用户名: 密码: 验证码:
基于分形理论的路面不平度分级与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路面不平度涉及人、车、路三方面的因素。在车辆工程研究领域,路面不平度是车辆运行环境中的主要因素,是车辆行驶的主要激励和振动源,路面不平使车辆在行驶中产生行驶阻力和振动,行驶阻力消耗车辆的功率并且影响车辆动力系统和传动系统的寿命,而在路面冲击下产生的振动,则直接影响了车辆平顺性、乘坐舒适性、操纵稳定性、车辆行驶速度以及承载系的可靠性和寿命。在道路工程领域,路面不平度也是国内外路面工程质量的评定指标之一,不平度检测贯穿于路面施工质量检测、评定、验收及运营期路面质量检测维护等环节。研究分析路面不平度、对其进行合理的评价与分级、建立路面输入模型对车辆工程和道路工程领域均具有重要意义。
     本文针对当前路面不平度分析、模拟和分级研究的现状,结合正在各领域广泛应用的分析理论、计算方法、数字模型等理论和技术,围绕路面不平度分形特征的确定、路面不平度分形分级方法、路面不平度分形模型等关键技术内容进行了深入和系统的研究。具体工作如下:
     首先设计了基于虚拟仪器技术的路面不平度数据采集系统,改善了接触式路面不平度检测仪的功能,并结合非接触式激光不平度检测车采集了大量路面不平度数据。然后对实测路面不平度数据进行了传统特性参数分析,结果发现:要完整描述路面的不平度特性需要较多的参数;而且这些参数随着测量尺度的变化而表现出不稳定性,参数值相同的表面其特性却可以相差很大,即存在尺度相关性和非唯一性。也就是说,传统参数无法唯一的表征路面不平度特性,因此,有必要寻找新的描述表面特性的参数。
     分形理论是自1975年以来迅速发展起来的一个新的数学分支理论。它在信号描述、信号处理及其它众多领域中具有广泛的应用。它与表面不平度相结合的研究已成为一个重要的交叉科学研究分支。众多研究表明分形维数能够描述复杂现象的本质特性,本文利用分形理论对实测路面不平度的特性进行了系统研究。为确定路面不平度的分形特性,首先以W-M函数生成的理想分形曲线来对比分析不同的分形维数测定方法,得到各分形维数测定方法在分析分形曲线时的适用范围及优缺点。进而应用不同的测定方法分析实测路面不平度的标度律直线关系、无标度区间和分形维数值,通过计算可知,变差法、结构函数法和均方根法在双对数坐标上的标度律直线关系均较好,但变差法和结构函数法的无标度区间存在不稳定性,均方根法下的无标度区间较稳定;又由于均方根法的物理意义明确,对表面轮廓曲线有很好的表征作用,因此,可以确定均方根法为计算路面不平度分形维数的有效方法。采用确定的均方根法计算所选路面样本的分形维数,根据计算结果来表达路面样本的不平整程度发现,仅用分形维数这一参数不能唯一确定某一路面不平度状况,即分形维数在表征实测路面不平度中存在相对性。
     为进一步确定能够唯一表征路面不平度的参数,从现有路面不平度分级的国际标准出发,根据各等级路面的功率谱数据,通过傅立叶逆变换法获得满足各个等级的路面高程序列,然后分析路面不平度的常用表征参数与分形参数之间的关系,结果表明,傅立叶逆变换方法模拟的不同等级路面表现出显著的分形特征,其分形维数差别很小,没有明显分界;但等级越差的路面在均方根法所得路面的测度与尺度的对数分布图纵轴上的截距越大,进一步通过对傅立叶逆变换所得路面数据的表征参数的计算,发现这一截距值与轮廓均方根偏差呈较好的线性关系,鉴于路面的特征分形参数值较小且其变化不利于路面分级使用,提出将分形维数与轮廓均方根偏差结合起来成为路面不平度表征的综合参数,即提出以路面不平度指数作为路面的表征参数,并计算各等级路面的路面不平度指数。
     从国际标准对路面不平度的分级原理分析出发,通过实测路面不平度数据分析国际标准对路面不平度分级的局限性;计算实测路面的表征参数,统计分析轮廓均方根偏差、分形维数、路面不平度指数与按国际标准划分的路面等级的关系,建立了以路面不平度指数为表征参数的路面不平度分级方法,该方法对于路面不平度分级方法和标准的改进具有一定参考价值。
     在路面不平度实测离散数据的基础上进行分形插值模拟,并通过时频域、分形特性参数检验分形插值的模拟效果,对影响分形插值精度的因素进行分析。研究结果表明基于迭代函数系统的分形插值函数对路面不平度进行模拟是可行的,其对于路面不平度的客观表征、数据的压缩和路面不平度测量仪器的制造等具有重要的参考价值。路面不平度分形插值模型可以作为车辆振动响应仿真分析的路面输入激励,该输入模型更加接近实际路面。
     本文最后通过仿真和试验的方式验证分形路面模型的适用性。评价本文建立的路面不平度分形模型与实际随机输入的路面的近似程度。以ADAMS软件为平台,建立了多路面输入下的整车模型,路面输入分别选择实测随机路面数据、傅立叶逆变换数据、分形插值模型数据和软件中内置的路面模型,整车模型的建立与实测车辆一致,然后进行整车动态响应仿真试验,通过比较四种路面下的车辆振动响应参数可知,分形模型能较好的逼近实测路面,其振动响应参数最接近实测路面。进一步通过实车实验采集车辆振动响应参数,对仿真结果进行了检验。
The roughness of road surface involves the three factors of people, cars, and roads. In the field of vehicle engineering road roughness is the main factor in the environment of vehicle operating and the main sources of incentive and vibration. Road roughness generates resistance and vibration while vehicles are running. The resistance depletes vehicles' power and influences the life-span of vehicle dynamical system and transmission system. And the vibration impacts vehicles'smooth-going and taking comfortableness, handling stability, traveling speed, bearing system's reliability and life-span. In the field of road engineering, road roughness is one of the evaluation indexes of the road project quality at both domestic and international countries, and roughness-test runs though the various links such as quality testing, assessment, confirmation in the period of road's construction and quality inspection, maintenance in the period of road's operation. It is very significant for the fields of vehicle engineering and road engineering to analyze on the road surface roughness, reasonably carry on appraising and grading the roughness, and establish the input model of road surface.
     In this paper, the key technological contents, such as characteristic determination of road surface roughness, its fractal grade-way roughness and fractal model, were carried on deep and systematic research, based on the current situation of analysis, simulation and grading on the road roughness, combined with various of theories and technologies which have been widely used in various fields, such as analytic theory, computing technology, mathematical model.The concrete work is as follows:
     Firstly road roughness data collecting system was designed based on virtual instrument technology, to improve the function of the contact-type detectors of the roughness, and a great deal of road roughness data was collected combined with non-contact type of laser roughness car. Then we carried on the traditional analysis of characteristic parameter on the measured data of road roughness. Result showed that more parameters were required when the whole characteristics of the road were described, and these parameters had instability with the changes in metrical scale, even with the same parameters surface characteristics are different greatly, so metrical scale-related and non-uniqueness existed. That is say, the traditional parameters are unable to represent characteristic of the road roughness uniquely, so it is essential to find a new parameters.
     Fractal theory has rapidly developed into a new branch of mathematics theory since the year of 1975.It has extensive application in describing the signal, the signal dealing and other fields. The research, which confined with surface roughness and fractal theory, has already become an important research branch in crossing science. Numerous researches indicate that fractal dimension can describe essential characteristic of the complicated phenomenon, so in this paper, fractal theory was used to systematically research into characteristics of measured road roughness. First of all, the ideal fractal curves was generated though Weierstrass-Mandelbrot function to analyze comparatively on different methods by which fractal dimensions was confirmed, then the different methods' applicable range, advantages and disadvantages were confirmed to analyze fractal curves. Through different computational methods to confirm fractal dimension, we analyzed the scale law linear relation of longitudinal sections of measured road roughness, which is regarded as two-dimensional curve. Then we found there is relevant scale law linear relation in log-log coordinate of the three methods, besides root-mean-square method, remainder-variation method and structure function method. After calculating and analyzing on both non-scale sector and fractal dimension of the three methods, we found that root-mean-square method is quite stable in the non-scale sector instead of remainder-variation method and structure function method. On the other hand, root-mean-square method has both clear physical significance and signal function to the surface profile curve, so root-mean-square method is definitely a efficacious method to calculate the fractal dimension of road roughness. After the fractal dimension of selected road roughness was calculated by the method of root-mean-square, we expressed the degree of the road roughness based on the results, then we found that only the parameters of fractal dimension can not determine the condition of a road surface roughness, in other words, the fractal dimension has relativity when it is used to signify measured road roughness.
     In order to further confirm the only parameter which signify the road roughness uniquely, started off with existing international grade standard of road roughness, based on the power spectrum-datum of road surface in every grades, high-procedures tabulates for road surface in each grades were obtained through Fourier inverse transformation law. Then we analyzed the relations between the daily signal parameters of road roughness and its fractal parameters. The result showed that there was very small difference and unclear divide between fractal dimension calculated through root-mean-square method and the prominent fractal characteristics of road surface in different grade simulated by Fourier inverse transformation, but the vertical axis'intercept was greater in Logarithmic distribution of measure and scale, which were from worse grade of road and calculated through root-mean-square method. After we calculated the signal parameters, we found that this intercept and root-mean-square deviation of the outline showed a good linear relationship. Because the fractal parameters of road characteristics were very small and their changes were adverse to use of road grade, we proposed to regard the combination between fractal dimension and root-mean-square deviation of profile as a integrated parameter to signify the road roughness, that is, road roughness index was regarded as a signal parameter of road roughness, and the indexes of every grade road were calculated.
     Based on the analysis of international standards on classification principles of road surface roughness, its limitations were analyzed by actually road surface roughness. The characteristic parameters of measured road were calculated. Root-mean-square roughness, fractal dimension and the relationship between the roughness index and the road grade based on international standards were analyzed statistically. A road surface roughness classification was established, that regards roughness index as the characteristic parameter.
     Fractal road model was finished by fractal interpolation function based on the measured discrete data of road surface roughness. Then the results of fractal model through time-frequency domain and fractal parameters were tested, and the factors which affect the accuracy of fractal interpolation were analyzed. The results indicate that it is feasible to use fractal interpolation function which is based on iterated function system to simulate road surface roughness. It has an important reference on objective characterization of road surface roughness, data compression and the manufacture of road surface roughness measuring instruments. The fractal interpolation model of road surface roughness can be used as road input in the simulation of automobile vibration response and this model is closer to the actual road.
     Finally, the applicability of the fractal road mode was verified through simulation and experiment and the approximation degree, between the fractal model of road surface roughness and the actual random input road, was evaluated. On the platform of ADAMS,the vehicle model of multiple input roads has been established and it is consistent with the actual vehicle. The selected input data are actual measured random data, inverse Fourier transform data, data of fractal interpolation model and the built-in road surface model in the software. Then vehicle dynamic response simulation test has been done. After comparing the vehicle dynamic response parameters under the four above input roads, the result indicates that fractal model can better approach the actual measured road. Its dynamic response parameter is closest to measured road. Further collecting the vehicle vibration response parameters through real vehicle experiment and comparing with the simulation results, we found that the simulation result is in good agreement with the real vehicle test result.
引文
[1]赵济海,王哲人.路面不平度的测量分析与应用[M].北京:北京理工大学出版社,2000:11-16
    [2]周晓青,孙立军,颜利.路面平整度评价发展及趋势[J].公路交通科技,2005,22(10):18-22
    [3]周晓青,孙立军.国际平整度指数与行驶车速的关系[J].同济大学学报(自然科学版),2005,33(10):1323-1327
    [4]张文春.汽车理论[M].北京:机械工业出版社,2005
    [5]张立军,张天侠.车辆四轮相关时域随机输入通用模型的研究[J].农业机械学报,2005,36(12):29-32
    [6]Robson J D. Road surface description and vehicle response [J].International Journal of Vehicle Design,1979,1(1):25-35
    [7]Tao Q, Lee H P. Lim S P. Contact mechanics of surfaces with various models of roughness descriptions. Wear,2001,249:539-545
    [8]李晨阳.比利时石块路路面不平度设计.上海市汽车工程学会2004年(第11届)学术年会论文,2004
    [9]邓学钧,孙璐.车辆—地面结构系统动力学[M].北京:人民交通出版社,2000:81-84
    [10]吴康雄,杨德明,王英健,等.数显3 m直尺式平整度仪的设计与测量原理[J].长沙交通学院学报,1997,13(2):28-33
    [11]杨浪萍,吴康雄,方晓丽,等.数显3 m直尺式平整度仪综合精度分析[J].长沙交通学院学报,1997,13(2):34-38
    [12]史剑发,郭景芹.路面平整度检测仪器—三米直尺的改进[J].内蒙古质量技术监督,2003(4):28-29
    [13]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005:140-141
    [14]李强,潘玉利.路面快速检测技术与设备研究进展及分析[J].公路交通科技,2005,22(9):35-39
    [15]郭兰英,刘小羊.XLPY-F型路面平整度仪的研制[J].交通与计算机,1999,17(3):9-11
    [16]王艳丽.应用激光断面仪测定国际平整度指数IRI[J].公路,2002,9:105-108
    [17]李中华.激光断面仪在路面平整度及车辙检测中的应用[J].交通科技,2004,3:7-9
    [18]王铁兵,柳晓东,王成竹.((RSPⅡ路面检测车系统》在路面平整度检测中的应用[J].东北公路,2001,24(3):37-38
    [19]马荣贵,宋宏勋,来旭光.激光路面平整度检测系统[J].长安大学学报(自然科学版),2006,26(2):3841
    [20]黄刚.激光路面断面检测系统的功能与应用探讨[J].重庆交通学院学报,2006,25(4):77-82
    [21]曹冰莹.激光路面监测车技术集成与开发研究[D].长安大学硕士学位论文,2006
    [22]闫军.传输时间激光测距传感器[J].传感器世界,2002,(08)[23]胡霞光.国内外路面快速检测技术的现状与发展[J].中外公路,2003,23(6):95-99
    [24]宋欣,夏知春.路面检测新技术的应用[J].交通标准化,2005,9:31-33
    [25]周晋辉.路面快速无损检测技术的发展[J].湖南交通科技,2005,31(2):39-41
    [26]梁新政,潘卫育,徐宏.路面无损检测技术新发展[J].公,2002,9:95-98
    [27]刘宛予,谢凯,浦昭邦.公路路面自动检测系统发展综述[J].中外公路,2007,27(2):30-33
    [28]初秀民,严新平,郝静.多功能高等级公路路况数据自动采集车设计[J].武汉理工大学学报(交通科技与工程版),2007,31(3):438-441
    [29]刘跃明,梅雷军.软路面不平度测量方法综述[J].云南农业大学学报,1992,7(1):50-54
    [30]郭兰英,刘小羊,高一凡.颠簸累计仪的研究与设计[J].交通与计算机,1998,16(1):18-22
    [31]陆键.各种路面平整度仪的相关分析研究[J].公路,2002,9:91-94
    [32]刘宛予,张磊,谢凯,等.路面平整度检测技术及其发展现状分析[J].工业计量,2007,17(1):9-12
    [33]蔚晓丹.国际平整度指数IRI作为路面平整度评价指标的研究[J].公路交通科技,1999,16(增1):9-13
    [34]李广馥,崔功凌,陈页开.路面平整度测定的IRI标定[J].沈阳建筑工程学院学报,1998,14(1):32-36
    [35]钟阳,潘水强.中国与美国路面不平整状况的对比分析[J].广州大学学报(自然科学版)2004,3(5):448-451
    [36]李峰.高等级公路路面平整度检测方法[J].工程论坛,2005(6):135-138
    [37]张贵忠,常洪,孙娜.高等级公路路面平整度检测方法[J].东北公路,2002,25(2):21-23
    [38]周晓青.机场道面平整度评价指标研究[D].同济大学博士学位论文,2006,6
    [39]GB7031—1987.车辆振动输入—路面不平度表示方法[M].北京:中国标准出版社,1987
    [40]李锦灿.路面不平度作用下汽车动载分析[J].机械,2007,34(2):23-25
    [41]金睿臣,宋健.路面不平度的模拟与汽车非线性随机振动的研究[J].清华大学学报(自然科学版),1999,(39)8:76-79
    [42]侯占峰,鲁植雄.车轮随机动载特性的Simulink仿真分析[J].交通与计算机,2006,24(4):92-94
    [43]孙璐,邓学钧.路面动载荷数学模型与实验设计[J].西安公路交通大学学报.1996,16(4):50-53
    [44]杨绍奎.用时间序列分析法描述路面不平度[J].兵工学报(坦克装甲车与发动机分册),1996(1):1-7
    [45]周云波,闫清东,李宏才.履带车辆平顺性仿真试验路面谱研究[J].系统仿真学报,2006,18(增
    刊2):95-100
    [46]王百益,吴业森.路面不平度的AR(P,O)序列模拟法[J].武汉工学院学报,1987,2:60-68
    [47]唐光武,贺学锋,颜永福.路面不平度的数学模型及计算机模拟研究[J].中国公路学报,2000,13(1):114-117
    [48]唐光武,成思源.二维路面不平度的时域模型及计算机仿真[J].重庆大学学报(自然科学版),2000,23(6):31-34
    [49]Yongfu X,Xiaohe X. Fractal model for virgin compression of pure clays[J]. Mechanics Research Communications,2006.33:206-216
    [50]韩忠浩,符朝兴.路面不平度及车辆响应的小波分析[J].机械设计与制造,2001(2):47-48
    [51]李晓雷,韩宝坤.用小波变换分析路面不平度及振动响应[J].北京理工大学学报,2003,23(6):716-719
    [52]孙璐,邓学钧.路面波谱密度与运动车辆对路面的随机动压力分析[J].西安公路交通大学学报.1996,16(2):17-21
    [53]邓学钧.车辆-地面结构系统动力学研究.东南大学学报.2002,32(3):474-479
    [54]吕建刚,邢 志,李猛.小波分析在路面反应谱中信号降噪的应用[J].振动工程学报,2005,18(2):257-260
    [55]李忠国,张为公,周耀群,等.谱减在基于动载的路面不平度识别中的应用[J].东南大学学报(自然科学版),2007,37(1):51-54
    [56]A. Majumdar, C. L. Tien. Fractal characterization and simulation of rough surfaces[J]. Wear,1990, 136(2):313-327
    [57]L.He, J, Zhu. The fractal character of processed metal surfaces[J]. Wear,1997,208:17-24
    [58]Sandip P. Harimkar, Narendra B.Dahotre. Characterization of microstructure in laser surface modified alumina ceramics[J].Materials Characterization,2008,59(6):700-707
    [59]I.A.EI-Sanbaly, U.A.Khashaba, A.I.Sehny, et al. Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach[J]. Journal of Materials Processing Technology,2008,200:271-278
    [60]D. Goerke, K. Willner. Normal contact of fractal surfaces —Experimental and numerical investigations[J].Wear.2008,264:589-598
    [61]辛厚文.分形理论及其应用[M].北京:中国科学技术大学出版社,1993
    [62]汪富泉,李后强.分形—大自然的艺术构造[M].济南:山东教育出版社,1996
    [63]张济忠.分形[M].北京:清华大学出版社,1995
    [64]Zribi M, Ciarletti V. Characterization of the soil structure and microwave backscattering based on numerical three-dimensioned surface representation:analysis with a fractional Brownian model[J].
    Remot Sensing of Environment,2000,72(2):159-169
    [65]Jiunn-Jong W.characterization of fractal surfaces[J]. Wear.2000,236:36-47
    [66]徐玉秀,原培新,杨文平.复杂机械故障诊断的分形与小波方法[M].北京:机械工业出版社,2003
    [67]关凯书,赵虹,王志文.路表不平度的分形特征[J].农业机械学报,2000,31(6):21-24
    [68]高农,刘明思.不平整路面下汽车随机振动的计算机模拟[J].哈尔滨师范大学自然科学学报,1997,13(5):101-104
    [69]张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型.农业机械学报,2004,35(2):9-12
    [70]Cheng Y, Cheung Y K. Effects of random road surface roughness and long-term deflection of prestressed concrete girder and cable-stayed bridges on impact due to moving vehicles[J]. Computers and Structures,2001,79:853-872
    [71]Schiehlen W, Hu B. Spectral simulation and shock absorber identification[J]. International Journal of Non-Linear Mechanics,2003,38:161-171
    [72]周云山,于秀敏.汽车电控系统理论与设计[M].北京:北京理工大学出版社,1999
    [73]张湘伟.一维Filtered Poisson Process路面模型及其数值模拟方法[J].重庆大学学报,1988,11(11):106-112
    [74]张湘伟,何正友.二维泊松过程的数值模拟及其在道路模型中的应用[J].重庆大学学报(自然科学版),1994,17(4):12-15
    [75]刘献栋,邓志党,高峰.公路路面不平度的数值模拟方法研究[J].北京航空航天大学学报,2003,29(9):843-846
    [76]陈果,翟婉明.铁路轨道不平顺随机过程的数值模拟[J].西南交通大学学报,1999,34(2):138-142
    [77]冯康.数值计算方法[M].北京:国防工业出版社,1978
    [78]安鸿志,陈兆国.时间序列的分析与应用[M].北京:科学出版社,1983
    [79]Mattia F, Letoan T. Backscattering properties of multi-scale rough surfaces. Journal of Electromagnetic Waves and Applications,1999,13:491-526
    [80]冉启文.小波变换与分数傅立叶变换理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2002
    [81]曲守平,张立军.路面不平度的时频小波分析[J].长春大学学报,1999,9(1):5-8
    [82]王岩松,李章明,何辉,等.四轮车辆非平稳路面不平度时域模拟及小波分析.汽车工程,2004,26(1):42-47
    [83]李猛,吕建刚,张进秋.小波分析在路面反映谱中的应用[J].兵工自动化,2004,23(4):59-61
    [84]Mannelqvist A,Groth M R. Comparison of fractal analyses methods and fractal dimension for pre-treated stainless steel surfaces and the correlation to adhesive joint strength. Applied Physics A, 2001,73:347-355
    [85]Jackson J T, McNairn H, Weltz M A, Brisco B,Brown R. First order surface roughness correction of active microwave observations for estimating soil moisture. IEEE Transactions on Geosciences and Remote Sensing,1997,35(4):1065-1069
    [86]余志生.汽车理论[M].北京:机械工业出版社,1981,8
    [87]侯占峰.基于分形理论的路面不平度特性研究[D].南京农业大学学位论文,2006
    [88]Arthur E S. Fractals skylines nature and beauty. Landscape and Urban Planning,2002,913:1-22
    [891王新明,王秉纲.高速公路路面功率谱[J].交通运输工程学报,2003,3(2):53-56
    [90]孙凤英,谢佳茵.路面不平度与汽车运行速度的关系研究[J].黑龙江工程学院学报(自然科学版),2006,20(2):62-64
    [91]单丽岩,侯相深.基于整车模型的路面不平度与行车舒适性关系的分析[J].公路,2005,8:122-124
    [92]宋永刚.路面平整度均方差指标与行车舒适性的关系研究[J].路面机械与施工技术,2005,12:18-21
    [93]郑联珠,梅雷军,刘跃明.关于路面不平分级方法的探讨[J].农业机械学报,1990,(2):56-61.
    [1]JTGF80/1-2004,公路工程质量检验评定标准[S].2005
    [2]郭兰英,刘小羊.XLPY-F型路面平整度仪的研制[J].交通与计算机,1999,17(3):9-11
    [3]侯国屏,王坤,叶齐鑫.LabVIEW7.1编程与虚拟仪器设计[M].北京:清华大学出版社,2005
    [4]DYNATEST 5051 Mk-IIIRSP TEST SYSTEM, OWNER'S MANUAL Version 1.06,2004 Dynatest Internadtional A/S
    [5]马魏,王选仓,王秉纲.DYNATEST 5051 RSP道路激光平整度测试车[J].长安大学学报(自然科学版),2003,23(1):23-26
    [6]于源.六项互换性基础标准及技术制图标准实施问题解答[M].北京:机械工业出版社,1996
    [7]王新明.路面表面特性与汽车动载研究[D].西安公路交通大学,2000
    [8]严普强,乔陶鹏,邓焱,等.动态测试信号中时-频域变换算法的讨论[J].振动、测试与诊断,2003,23(2):120-124
    [9]王新明,王秉纲.高速公路路面功率谱[J].交通运输工程学报,2003,(3)2:53-56
    [10]邬惠乐,邱毓强.汽车拖拉机试验学[M].北京:机械工业出版社,1981,299-379
    [11]Thomas T R. Surface topography as a non-stationary random process[J]. Nature,1978, Vol.271, 431-434
    [12]贺林,朱均.粗糙表面接触分形模型的提出与发展[J].摩擦学学报,1996,6(4):375-384
    [13]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005
    [14]Michael A C. Fractal description of rough surfaces for haptic display[C]. The Committee on graduate studies of Stanford University,2000
    [1]李水根.分形[M].北京:高等教育出版社,2004
    [2]S. Ganti and B. Bhushan, Genralized fractal analgsis and its application to engineering surfaces, wear,1995,180:17-34
    [3]C Tricot, P Ferland and G Baran, Fractal analysis of worn surfaces, wear,1994,172:127-133
    [4]J. Feders, Fractals, new York:Plenum press 1988,122-130
    [5]汪富泉,李后强.分形几何与动力系统[M].黑龙江教育出版社,1993
    [6]全书海.基于表面灰度的图像的加工表面形貌分形特征研究[D].武汉理工大学博士学位论文,2002,10
    [7]B. B. Mandelbrot, The fractal geometry of nature, New York:Freeman,1982
    [8]K. J Falconer.分形几何学[M].张少平译,徐州:中国矿业大学出版社,1992
    [9]陈顒,陈凌.分形几何学[M].北京:地震出版社,2005,2
    [10]葛世荣,索双富.表面轮廓分形维数计算方法的研究[J].摩擦学学报,1997,17(4):354-362
    [11]葛世荣.粗糙表面的分形特征与分形表达研究[J].摩擦学学报,1997,17(1):73-80
    [12]关凯书,赵虹,王志文.路表不平度的分形特征[J].农业机械学报,2000,31(6):21-24
    [13]鲁植雄.土壤特性分数维的研究[D].南京:南京农业大学学位论文,1992
    [14]张维强.江苏省水田土壤强度分数维的研究[D].南京:南京农业大学学位论文,1993
    [15]彭刚.柴油机振动数据采集系统与基于分形的故障诊断研究[D].南京:南京农业大学学位论文,2004
    [16]Zallen R. The physics of Amorphous solids[J]. Wiely-Interscience Pubication,1983
    [17]陶闯,林宗坚.分形地形模拟[J].计算机辅助设计与图形学学报,1996,8(3):178-186
    [18]Tao Q, Lee H P, Lim S P. Contact mechanics of surfaces with various models of roughness descriptions [J]. Wear,2001,249:539-545
    [19]巫兆聪.分形分析中的无标度区确定问题[J].测绘学报,2002,31(3):240-244
    [20]Mannelqvist A,Groth M R. Comparison of fractal analyses methods and fractal dimension for pre-treated stainless steel surfaces and the correlation to adhesive joint strength. Applied Physics A,2001,73:347-355
    [1]赵济海,王哲人.路面不平度的测量分析与应用[M].北京:北京理工大学出版社,2000
    [2]刘献栋,邓志党,高峰.基于逆变换的路面不平度仿真研究[J].中国公路学报,2005,18(1):122-126
    [3]葛世荣.粗糙表面的分形特征与分形表达研究[J].摩擦学学报,1997,17(1):73-80.
    [1]ISO/TC108/SC2/WG4 N57. Reporting Vertical Road Surface Irregularities Working Draft[S]. 1982
    [2]F.T.K.Au, Y.S.Cheng, Y.K.Cheung. Effects of random road surface roughness and long-term deflection of prestressed concrete girder and cable-stayed bridges on impact due to moving vehicles[J].Computers and Strucrures,2001,79:853-872
    [3]ISO/TC108/SC2/WG4 N67.First Draft Proposal ISO/DP 8608 for Mechanical Vibration-Road Surface Profiles-Reporting Measured Data[S].1984
    [4]GB7031-1987.车辆振动输入.路面平度表示方法[S].北京:中国标准出版社,1987
    [5]赵济海,王哲人.路面不平度的测量分析与应用[M].北京:北京理工大学出版社,2000
    [6]邬惠乐,邱毓强.汽车拖拉机试验学[M].机械工业出版社,1981,9
    [7]郑联珠,梅雷军,刘跃明.关于路面不平分级方法的探讨[J].农业机械学报,1990(2):56-61
    [8]王新明,王秉纲.高速公路路面功率谱[J].交通运输工程学报,2003,3(2):53-56
    [1]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005,2
    [2]姚辉学,卢章平.随机工程曲线的分形插值方法研究[J].江苏理工大学学报(自然科学版)1999,20(4):76-80
    [3]赵战利,王秉刚.基于分形插值函数的路面构造模拟方法研究[J].现代交通技术,2007,3:1-4
    [4]陈国安,葛世荣.粗糙表面测量轮廓的分形插值模拟[J].摩擦学学报,1998,18(4):346-350
    [5]陈国安,葛世荣,张晓云.机加工表面轮廓的分形插值[J].中国矿业大学学报,1999,28(2):118-121
    [6]李成贵,刘廷启,廖谕,等.精车加工表面轮廓的分形插值研究[J].机床与液压,1998,1:50-52
    [7]余跃,冯志刚.分形插值样条的定义以及计算研究[J].工程图学学报,2008,4:86-90
    [8]余跃,冯志刚.分段分形插值在农业地学数据模拟中的应用[J].农机化研究,2007,11:29-31
    [9]程华,房一泉,邵志.基于分形插值函数重构的网络流量多尺度结构研究[J].华东理工大学学报(自然科学版),2008,34(3):383-386
    [10]沙震,阮火军.分形与拟合[M].杭州:浙江大学出版社,2005
    [11]Barnsley M. Fractals everywere. New York:Academic Press,1988.207-233
    [12]STAMPS A E. Fractals, skylines, nature and beauty[J]. Landscape and Urban Planning,2002, 60:163-184
    [13]阮火军,沙震.分块分形插值拟合与遗传算法[J].高校应用数学学报A辑,2001,16(3):263-268
    [14]阮火军,沙震.用插值算子解FIF反问题[J].数值计算与计算机应用,2000,1:1-10
    [15]Sha Zhen, A class of functional equation and fractal interpolation function, Appl.Math. -JCU, 14B(1999):90-98
    [16]David S. Mazel,.Monson H Hayes. Using iterated function systems to model discrete sequences[J].IEEE Transactions on signal processing.1992,40(7):1724-1734
    [17]袁利国,聂笃宪,旷橘红.粒子群优化算法解分形插值的逆问题[J].计算机与数字工程,2007,35(9):44-45
    [18]袁利国,余荣忠,凌和良,等.基于MatLab整体线性分形插值的研究[J].九江学院学报,2007,3:58-61
    [19]冯志刚.岩石断面分形插值稳定性的实验研究[J].江苏大学学报(自然科学版),2002,23(5):1-4
    [20]Xie H, Sun H, Ju Y, Feng Z. Study on Generation of Rock Fracture Surface by Using Fractal Interpolation[J].Int J of Solids & Structures,2001,38:5765-5787
    [21]冯志刚,廖青中.岩石断面分形插值生成过程中的稳定性.辽宁工程技术大学学报(自然科学版),2000,19(6):596-599
    [22]沙震,刘寅立.分形插值函数的误差[J].高校应用数学学报A辑,2004,19(2):193-202
    [23]Ruan Huojun, Sha Zhen, Su Weiyi. Parameter identification problem of the fractal interpolation functions[J].Numerical MathmaticsA. Journal of Chinese Universities,2003, 12(2):205-213
    [24]李信富,李小凡,张美根.垂直比例因子对分形插值精度的影响[J].黑龙江大学自然科学学报,2007,24(5):662-665
    [1]余志生.汽车理论[M].北京:机械工业出版社,2000
    [2]GB/T 4970-1996.汽车平顺性随机输入行驶试验方法[S].1996
    [3]陈军.MSC.ADAMS技术与工程分析实例[M].北京:中国水利水电出版社,2008
    [4]李磊,任勇生,孙爱芹.ADAMS/Car在汽车动力学仿真分析中的应用[J].现代制造技术与装备,2007,1:25-27
    [5]韦辉,杨竞,陈兵,等.基于ADAMS/Car的整车平顺性仿真研究[J].机电产品开发与创新,2008,21(6):100-102
    [6]隗寒冰,邓楚南,何文波.基于ADAMS软件的汽车平顺性仿真分析[J].机械设计与制造,2006,7:75-76
    [7]郑振森.基于ADAMS的汽车行驶平顺性初步研究[D].大连理工大学硕士学位论文,2007
    [8]杨亚娟,柳杨,刘红领,等.汽车随机路面输入平顺性仿真[J].计算机辅助工程,2006,15(增刊):183-185
    [9]潘立.基于人椅系统三向振动的汽车平顺性建模与仿真[D].浙江工业大学硕士学位论文,2004
    [10]汤靖,高翔,陆丹.基于ADAMS的麦弗逊前悬架优化研究[J].计算机辅助工程,2004,1:28-32
    [11]黄承修.基于虚拟样机技术的汽车行驶平顺性仿真研究[D].浙江大学硕士学位论文,2006
    [12]王其东,乔明侠,梅奋永.汽车随机路面输入平顺性的仿真分析[J].合肥工业大学学报(自然科学版),2005,28(4):346-350
    [13]张国胜,方宗德,陈善志,等.汽车平顺性匹配的动力学模型的研究[J].系统仿真学报,2008,20(5):1321-1324
    [14]于学华.汽车平顺性技术理论与实践研究[D].东北林业大学博士学位论文,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700