用户名: 密码: 验证码:
多辊轧机板形控制理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在板带材生产中,板形控制理论对于改进带钢生产工艺,提升带钢质量至关重要。辊系弹性变形理论是板形控制理论的核心模型之一。辊系变形主要包括轧辊弯曲变形和辊间压扁变形。以影响函数法为基础的轧辊弯曲模型计算精度较高,且已得到广泛应用;而目前的辊间压扁模型仍存在理论缺陷,精度较低,这大大制约了板带材质量的提高。为了提高辊系变形计算精度,完善板形控制理论,本文提出了一种新型的辊间压扁解析模型。
     该辊间压扁模型基于边界积分方程法推导而来,将轧辊视为有限长度的半无限体,对该半无限体的两侧面位移场进行有限元模拟,并建立侧面位移分布函数。最后通过求解边界积分方程,得到辊间压扁分布值。通过与有限元法、半无限体模型、费普尔公式进行对比,验证了新型辊间压扁模型的准确性。为了该模型的实际应用,本文对模型进行了离散化处理;为了提高该模型的计算效率,文中采用数学多项式对模型中的数值积分项进行了数值拟合。通过将半无限体模型与新型辊间压扁模型对比,文中给出了半无限体模型的计算误差以及适用范围。
     为了进一步研究新型辊间压扁模型的影响效果,将其分别应用到四、六辊轧机辊系变形计算中,通过耦合辊间压扁变形与轧辊轴线弯曲变形、轧辊与带钢之间压扁变形得到综合的辊系弹性变形。所得结果与有限元法、半无限体模型、费普尔公式等不同方法所得结果进行对比验证。而后分析不同窜辊量、弯辊力、压下量、板带宽度等工艺条件下,辊间压力、辊间压扁、工作辊出口辊缝等分布值的变化规律。而后,针对在极薄带钢轧制过程中极易出现的上下工作辊端压靠现象,应用有限长半无限体压扁理论,推导了全新的工作辊辊端压靠模型,以四辊轧机为例,采用本文推导的基于有限长半无限体压扁理论的辊系变形模型,耦合基于变分法的金属塑性变形模型,得到了全新的四辊轧机板形控制模型。最后,应用该耦合模型分别就考虑压靠与否、工作辊直径、板宽、弯辊力、压下量等因素对轧制力、压靠力、辊间压力、前张力、出口厚度分布的影响规律进行了深入研究。
     以极薄带钢轧机的常用机型二十辊轧机为研究对象,针对二十辊轧机辊系塔形布置、辊间接触复杂、压扁位置众多等特点,建立全新的二十辊轧机的板形控制模型。将新型辊间压扁模型考虑应用其中,并考虑了外层轧辊分段支撑的影响。以二十辊实验室精密轧机为例,分析了第一中间辊窜辊、锥段长度、工作辊直径及辊凸度、第二中间非传动辊直径及辊凸度、ASU调节量、张力大小等因素对带钢出口厚度、轧制力分布、辊间压力分布等的影响规律。
     最后,在二十辊实验室精密轧机上开展轧制过程实验研究。针对二十辊轧机轧制力难以测量的问题,提出了一种采用机架贴应变片,间接标定轧制力的测量方法。基于该轧制力测量方法,以厚度为0.4mm的薄钢带为原料,改变板宽、第一中间辊锥度参数、张力、压下量等因素进行二十辊轧机板带轧制实验,研究带钢出口板形的变化规律,并与本文理论模型计算板形状况进行对比验证,所得实验结果和计算结果较为吻合。以厚度为0.04mm的普碳钢极薄带为原料,开展极薄带钢轧制实验研究,改变压下量、第一中间辊锥度、锥长等条件,探索极薄带轧制过程相关因素的影响规律,并采用本文所推导的计算模型进行理论分析,得出了一套较为合理的极薄带轧制工艺及方法。
In the strip rolling process, the plate shape control technology plays a veryimportant role in improving the product quality. Roll deformation theory is the core partof shape control theories, which includes roll flattening and roll bending deformation.The roll bending model based on influence function method and with high accuracy hasbeen widely used. However, the current roll flattening model has a low accuracy becauseof its defect theory, which restricts the strip production development. In order to improvethe calculation accuracy of the roll deformation, a new and more accurate roll flatteningmodel is proposed.
     Based on boundary integral equation method, an analytical model for solving afinite length semi-infinite body is established. The lateral surface displacement field ofthe finite length semi-infinite body is simulated by finite element method (FEM) andlateral surface displacement decay functions are established. Based on the boundaryintegral equation method, the numerical solution of the finite length semi-infinite bodyunder the distributed force is obtained and an accurate roll flattening model is established.Different from the traditional semi-infinite body model, the matrix form of the new rollflattening model is established through the mathematical derivation. Compared withsemi-infinite body model and Foppl formula, the result from the new model is moreconsistent with that by FEM especially near the edges. In order to improve the efficiencyof the new model, the numerical integration in the model is fitted by mathematicalpolynomial. By comparison between the semi-infinite model and the new model,quantitative relationship and the scope of semi-infinite body model are obtained.
     In order to analyze the influence of the new roll flattening model, the model isapplied in roll deformation calculation of4and6Hi mill, where the roll flattening, rollbending, the flattening between work roll and strip are coupled together, and the accuracyis verified by FEM. And then, the new model is compared with Foppl formula and semi-infinite body model in different strip width, roll shifting value and bending force, theinfluence laws are obtained. For the work roll edge contact in thin strip rolling process, based on the new model (finite length semi-infinite body flattening theory) in this paper,a new work roll edge contact deformation model is established. Based on the new rolldeformation model and coupled with the variational method (metal plastic deformationmodel), a new4Hi mill plate shape control model is established. At last, based on thecoupled model, the distribution law of rolling force and tension are analyzed by changingwork roll edge contact condition, work roll diameter, plate width, bending force, andreduction.
     The20Hi mill is applied widely in thin strip rolling process. But the rolls of20Himill are arranged as cluster, contact position and roll flattening are complex, the currentroll flattening model can not obtain accurate result for20Hi mill. For the reason above,based on the finite length semi-infinite body flattening theory, a new plate shape controlmodel of20Hi mill is established, which includes roll deformation model and metalplastic deformation model. And segmented roll contact are considered in the new model.Taking a20Hi mill in laboratory as an example, the effects of the first intermediate rollshifting and taper, ASU, tension, work roll crown and the second intermediate non-driveroll crown are analyzed.
     Rolling experimental study is carried out at the20Hi mill in laboratory. Because thatthe rolling force of20Hi mill is hard to measure, a new measurement method is proposed.Based on the rolling force measure method,0.4mm thickness strip as the raw material, arolling experiment is carried out by changing plate width, the first intermediate rolls andtaper, tension and reduction, the influence law of plate shape is obtain. The test resultsare analyzed by the new plate shape control model of20Hi mill, and the accuracy of thenew model is certified. Taking0.04mm thickness strip as the raw material, a rollingexperiment is carried out. By changing the first intermediate rolls and taper, reduction,the influence law of particularly thin strip shape is explored. Based on the new plateshape control model of20Hi mill, the influence factors are studied. As the result, areasonable method for particularly thin strip rolling process is obtained.
引文
[1]陆小武,彭艳,刘宏民. Dc轧机板厚板形控制策略[J].中南大学学报:自然科学版.2011,42(8):2309-2317.
    [2]刘志亮,李文强,王英杰.动态板形辊平整机板形控制机理模型研究[J].中国机械工程.2011,22(13):1624-1628.
    [3]张喜榜,于孟.六辊cvc宽带轧机板形控制性能研究[J].矿冶.2013,22(B11):88-91.
    [4]赵菁,解相朋,吴有生.工作辊可水平移动的六辊轧机板形控制算法[J].工业控制计算机.2013(11):102-104.
    [5]吴宏荣.酒钢不锈钢热轧板形控制技术应用研究[J].甘肃科技.2013,29(21):46-49.
    [6]王晓东,李飞,董立杰.热轧薄规格带钢平整过程板形控制技术[J].中国冶金.2012,22(6):12-16.
    [7]张清东,代畅,文杰,等.二十辊森吉米尔轧机板形调控性能仿真研究[J].轧钢.2013,30(3):1-6.
    [8]闫学良. Cvc六辊冷轧机板形控制手段的研究[J].机电工程技术.2013(9):23-25.
    [9] Karman T V. On the Theory of Rolling[J]. Journal of Applied Mathematics and Mechanics.1925,5:139-141.
    [10] Orowan E, Ing D. The Calculation of Roll Pressure in Hot and Cold Flat Rolling[J].Proceedings Institute of Mechanical Engineering.1943,150(4):140-167.
    [11] Orowan E, Pascoe K J. A Simple Method of Calculating Roll Pressure and Power Consumptionin Flat Hot Rolling[J]. Iron and Steel Institute.1946(34):124-126.
    [12] Alexander J M. A Slip Line Field for the Hot Rolling Process. Processing of Institute ofMechanical Engineering[J]. Processing of Institute of Mechanical Engineering.1955,169:1021-1030.
    [13] BERNSMANN G P. Latreal Material Flow During Cold Rolling of Strip[J]. IRON STEELENGNEER.1972,49(3):67-71.
    [14] Tarnovskii. Deformation of Metal During Rolling[J]. Pergamon Press.1965:22-56.
    [15]小林史郎, Lee C H, Shah S N.マトリツクス法にょゐ剛-塑性体変形の解析[J].塑性と加工.1973,14(153):770-778.
    [16]加藤和典.3次元压延のェネルギ法による解析[J].塑性と加工.1983,24(273):1014-1021.
    [17]加藤和典.ェネルギ法による压延の解析[J].塑性と加工.1986,27(300):97-104.
    [18]加藤和典,室田中雄,雄谷敏彦.剛完全塑性材料の平压延[J].塑性と加工.1980,21(231):359-367.
    [19] Lian J C. Analysis of Profile and Shape Control in Flat Rolling. In: Proceeding of the FirstInternational Conference on Steel Rolling Tokyo, Japan,1980:713-724
    [20]连家创.变分法求解辊缝中金属横向流动问题[J].东北重型机械学院学报.1980,(1):1-10.
    [21]连家创,段振勇.轧件宽展量的研究[J].钢铁.1984,19(11):15-20.
    [22]连家创.变分法求解辊缝中金属横向流动问题的进展[J].轧钢,金属学会轧钢分会,北京.1996:194-198.
    [23]柳本左門.圧延加工にぉけゐ三次元変形に関すゐ研究[J].日本機械学会論文集.1961,27(178):800-808.
    [24]柳本左門,青木至.圧延加工にぉけゐ平均圧延圧力を与元ゐ関係式にっぃて[J].日本機械学会論文集.1967,33(249):826-831.
    [25] Geleji A,. Rtm Umliche Verteilung Des Werkstoffflusses Und Des Walzdruckes ImWalzspalt[J]. Archivfür das Eisenhüttenwesen.1967,38(2):99.
    [26] Troost A. Zur Elementarn Plastizittmtstheorie Rtmumlicher Umformvor-Gtmnge[J]. Archiv fürdas EisenhüttenWesen.1964,35(9):847.
    [27]户澤康寿,中村雅勇,石川孝司.三次元解析の方法と計算例[J].塑性と加工.1976,17(180):37-44.
    [28]石川孝司,中村雅勇,戸澤康寿.ロールの変形を考慮した薄板圧延の3次元解析[J].塑性と加工.1980,21(237):902-908.
    [29]戸澤康寿,石川孝司,岩田德利.薄板圧延の3次元変形に对ぉゐ改良た解析[J].塑性と加工.1982,23(263):1181-1187.
    [30]连家创,段振勇,叶星.三维解析法求解辊缝中金属横向流动问题[J].东北重型机械学院学报.1984(3):1-9.
    [31]王连生,杨荃,何安瑞,等.热轧宽带钢厚度及轧制力横向分布的研究[J].钢铁.2011,46(6):56-59.
    [32]陈庆军,康永林,洪慧平,等.低合金宽薄板轧制过程温度场的有限元模拟[J].塑性工程学报.2006,13(6):80-82.
    [33] Tomano T. Finite Element Analysis of Steady-Flow in Metal Processing[J]. J. Jap. Soc. Tech.Plas.1973,14:766-769.
    [34] Liu C. Simulation of the Cold Rolling of Strip Using an Elastic-Plastic Finite ElementTechnique[J]. Int.J.Mech.Sci.1985(27):829-839.
    [35] Liu C, Hartley P, Sturgess C E N, e. al. Finite-Element Modelling of Deformation and Spreadin Slab Rolling[J]. International Journal of Mechanical Sciences.1987,29(4):271-283.
    [36] Liu C, Hartley P, Sturgess C E N, e. al. Analysis of Stress and Strain Distributions in SlabRolling Using an Elastic-Plastic Finite-Element Method[J]. International Journal for NumericalMethods in Engineering.1988,25(1):55-66.
    [37]杜凤山.三维弹塑性有限元模拟板带轧制过程[D].秦皇岛:燕山大学工学博士学位论文.1990:47-126.
    [38]荀玉伟.中厚板轧制过程的弹塑性有限元模拟[D].秦皇岛:燕山大学工学硕士论文.2009:4-15.
    [39]隋凤利. Gh4169合金热连轧过程的数值模拟与工艺研究[D].沈阳:东北大学工学博士学位论文.2009:2-40.
    [40] Lee C H, Kobayashi S. New Solutions to Rigid-Plastic Deformation Problems Using a MatrixMethod[J]. Transaction of the ASME, Journal of Engineering for Industry.1973,95(3):865-873.
    [41]刘相华.刚塑性有限元及其在轧制中的应用[M].北京:冶金工业出版社,1994
    [42] Li G, Kobayashi S. Spred Analysis in Rolling by the Rigid-Plastic Finite Element Method[J].Numerical Methods in Industrial Forming Process, Swansea Wales: Pineridge press.1982:777-786.
    [43] Hwang S M, Joun M S. Analysis of Hot-Strip Rolling by a Penalty Rigid-Viscoplastic FiniteElement Method[J]. International Journal of Mechanical Sciences.1992,34(12):971-984.
    [44]赵铁勇.板带热轧过程多机型耦合仿真系统研究及效率分析[D].秦皇岛:燕山大学工学博士论文.2011:
    [45]梅瑞斌,李长生,刘相华,等.1.5维刚塑性有限元快速求解板带轧制过程[J].东北大学学报(自然科学版).2010,31(8):1113-1116.
    [46]李长生,宋叔尼,梅瑞斌,等.板材轧制过程中快速有限元在线算法[J].机械工程学报.2009,45(6):193-198.
    [47]申光宪,肖宏,陈一鸣.边界元法[M].北京:机械工业出版社,1998:1-6.
    [48] Kihara J. Application of Boundary Element Method to Rolling Tecnology with Special Respectto Flatness and Crown of Plate and Sheet[J]. ISIJ International.1991,31(6):543-549.
    [49] Kihara J, Aizawa T, Ma X P. Application of Bem to Calculation of the Roll Profile in FlatRolling. In: The Science and Technology of Flat Rolling,4th International Steel RollingConference Deauville, France.,1987:1-12
    [50]肖宏.三维弹塑性边界元法模拟板带轧制过程的研究[D].秦皇岛:燕山大学工学博士学位论文.1991:18-97.
    [51]肖宏.三维弹塑性接触问题的边界元法及其在板带轧制过程分析中的应用[J].燕山大学学报.2000,24(4):363-368.
    [52]肖宏,申光宪,木原淳二.考虑摩擦三维弹塑性接触边界元法[J].计算力学学报.1998,15(1):32-37.
    [53]肖宏,申光宪,连家创.三维弹塑性边界元法模拟板带轧制过程[J].钢铁.1993,28(3):39-43.
    [54]肖宏,申光宪,连家创.弹塑性有限变形问题的边界元法模拟轧制过程[J].机械工程学报.1994,30(增刊):40-45.
    [55] Xiao H, Aizawa T, Kihara J. Devemopment of Three Dimensional Boundary ElementSimulater for Rolling[J]. Boundary Element Methods, Tokyo, Japan: Elsevier Press.1996:287-296.
    [56] Greengard L, Rokhlin V. A Fast Algorithm for Particle Simulations[J]. J. Comput. Phys.1987,73(2):325-348.
    [57]陈泽军.三维弹性接触taylor级数多极边界元法理论与应用研究[D].秦皇岛:燕山大学工学博士学位论文.2008:123-142.
    [58]刘宏民,连家创,段振勇.模拟带材轧制过程的条元法[J].机械工程学报.1993,29(4):36-42.
    [59] Liu H M, Lian J C. Transverse Distribution of Front and Back Tension Stresses in Cold StripRolling[J]. Chinese Journal of Metal Science and Technology.1992,8(6):427-434.
    [60] Liu H M, Lian J C, Duan Z Y. Strip Element Method Analyzing the3-D Stresses andDeformations of Cold Strip Rolling. In:4th International Conference on Technology ofPlasticity Beijing, China: International Academic Publishers,1993:868-873
    [61] Liu H M, Lian J C, Duan Z Y. Study on the Asymmetrical Cold Strip Rolling under LargeWidth to Thickness Ratio[J]. Journal of Material Science and Technology.1996,12(3):232-234.
    [62] Liu Y L, Lian J C. A Method for Predicting the Transverse of Residual Stress in Cold Rollingof Thin Strip Using Elastic-Plastic Theory[C]. Presented at the Asia-Pacific Symposium onAdvances in Engineering Plasticity and its Application, Hong Kong,1993:869-874
    [63]刘玉礼,连家创,段振勇,等.板厚板形综合调节新型四辊轧机的研究[J].钢铁.1990,25(11):35-40.
    [64]兰兴昌,刘宏民,连家创.连轧管芯棒速度及其摩擦对轧制过程影响的研究[J].钢铁.1994,29(9):28-33.
    [65]王宏旭,刘宏民. Cvc轧机冷轧宽带材板形控制特性的数值模拟[J].1997(2):21-33.
    [66] Wang H X, Lian J C, Liu H M. Study on Optimal Initial Work Roll Profile for Cold StripMill[J]. Chinese Journal of Mechanical Engineering.1997,10(3):214-219.
    [67] Wang H X, Lian J C, Liu H M. Determination of Optimal Initial Work Roll Profile for ColdStrip Mill[J]. Journal of Iron and Steel Research.1998,5(1):8-12.
    [68] Hitchcock J H. Elastic Deformation of Rolls During Cold Rolling[J]. ASME Report of SpecialResearch Committee on Roll Neck Bearing.1935(6)
    [69] Larke E C. The Rolling of Strip Sheet and Plate[M]. London: Chapman and Hall LTD,1963
    [70] Saxl K. Transverse Gauge Variation in Strip and Sheet Rolling[J]. Proceedings of theIndtitution of Mechanical Engineers.1958,172:727-742.
    [71] Полухцн В П. Совместнос Влияние Диаметра Рабочего Валка И ЩириныПрокатызаемой Полосы На Распредение Межвалкового Давления И Прогия ВалковСтанов Кварто[J]. Сталъ.1964(2):43-57.
    [72] Stone M D, Gray R. Theory and Practical Aspects in Crown Control[J]. Iron and Steel Engineer.1965,42(8):657-674.
    [73]盐崎宏行ほか.塑性と加工.1968(29):55-70.
    [74]盐崎宏行ほか.昭和49年度塑性加工春季讲演会论文集.1974:45-78.
    [75]本城恒ほか.石川岛播磨技报.1981(5):457.
    [76] Shohet K N, Townsend N A. Roll Bending Methods of Crown Control in Four-High PlateMills[J]. Journal of the Iron and Steel Institute.1968,206(11):1088-1098.
    [77] Edwards W J, Spooner P D. Analysis of Strip Shape[C]. Presented at the Automation ofTandem Mills, London,1973:176-212
    [78]户泽康寿.关于薄板的三元轧制理论[M].申光宪等译.齐齐哈尔:东北重型机械学院,1982:78-83.
    [79]王国栋.板形控制和板形理论[M].北京:冶金工业出版社,1986:439-441.
    [80]王国栋,张树堂.四辊轧机轧辊弹性变形的矩阵算法[J].重型机械.1982(8):9-18.
    [81] Guo R M. Prediction of Strip Profile in Rolling Process Using Influence Coefficients andBoussinesq's Equations[J]. Journal of Manufacturing Science and Engineering.1997,119(2):220-226.
    [82] YUN K H, SHIN T J, HWANG S M. A Finite Element-Based on-Line Model for the Predictionof Deformed Roll Profile in Flat Rolling[J]. ISIJ International.2007,47(9):1300-1308.
    [83] Kim Y H, Lee W H, Hwang S M. An Integrated Fe Process Model for Prediction of StripProfile in Flat Rolling[J]. ISIJ International.2003,43(12):1947-1956.
    [84]王涛.热轧带钢板凸度及板形计算理论研究[D].秦皇岛:燕山大学工学博士论文.2013:3-50.
    [85]秦剑.基于影响函数法的多辊轧机辊系变形矩阵迭代法[J].工程力学.2013,30(5):271-276.
    [86]孔繁甫,何安瑞,邵健.快速辊系变形在线计算方法研究[J].机械工程学报.2012,48(2):121-126.
    [87]常铁柱,韩培恋,王建兵.20辊轧机辊系变形和力能参数计算[J].冶金设备.2011(5):6-9.
    [88]白剑,刘治田,严洪凯,等.基于apdl的轧机辊系变形仿真研究[J].冶金设备.2010:42-44.
    [89]卢倩,何安瑞.热轧超薄规格工作辊辊端压靠辊系变形模型[J].塑性工程学报.2010,17(2):95-99.
    [90]李新星,金晓宏.非对称条件下板材轧制压力分布的计算[J].冶金丛刊.2010(2):1-6.
    [91] Knapinshi M. The Numerical Analysis of Roll Deflection During Plate Rolling[J]. Journal ofMaterials Processing Technology.2006,175(1-3):257-265.
    [92]时旭,刘相华,王国栋,等.四辊冷轧机轧辊弯曲和压扁变形的有限元分析[J].东北大学学报(自然科学版).2004,25(10):957-960.
    [93]李学通,吴志贺,杜凤山,等.四辊平整机轧制过程辊系变形有限元分析[J].塑性工程学报.2008,15(2):126-130.
    [94] Trull M, McDonald D, Richardson A, et al. Advanced Finite Element Modelling of PlateRolling Operations[J]. Journal of Materials Processing Technology.2006,177(1-3):513-516.
    [95] Sun J N, Xue T, Du F S. Analysis of Contact Stress and Crown Control for Six-Hig CvcMill[J]. Iron and Steel.2012,47(2):50.
    [96]王震,戚新军.六辊cvc板带冷连轧轧机ansys有限元仿真探讨[J].河南冶金.2011,19(5):34-36.
    [97]杨森,沈晓辉.14辊轧机辊系变形的有限元分析[J].安徽工业大学学报.2012,29(4):323-326.
    [98]张皖菊.基于ansys的hc冷轧机辊系变形研究[J].冶金设备.2013(1):11-14.
    [99]张凯峰.微成型制造技术[M].北京:化学工业出版社,2008:22-31.
    [100]翁梓华,黄太平,吴金明,等.微型飞行器的研究进展和主要技术发展[J].航空制造技术.2005,2:98-102.
    [101]唐勇,梁亮,陈柏,等.一种新型血管机器人的研究[J].中国机械工程.2011,22(17):2113-2117.
    [102]徐斌,伍晓宇,罗烽,等.0cr18ni9不锈钢箔的飞秒激光烧蚀[J].光学精密工程.2012,20(1):45-51.
    [103]徐斌,武晓宇,凌世全,等.飞秒激光切割与微细电阻滑焊组合制备三维金属微结构[J].光学精密工程.2012(8):1811-1823.
    [104]胡峰.森吉米尔轧机故障诊断[D].武汉:武汉科技大学硕士论文.2005:23-26.
    [105] Roark R J. Formulas for Stress and Strain[M]. New York: McGraw-Hill,1954:90-130.
    [106] Tozawa Y, Ueda M. Analysis to Obtain the Pressure and Distribution from the Contour ofDeformed Roll[J]. Journal of the Japan Society for Technology of Plasticity.1970,11(108):29-37.
    [107] Yu H L, Liu X H, Lee G T. Contact Element Method with Two Relative Coordinations and ItsApplication of Prediction for Strip Profile for a Sendzimir Mill[J]. ISIJ International.2007,47(7):996-1005.
    [108] Yu H L, Liu X H, Lee G T, et al. Numerical Analysis of Roll Deflection for Sendzimir Mill[J].Journal of Manufacturing Science and Engineering.2008,130(1):0110161-0110167.
    [109] Yu H L, Liu X H, Lee G T, Park H D. Numerical Analysis of Strip Edge Drop for SendzimirMill[J]. Journal of Materials Processing Technology.2008,208:42-52.
    [110]王崇涛.森吉米尔轧机板形控制的研究[D].武汉:武汉科技大学硕士学位论文.2003:12.
    [111] HARA K, YAMADA T, TAKAGI K. Shape Controllability for Quarter Buckles of Strip in20-High Sendzimir Mills[J]. ISIJ International.1991,31(6):607-613.
    [112]闫冬.森吉米尔20辊轧机板形控制特性研究[D].秦皇岛:燕山大学硕士学位论文.2011:10-70.
    [113] Berger, Pawelski, Funke. Archiv Für Das Eisenhüttenwesen[M]. Berlin: Verlag Stahleisen,1976:120-131.
    [114] Zhou S X, Funke P, Zhong J. Influence of Roll Geometry and Strip Width on Flattening in FlatRolling[J]. Steel Research.1996,67(5):200-204.
    [115] Zhou S X, Funke P, Zhong J, et al. Modification of a Classical Formula for Determination ofRoll Flattening in Flat Rolling[J]. Steel Research.1996,67(11):491-449.
    [116] Hacquin A, Montmitonnet P, Guillerault J P. A Three-Dimensional Semi-Analytical Model ofRolling Stand Deformation with Finite Element Validation[J]. Eur. J. Mech.1998,17(1):79-106.
    [117]连家创,刘宏民.板形板厚形控制[M].北京:兵器工业出版社,1995
    [118] Liang J, Liew K M. Boundary Elements for Half-Space Problems Via Fundamental Solutions:A Three-Dimensional Analysis[J]. Int. J. Numer. Meth. Eng.2001,52(11):1189-1202.
    [119] Mindlin R D. Force at a Point in the Interior of a Semi-Infinite Solid[J]. Physics.1936,7(5):195-202.
    [120] Jiang Z Y, Tieu A K. A Simulation of Three-Dimensional Metal Rolling Processes by Rigid-Plastic Finite Element Method[J]. Journal of Materials Processing Technology.2001,112(1):144-151.
    [121] Jiang Z Y, Tieu A K. Contact Mechanics and Work Roll Wear in Cold Rolling of Thin Strip[J].Wear.2007,263(7-12):1447-1453.
    [122] Jiang Z Y, We D, Tieu A K. Analysis of Cold Rolling of Ultra Thin Strip[J]. Journal ofMaterials Processing Technology.2009,209(9):4584-4589.
    [123] Jiang Z Y, Zhu H T, Tieu A K. Mechanics of Roll Edge Contact in Cold Rolling of ThinStrip[J]. International Journal of Mechanical Sciences.2006,48(7):697-706.
    [124] Jiang Z Y, Zhu H T, Tieu A K. Study of Work Roll Edge Contact in Asymmetrical Rolling byModified Influence Function Method[J]. Journal of Materials Processing Technology.2005,162-163:512-518.
    [125] Jiang Z Y, Zhu H T, Wei D B, et al. An Approach to Analyse the Special Rolling of ThinStrip[J]. Journal of Materials Processing Technology.2006,177(1-3):130-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700