [51]WANG Y, COLBY J D, MULCAHY K A.An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data [J]. International Journal of Remote Sensing,2002,23(18):3681-3696.
    [52]BLASCO F, BELLAN M F, CHAUDHURY M U. Estimating the Extent of Floods in Bangladesh using SPOT Data [J]. Remote Sensing of Environment,1992,39(3):167-178.
    [53]ISLAM M D M, SADO K. Development of flood hazard maps of Bangladesh using NOAA-AVHRR images with GIS [J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,2000,45(3):337-355.
    [54]ISLAM M M, SADO K. Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system [J]. Hydrological Processes,2000,14(3): 605-620.
    [55]ISLAM A S, BALA S K, HAQUE M A. Flood inundation map of Bangladesh using MODIS time-series images [J]. J Flood Risk Manag,2010,3(3):210-222.
    [56]KWAK Y, PARK J, FUKAMI K. Nation-wide Flood Risk Assessment using Inundation Level Model and MODIS Time-series Imagery [C]//proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver,2011.
    [57]BATES P D, DE ROO A P J. A simple raster-based model for flood inundation simulation [J]. J Hydrol,2000,236(1-2):54-77.
    [58]HORRITT M S, BATES P D. Predicting floodplain inundation:raster-based modelling versus the finite-element approach [J]. Hydrological Processes,2001,15(5):825-842.
    [59]BATES P D, MARKS K J, HORRITT M S. Optimal use of high-resolution topographic data in flood inundation models [J]. Hydrological Processes,2003,17(3):537-557.
    [60]HESSELINK A W, STELLING G S, KWADIJK J C J, MIDDELKOOP H. Inundation of a Dutch river polder, sensitivity analysis of a physically based inundation model using historic data [J]. Water Resources Research,2003,39(9):1-17.
    [61]DUTTA D, ALAM J, UMEDA K, HAYASHI M, HIRONAKA S. A two-dimensional hydrodynamic model for flood inundation simulation:a case study in the lower Mekong river basin [J]. Hydrological Processes,2007,21(9):1223-1237.
    [62]DHI. MODELLING THE WORLD OF WATER [M/OL].2014-1-2, http://www.mike bydhi.com/
    [63]HILL C M. ISIS [M/OL].2014-3-1, http://www.halcrow.com/isis/default.asp.
    [64]LI S, SUN D, GOLDBERG M, STEFANIDIS A. Derivation of 30-m-resolution water maps from TERRA/MODIS and SRTM [J]. Remote Sensing of Environment,2013,134: 417-430.
    [65]FRANK E, OSTAN A, COCCATO M, STELLING G S. Use of an integrated one dimensional-two dimensional hydraulic modelling approach for flood hazard and risk mapping [J]. River Basin Management,2001,5:99-108.
    [66]BATES P D, HORRITT M S, FEWTRELL T J. A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling [J]. J Hydrol,2010,387(1-2):33-45.
    [67]PAZ A R D, COLLISCHONN W, TUCCI C E M, PADOVANIC R. Large-scale modelling of channel flow and floodplain inundation dynamics and its application to the Pantanal (Brazil) [J]. Hydrological Processes,2011,25(9):1498-1516.
    [68]WILSON M, BATES P, ALSDORF D, FORSBERG B, HORRITT M, MELACK J, FRAPPART F, FAMIGLIETTI J. Modeling large-scale inundation of Amazonian seasonally flooded wetlands [J]. Geophys Res Lett,2007,34(15):1-6.
    [69]YAMAZAKI D, KANAE S, KIM H, OKI T. A physically based description of floodplain inundation dynamics in a global river routing model [J]. Water Resources Research,2011, 47(4):W04501.
    [70]PAPPENBERGER F, DUTRA E, WETTERHALL F, CLOKE H L. Deriving global flood hazard maps of fluvial floods through a physical model cascade [J]. Hydrol Earth Syst Sci, 2012,16(11):4143-4156.
    [71]WESTERHOFF R S, KLEUSKENS M P H, WINSEMIUS H C, HUIZINGA H J, BRAKENRIDGE G R, BISHOP C. Automated global water mapping based on wide-swath orbital synthetic-aperture radar [J]. Hydrol Earth Syst Sci,2013,17(2):651-663.
    [72]NEAL J, SCHUMANN G, BATES P. A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas [J]. Water Resources Research,2012,48(11):W11506.
    [73]HUANG C, CHEN Y, WU J P. Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery [J]. Int J Appl Earth Obs Geoinf,2014,26:350-362.
    [74]SMITH L C. Satellite remote sensing of river inundation area, stage, and discharge:A review [J]. Hydrological Processes,1997,11(10):1427-1439.
    [75]KRUUS J, DEUTSCH M, HANSEN P, FERGUSON H. Flood applications of satellite imagery [C]//proceedings of the Satellite Hydrology Proceedings of the Fifth Annual William T Pecora Memorial Symposium on Remote Sensing, Sioux Falls, South Dakota, 1979.
    [76]USACHEV V F. Evaluation of flood plain inundations by remote sensing methods [M]//GOODISON B E. Hydrological Applications of Remote Sensing and Data Transmission. Wallingford; International Association of Hydrological Sciences.1985: 475-482.
    [77]SMITH L C, ISACKS B L, BLOOM A L, MURRAY A B. Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery:Potential application to ungaged basins [J]. Water Resources Research,1996,32(7):2021-2034.
    [78]FRAZIER P, PAGE K, LOUIS J, BRIGGS S, ROBERTSON A I. Relating wetland inundation to river flow using Landsat TM data [J]. International Journal of Remote Sensing,2003,24(19):3755-3770.
    [79]GOODCHILD M. The state of GIS for environmental problem solving [M]. Environmental Modeling with GIS. England, United Kingdom; Oxford University Press. 1993.
    [80]JENSEN S K, DOMINIGUE J O. Extracting topographic structure from digital elevation data for geographical information system analysis [J]. Photogrammetric Engineering and Remote Sensing,1988,54:1593-1600.
    [81]HOGG J, MCCORMACK J E, ROBERTS S A, GAHEGAN M N, HOYLE B S. Automated derivation of stream-channel networks and selected catchment characteristics from digital elevation models [M]//MATHER P. Geographic Information Handling Research and Applications. New York, US; John Wiley and Sons.1993:207-235.
    [82]ROMANOWICZ R, BEVEN K, MOOR R. GIS and distributed hydrological models [M]//MATHER P. Geographical Information Handling-Research and Applications. Chichester U.K; John Wiley and Sons.1993:197-205.
    [83]SMITH N H. Hydrologic Data Development System [M]. Texas, US:The University of Texas at Austin,1995.
    [84]万洪涛,周成虎,万庆,汪承义.GIS技术支持下的洪水模型建模[J].地理研究,2001,4:407-415.
    [85]张彦召,董杰,韩敏.基于GIS的洪水演进模拟系统研究[J].仪器仪表学报,2006,1:936-937.
    [86]丁志雄,李纪人,李琳.基于GIS格网模型的洪水淹没分析方法[J].水利学报,2004,6:56-60.
    [87]张东华,刘荣,张咏新,谢精华.一种基于DEM的洪水有源淹没算法的设计与实现[J].东华理工大学学报(自然科学版),2009,2:181-184.
    [88]LIU Y B, SMEDT F. Flood Modeling for Complex Terrain Using GIS and Remote Sensed Information [J]. Water Resour Manag,2005,19(5):605-624.
    [89]吴赛,张秋文.基于MODIS遥感数据的水体提取方法及模型研究[J].计算机与数字工程,2005,7:1-4.
    [90]刘玉洁,杨忠东.MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001.
    [91]王随霞.基于MODIS数据的黄河下游洪水遥感监测研究[D].南京:河海大学,2006.
    [92]刘荣高,刘洋,刘纪远.MODIS科学数据处理研究进展[J].自然科学进展,2009,19(2):141-147.
    [93]BRAKENRIDGE R, ANDERSON E. Modis-based flood detection, mapping and measurement:The potential for operational hydrological applications [J]. Transboundary Floods:Reducing Risks Through Flood Management,2006,72:1-12.
    [94]VERMOTE E F, KOTCHENOVA S Y, RAY J P. MODIS Land Surface Reflectance User's Guide Version 1.3. [R] MODIS Land Surface Reflectance Science Computing Facility, 2011.
    [95]CHEN Y, HUANG C, TICEHURST C, MERRIN L, THEW P. An Evaluation of MODIS Daily and 8-day Composite Products for Floodplain and Wetland Inundation Mapping [J]. Wetlands,2013,33(5):823-835.
    [96]FRAZIER P S, PAGE K J. Water body detection and delineation with Landsat TM data [J]. Photogrammetric Engineering and Remote Sensing,2000,66(12):1461-1467.
    [97]马丹.基于MODIS数据的水体提取研究[J].地理空间信息,2008,6(1):25-28.
    [98]SUN D L, YU Y Y, GOLDBERG M D. Deriving Water Fraction and Flood Maps From MODIS Images Using a Decision Tree Approach [J]. IEEE J Sel Top Appl Earth Observ Remote Sens,2011,4(4):814-825.
    [99]周成虎,骆剑承,杨晓梅.遥感影像地学理解与分析[M].北京:科学技术出版社,1999.
    [100]TOWNSHEND J R G, JUSTICE C O. Analysis of the dynamics of African vegetation using the Normalized Difference Vegetation Index [J]. International Journal of Remote Sensing,1986,7(11):1435-1445.
    [101]DOMENIKIOTIS C, LOUKAS A, N.R. D. The use of NOAA/AVHRR satellite data for monitoring and assessment of forestfires and flood [J]. Nat Hazards Earth Syst Sci,2003,3: 115-128.
    [102]GAO B C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space [J]. Remote Sensing of Environment,1996,58(3):257-266.
    [103]MCFEETERS S K. The use of the normalized difference water index (NDWI) in the delineation of open water features [J]. International Journal of Remote Sensing,1996, 17(7):1425-1432.
    [104]XIAO X, BOLES S, FROLKEING S, SALAS W, MOORE B, LI C, HE L, ZHAO R. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data [J]. International Journal of Remote Sensing,2002,23(15):3009-3022.
    [105]XIAO X, ZHANG Q, BRASWELL B, URBANSKI S, BOLES S, WOFSY S, MOORE III B, OJIMA D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data [J]. Remote Sensing of Environment,2004,91(2): 256-270.
    [106]CHOWDARY V M, CHANDRAN R V, NEETI N, BOTHALE R V, SRIVASTAVA Y K, INGLE P, RAMAKRISHNAN D, DUTTA D, JEYARAM A, SHARMA J R, SINGH R. Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS [J]. Agric Water Manage,2008,95(7):754-766.
    [107]HUI F M, XU B, HUANG H B, YU Q, GONG P. Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery [J]. International Journal of Remote Sensing,2008,29(20):5767-5784.
    [108]XU H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery [J]. International Journal of Remote Sensing, 2006,27(14):3025-3033.
    [109]ORDOYNE C, FRIEDL M A. Using MODIS data to characterize seasonal inundation patterns in the Florida Everglades [J]. Remote Sensing of Environment,2008,112(11): 4107-4119.
    [110]MICHISHITA R, GONG P, XU B. Spectral mixture analysis for bi-sensor wetland mapping using Landsat TM and Terra MODIS data [J]. International Journal of Remote Sensing,2012,33(11):3373-3401.
    [111]CHEN Y, WANG B, POLLINO C A, CUDDY S M, MERRIN LE, HUANG C. Estimate of flood inundation and retention on wetlands using remote sensing and GIS [J]. Ecohydrology,2014.
    [112]JI L, ZHANG L, WYLIE B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index [J]. Photogrammetric Engineering and Remote Sensing,2009, 75(11):1307-1317.
    [113]SAKAMOTO T, VAN NGUYEN N, KOTERA A, OHNO H, ISHITSUKA N, YOKOZAWA M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery [J]. Remote Sensing of Environment,2007,109(3):295-313.
    [114]LU S L, WU B F, YAN N N, WANG H. Water body mapping method with HJ-1A/B satellite imagery [J]. Int J Appl Earth Obs Geoinf,2011,13(3):428-434.
    [115]GUERSCHMAN J P, WARREN G, BYRNE G, LYMBURNER L, MUELLER N, VAN DIJK A. MODIS-based standing water detection for flood and large reservoir mapping: algorithm development and applications for the Australian continent [R]. Canberra:CSIRO, 2011.
    [116]GALLANT J C, DOWLING T L A multiresolution index of valley bottom flatness for mapping depositional areas [J]. Water Resources Research,2003,39(12):1347-1360.
    [117]SA. South Australia Government [M/OL].2013-3-1, https://www.waterconnect.sa.gov. au/RMWD/Pages/default.aspx.
    [118]NSW. New South Wales Office of Water [M/OL].2011-3-1, http://realtimedata.water. nsw.gov.au/water.stm?ppbm=DAILY_REPORTS&dr&3&drkd_url.
    [119]USGS. Land Process Distributed Active Archive Center [M/OL].2012-3-1, https://lp daac.usgs.gov/products/modis products table/mod09a1.
    [120]USGS. Earth Resource Observation and Science Center [M/OL].2011-3-1, http://ero s.usgs.gov/.
    [121]FOODY G M. Status of land cover classification accuracy assessment [J]. Remote Sensing of Environment,2002,80(1):185-201.
    [122]LANDIS J R, KOCH G G. The Measurement of Observer Agreement for Categorical Data [J]. Biometrics,1977,33(1):159-174.
    [123]HUANG C, CHEN Y, WU J, YU J. Detecting floodplain inundation frequency using MODIS time-series imagery [C]//proceedings of the First International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2012), Shanghai, China,2012.
    [124]BHAVSAR P D. Review of remote sensing applications in hydrology and water resources management in India [J]. Advances in Space Research,1984,4(11):193-200.
    [125]PULVIRENTI L, CHINI M, PIERDICCA N, GUERRIERO L, FERRAZZOLI P. Flood monitoring using multi-temporal COSMO-SkyMed data:Image segmentation and signature interpretation [J]. Remote Sensing of Environment,2011,115(4):990-1002.
    [126]THOMAS R F, KINGSFORD R T, LU Y, HUNTER S J. Landsat mapping of annual inundation (1979-2006) of the Macquarie Marshes in semi-arid Australia [J]. International Journal of Remote Sensing,2011,32(16):4545-4569.
    [127]VOROSMARTY C J, WILLMOTT C J, CHOUDHURY B J, SCHLOSS A L, STEARNS T K, ROBESON S M, DORMAN T J. Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling [J]. Water Resources Research,1996,32(10):3137-3150.
    [128]BENKE A C, CHAUBEY I, WARD G M, DUNN E L. Flood pulse dynamics of an unregulated river floodplain in the southeastern US coastal plain [J]. Ecology,2000,81(10): 2730-2741.
    [129]OVERTON I C. Modelling floodplain inundation on a regulated river:Integrating GIS, remote sensing and hydrological models [J]. River Res Appl,2005,21(9):991-1001.
    [130]FRAZIER P, PAGE K. A Reach-scale Remote Sensing Technique to Relate Wetland Inundation to River Flow [J]. River Res Appl,2009,25(7):836-849.
    [131]MURRAY D. Discover Murray [M/OL].2013-3-10, http://www.murrayriver.com.au/ab out-the-murray/murray-darling-basin/.
    [132]HUANG C, CHEN Y, WU J. GIS-based spatial zoning for flood inundation modelling in the Murray-Darling Basin [C]//PIANTADOSI J, ANDERSSEN R S, BOLAND J.20th International Congress on Modelling and Simulation (MODSIM2013). Adelaide, South Australia; Modelling and Simulation Society of Australia and New Zealand.2013: 1700-1706.
    [133]ROGERS K, RALPH J T. Floodplain Wetland Biota in the Murray-Darling Basin:Water Habitat Requirements. [M]. Victoria, Australia:CSIRO Publishing,2010.
    [134]KINGSFORD R T, BRANDIS K, THOMAS R F, CRIGHTON P, KNOWLES E, GALE E. Classifying landform at broad spatial scales:the distribution and conservation of wetlands in New South Wales, Australia [J]. Marine and Freshwater Research,2004,55(1):17-31.
    [135]THOMS M C, SHELDON F. Water resource development and hydrological change in a large dryland river:the Barwon-Darling River, Australia [J]. J Hydrol,2000,228(1-2): 10-21.
    [136]WARD J V, TOCKNER K, ARSCOTT D B, CLARET C. Riverine landscape diversity [J]. Freshw Biol,2002,47(4):517-539.
    [137]KINGSFORD R T, THOMAS R F. Destruction of Wetlands and Waterbird Populations by Dams and Irrigation on the Murrumbidgee River in Arid Australia [J]. Environmental Management,2004,34(3):383-396.
    [138]CSIRO. Water Availability in the Murray-Darling Basin [R]. Canberra, Australia:A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project,2008.
    [139]YOUNG W J. Hydrologic descriptions of semi-arid rivers:an ecological perspective [M]//KINGSFORD R T. A Free-flowing River:The Ecology of the Paroo River. Sydney, Australia; NSW National Parks and Wildlife Service.1999:77-96.
    [140]TOOTH S. Floodouts in central Australia [M]//MILLER A J, GUPTA A. Varieties of Fluvial Form. Chichester, UK; John Wiley and Sons.1999:219-247.
    [141]YONGE D, HESSE P P. Geomorphic environments, drainage breakdown, and channel and floodplain evolution on the lower Macquarie River, central-western New South Wales [J]. Australian Journal of Earth Sciences,2009,56:35-53.
    [142]TOOTH S, RODNIGHT H, DULLER G A T, MCCARTHY T S, MARREN P M, BRANDT D. Chronology and controls of avulsion along a mixed bedrock-alluvial river [J]. Geological Society of America Bulletin,2007,119(3-4):452-461.
    [143]SEMENIUK C A, SEMENIUK V. A geomorphic approach to global classification for inland wetlands [J]. Vegetatio,1995,118(1-2):103-124.
    [144]THOMS M C, SOUTHWELL M, MCGINNESS H M. Floodplain-river ecosystems: Fragmentation and water resources development [J]. Geomorphology,2005,71(1-2): 126-138.
    [145]JOLLY I D. The effects of river management on the hydrology and hydroecology of arid and semi-arid floodplains [M]//ANDERSON M G, WALLING D E, BATES P D. Floodplain Processes. New York, US; John Wiley and Sons.1996:577-609.
    [146]REID M A, BROOKS J J. Detecting effects of environmental water allocations in wetlands of the Murray-Darling Basin, Australia [J]. Regulated Rivers-Research & Management, 2000,16(5):479-496.
    [147]KINGSFORD R. Protecting rivers in arid regions or pumping them dry? [J]. Hydrobiologia,2000,427(1):1-11.
    [148]KINGSFORD R T. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia [J]. Austral Ecology,2000,25(2):109-127.
    [149]THOMS M C. Floodplain-river ecosystems:lateral connections and the implications of human interference [J]. Geomorphology,2003,56(3-4):335-349.
    [150]FRAZIER P, PAGE K. The effect of river regulation on floodplain wetland inundation, Murrumbidgee River, Australia [J]. Marine and Freshwater Research,2006,57(2): 133-141.
    [151]LEMLY A D, KINGSFORD R T, THOMPSON J R. Irrigated agriculture and wildlife conservation:Conflict on a global scale [J]. Environmental Management,2000,25(5): 485-512.
    [152]MDBA. Murray-Darling Basin Authority [M/OL].2013-3-1, http://www.mdba.gov.au/.
    [153]QLD. Queensland Government [M/OL].2011-3-1, http://watermonitoring.derm.qld.gov. au/host.htm.
    [154]VIC. Department of Environment and Primary Industries [M/OL].2011-3-1, http://w ww.vicwaterdata.net/vicwaterdata/home.aspx.
    [155]BOM. About the Geofabric [M/OL].2011-2-1, http://www.bom.gov.au/water/geofabric /about.shtml.
    [156]OVERTON I C, COLLOFF M J, DOODY T M, HENDERSON B, CUDDY S M. Ecological Outcomes of Flow Regimes in the Murray-Darling Basin [R]. Adelaide, Australia:Water for a Healthy Country Flagship, CSIRO,2009.
    [157]STEDINGER J R, VOGEL R M, FOUFOULA-GEORGIOU E. Frequency analysis of extreme events [M]//MAIDMENT D. Handbook of hydrology. New York, US; McGraw-Hill.1993.
    [158]SICCARDI F, BONI G, FERRARIS L, RUDARI R. A hydrometeorological approach for probabilistic flood forecast [J]. Journal of Geophysical Research:Atmospheres,2005, 110(D5):D05101.
    [159]HAAN C T. Statistical Methods in Hydrology [M]. Iowa:Iowa State University Press, 1977.
    [160]ZELENHASIC E. Theoretical Probability Distributions for Flood Peaks [M]. Colorado: Colorado University Press,1970.
    [161]GRINGORTEN I I. A Plotting Rule for Extreme Probability Paper [J]. Journal of Geophysical Research,1963,68(3):813-814.
    [162]CUNNANE C. Unbiased plotting positions —A review [J]. J Hydrol,1978,37(3-4): 205-222.
    [163]KIM S, SHIN H, JOO K, HEO J-H. Development of plotting position for the general extreme value distribution [J]. J Hydrol,2012,475(0):259-269.
    [164]GUO S L. A discussion on unbiased plotting positions for the general extreme value distribution [J]. J Hydrol,1990,121(1-4):33-44.
    [165]CHEN Y, CUDDY S M, WANG B, MERRIN L E. Linking inundation timing and extent to ecological response models using the Murray-Darling Basin Floodplain Inundation Model (MDB-FIM) [C]//CHAN F, MARINOVA D, ANDERSSEN R S.19th International Congress on Modelling and Simulation (MODSIM2011). Perth, Australia.2011: 4092-4098.
    [166]LAURENSON E M. Back to basics on flood frequency analysis [J]. Transactions of the Institution of Engineers, Australia Civil engineering,1987,29(2):47-53.
    [167]ROBERTSON A I, BACON P, HEAGNEY G. The responses of floodplain primary production to flood frequency and timing [J]. Journal of Applied Ecology,2001,38(1): 126-136.
    [168]BREN L J, GIBBS N L. RELATIONSHIPS BETWEEN FLOOD FREQUENCY, VEGETATION AND TOPOGRAPHY IN A RIVER RED GUM FOREST [J]. Australian Forest Research,1986,16(4):357-370.
    [169]PRINGLE C. What is hydrologic connectivity and why is it ecologically important? [J]. Hydrological Processes,2003,17(13):2685-2689.
    [170]BOULTON A J, LLOYD L N. Flooding frequency and invertebrate emergence from dry floodplain sediments of the river murray, Australia [J]. Regulated Rivers:Research & Management,1992,7(2):137-151.
    [171]DUTTERER A C, MESING C, CAILTEUX R, ALLEN M S, PINE W E, STRICKLAND P A. Fish recruitment is influenced by river flows and floodplain inundation at Apalachicola River, Florida [J]. River Res Appl,2013,29(9):1110-1118.
    [172]STEENBEEKE G, KIDSON R, WITTS T, BRERETON G, NATURAL HERITAGE T. A review of recent studies investigating biological & physical processes in the Macqarie Marshes [R]. New South Wales, Australia:Riverine Environment Unit, Central West Region, NSW Department of Land and Water Conservation,2000.
    [173]PENTON D J, OVERTON I C. Spatial Modelling of Floodplain Inundation Combining Satellite Imagery and Elevation Models [C]//Modsim 2007:International Congress on Modelling and Simulation:Land, Water and Environmental Management:Integrated Systems for Sustainability,2007,1464-1470.
    [174]TOCKNER K, PENNETZDORFER D, REINER N, SCHIEMER F, WARD J V. Hydrological connectivity, and the exchange of organic matter and nutrients in a dynamic river-floodplain system (Danube, Austria) [J]. Freshw Biol,1999,41(3):521-535.
    [175]CLAUSEN B, BIGGS B. Relationships between benthic biota and hydrological indices in New Zealand streams [J]. Freshw Biol,1997,38(2):327-342.
    [176]PEARSON R G, ARTHINGTON A H, GODFREY P C. Ecosystem Health of Wetlands of the Great Barrier Reef Catchment:Tully-Murray Floodplain Case Study [R]. NSW, Australia:James Cook University,2010.
    [177]LEIGH C, SHELDON F. Hydrological connectivity drives patterns of macroinvertebrate biodiversity in floodplain rivers of the Australian wet dry tropics [J]. Freshw Biol,2009, 54(3):549-571.
    [178]GIGNEY H, PETRIE R, GAWNE B, NIELSEN D, HOWITT L. The Exchange of Material between the Murray River Channel and Barmah-Millewa Forest during the 2005/2006 Floodplain Watering [R]. Canberra, Australia:MDBC,2006.
    [179]BAYLEY P B. Aquatic environments in the Amazon Basin with an analysis of carbon sources, fish production and yield [J]. Canadian Special Publications of Fisheries and Aquatic Sciences,1989,106:399-408.
    [180]THORTON S A, BRIGGS S V. A survey of hydrological changes to wetlands of the Murrumbidgee River [J]. Wetlands (Australia),1994,13(1):1-10.
    [181]丁雨淋,杜志强,朱庆,张叶廷.洪水淹没分析中的自适应逐点水位修正算法[J].测绘学报,2013,4:546-553.
    [182]郭利华,龙毅.基于DEM的洪水淹没分析[J].测绘通报,2002,11:25-27.
    [183]GREEN A A, WHITEHOUSE G, OUTHET D. Causes of flood streamlines observed on Landsat images and their use as indicators of floodways [J]. International Journal of Remote Sensing,1983,4(1):5-16.
    [184]陈鹏霄,申邵洪,谭德宝.基于空间插值的洪水淹没空间分布快速获取[J].武汉大学学报(工学版),2010,6:727-729.
    [185]BRIVIO P A, COLOMBO R, MAGGI M, TOMASONI R. Integration of remote sensing data and GIS for accurate mapping of flooded areas [J]. International Journal of Remote Sensing,2002,23(3):429-441.
    [186]DI BALDASSARRE G, SCHUMANN G, BATES P. Near real time satellite imagery to support and verify timely flood modelling [J]. Hydrological Processes,2009,23(5): 799-803.
    [187]AUYNIRUNDRONKOOL K, CHEN N C, PENG C H, YANG C, GONG J Y, SILAPATHONG C. Flood detection and mapping of the Thailand Central plain using RADARS AT and MODIS under a sensor web environment [J]. Int J Appl Earth Obs Geoinf,2012,14(1):245-255.
    [188]TOYRA J, PIETRONIRO A, MARTZ L W. Summer flood mapping in a northern wetland using a combination of Radarsat and SPOT imagery [J]. Remote Sensing and Hydrology 2000,2001,267:536-538.
    [189]SCHUMANN G, BATES P D, HORRITT M S, MATGEN P, PAPPENBERGER F. Progress in integration of remote sensing-derived flood extent and stage data and hydraulic models [J]. Rev Geophys,2009,47:RG4001.
    [190]OSORIO J D G, GALIANO S G G. Development of a sub-pixel analysis method applied to dynamic monitoring of floods [J]. International Journal of Remote Sensing,2012,33(7): 2277-2295.
    [191]HUANG C, CHEN Y, WU J P. DEM-based modification of pixel-swapping algorithm for enhancing floodplain inundation mapping [J]. International Journal of Remote Sensing, 2014,35(1):365-381.
    [192]付必涛.基于亚像元分解重构的MODIS水体提取模型及方法研究[D].武汉:华中科技大学,2009.
    [193]ATKINSON P M. Sub-pixel target mapping from soft-classified, remotely sensed imagery [J]. Photogrammetric Engineering and Remote Sensing,2005,71(7):839-846.
    [194]ICHOKU C, KARNIELI A. A review of mixture modeling techniques for sub-pixel land cover estimation [J]. Remote Sensing Reviews,1996,13(3-4):161-186.
    [195]TATEM A J, LEWIS H G, ATKINSON P M, NIXON M S. Super-resolution land cover pattern prediction using a Hopfield neural network [J]. Remote Sensing of Environment, 2002,79(1):
    [196]MERTENS K C, VERB EKE L P C, DUCHEYNE E I, DE WULF R R. Using genetic algorithms in sub-pixel mapping [J]. International Journal of Remote Sensing,2003, 24(21):4241-4247.
    [197]MERTENS K C, DE BAETS B, VERBEKE L P C, DE WULF R R. A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models [J]. International Journal of Remote Sensing,2006,27(15):3293-3310.
    [198]LING F, DU Y, XIAO F, XUE HP,WUSJ. Super-resolution land-cover mapping using multiple sub-pixel shifted remotely sensed images [J]. International Journal of Remote Sensing,2010,31(19):5023-5040.
    [199]LING F, LI X D, DU Y, XIAO F. Sub-pixel mapping of remotely sensed imagery with hybrid intra-and inter-pixel dependence [J]. International Journal of Remote Sensing, 2013,34(1):341-357.
    [200]THORNTON M W, ATKINSON P M, HOLLAND D A. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution swapping [J]. International Journal of Remote Sensing,2006,27(3):473-491.
    [201]THORNTON M W, ATKINSON P M, HOLLAND D A. A linearised pixel-swapping method for mapping rural linear land cover features from fine spatial resolution remotely sensed imagery [J]. Computers & Geosciences,2007,33(10):1261-1272.
    [202]MAKIDO Y, SHORTRIDGE A, MESSINA J P. Assessing alternatives for Modeling the spatial distribution of multiple land-cover classes at sub-pixel scales [J]. Photogrammetric Engineering and Remote Sensing,2007,73(8):935-943.
    [203]SHEN Z Q, QI J G, WANG K. Modification of Pixel-swapping Algorithm with Initialization from a Sub-pixel/pixel Spatial Attraction Model [J]. Photogrammetric Engineering and Remote Sensing,2009,75(5):557-567.
    [204]SU Y F, FOODY G M, MUAD A M, CHENG K S. Combining Pixel Swapping and Contouring Methods to Enhance Super-Resolution Mapping [J]. IEEE J Sel Top Appl Earth Observ Remote Sens,2012,5(5):1428-1437.
    [205]TATEM A J, LEWIS H G, ATKINSON P M, NIXON M S. Super-resolution target identification from remotely sensed images using a Hopfield neural network [J]. IEEE Trans Geosci Remote Sensing,2001,39(4):781-796.
    [206]HUANG C, CHEN Y, WU J. A DEM-based modified pixel swapping algorithm for floodplain inundation mapping at subpixel scale [C]//Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGASS), Melbourne, Australia, 2013,
    [207]NGUYEN M Q, ATKINSON P M, LEWIS H G. Superresolution mapping using a Hopfield neural network with LIDAR data [J]. Ieee Geoscience and Remote Sensing Letters,2005,2(3):366-370.
    [208]NGUYEN M Q, ATKINSON P M, LEWIS H G. Superresolution mapping using a hopfield neural network with fused images [J]. IEEE Trans Geosci Remote Sensing,2006,44(3): 736-749.
    [209]LING F, XIAO F, DU Y, XUE H P, REN X Y. Waterline mapping at the subpixel scale from remote sensing imagery with high-resolution digital elevation models [J]. International Journal of Remote Sensing,2008,29(6):1809-1815.
    [210]JENSON K, DOMINGUE O. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis [J]. Photogrammetric Engineering and Remote Sensing,1988,54(11):1593-1600.
    [211]GOOVAERTS P. Geostatistics for Natural Resource Evaluation [M]. New York:Oxford University Press,1997.
    [212]TARBOTON D G, BRAS R L, RODRIGUEZ-ITURBE I. On the extraction of channel networks from digital elevation data [J]. Hydrological Processes,1991,5(1):81-100.
    [213]SHREVE R L. Statistical law of stream numbers [J]. Journal of Geology,1966,74:17-37.
    [214]STRAHLER A N. Quantitative analysis of watershed geomorphology [J]. Transactions American Geophysical Union,1957,38:913-920.
    [215]BARRETT J P. The Coefficient of Determination-Some Limitations [J]. The American Statistician,1974,28:19-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700