用户名: 密码: 验证码:
梨果实愈伤组织对致腐真菌侵染的生理响应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寄主植物受病原菌侵染后,自身也有其相应的适应机制,会产生一系列的防卫反应来抵御病原菌的侵染。这些反应包括寄主植物组织和细胞结构的变化、生理生化反应的变化、病程相关蛋白的诱导产生和细胞的坏死等。研究寄主对病原菌侵染的抗性防卫机制对提高植物的抗病性极为重要,目前开展的相关研究己经取得了许多有意义的结果,但大多数都集中在农作物和林木上,关于病原菌侵染后果实自身防卫机制的相关研究开展的还不多。
     本研究以易感褐腐病而抗轮纹病的成熟晋蜜梨果实诱导产生的愈伤组织为试验材料,在建立相关离体研究模式系统的基础上,应用细胞生物学、植物生理学、生物化学、分子生物学、植物病理学等多学科交叉,比较研究了梨果实愈伤组织被轮纹病菌和褐腐病菌2种病原真菌侵染后细胞的生理生化特性的变化(包括保护酶活性及同工酶、防御酶系的活性、植物内源激素和可溶性蛋白的变化,细胞的死亡形式等)及防卫相关差异基因表达,为揭示晋蜜梨果实愈伤组织感褐腐病而抗轮纹病的抗感病机制提供基础理论依据,并为进一步在果实上开展相关研究提供新的研究系统和思路。
     本研究技术路线可行,研究对象遗传背景清楚、选材独特,主要取得如下研究结果:
     1.以成熟晋蜜梨果实为外植体,诱导其产生愈伤组织。通过继代培养筛选出色黄、均质、半致密、生长旺盛、增殖速度适中的愈伤组织作为试验材料。比较轮纹病菌和褐腐病菌对愈伤组织和果实的侵染情况,结果表明愈伤组织对这2种病原菌的感抗性与果实一致,即晋蜜梨果实愈伤组织也感褐腐病而抗轮纹病,以此系统来开展寄主对病原菌侵染生理防卫机制的研究在理论和技术上是可行的。
     2.轮纹病菌和褐腐病菌侵染后,梨愈伤组织MDA含量和细胞相对电导率随侵染时间延长明显增加,且均以褐腐病菌侵染的组织上升速度和幅度显著大于轮纹病菌侵染的组织(P﹤0.05),说明褐腐病菌侵染的组织出现了更为严重的膜脂过氧化。轮纹病菌侵染后组织细胞保护酶SOD、POD和CAT活性比褐腐病菌侵染的组织升高幅度大,持续时间长,这与其膜脂过氧化程度轻相一致。轮纹病菌侵染还诱导3种保护酶产生更多新的同工酶并大量表达。这些结果均表明细胞保护酶活性及同工酶变化与组织对2种致腐真菌的感抗性密切相关,是组织对病原菌侵染生理防卫的重要组成部分。
     3.轮纹病菌和褐腐病菌侵染后,梨果实愈伤组织防御酶PPO、PAL、几丁质酶、β-1,3-葡聚糖酶活性均呈先升高后降低的趋势,但各个酶活性高峰峰值和出现的时间不同。轮纹病菌侵染的愈伤组织内酶活性升高速度快、上升幅度大,高活性维持的时间长,这与组织抗轮纹病表现相一致,说明防御酶系活性被诱导和加強应该是晋蜜梨愈伤组织易感褐腐病而抗轮纹病的防卫机理之一。
     4.轮纹病菌和褐腐病菌侵染后,梨愈伤组织内IAA、GA3、ZR和ABA的含量出现了不同的变化,总体变化趋势为IAA和CTK含量升高,GA和ABA含量下降,这些变化在2种病原菌之间又有差异。轮纹病菌侵染早期组织IAA含量升高,尤其是在侵染36h时,与GA3含量同时达到一个含量高峰,ZR含量也高于对照,仅ABA含量降低;褐腐病菌侵染早期,IAA和ZR含量高于对照。至2种病原菌侵染后期,IAA和GA3变化都不明显,但ZR和ABA含量显著变化且在2种病原菌之间存在明显差异,轮纹病菌侵染的组织,ZR含量显著高于对照,ABA含量显著低于对照,褐腐病菌侵染的组织则正好相反。上述试验结果表明植物激素含量的变化与愈伤组织对2种病原菌的感抗性有密切关系,且各激素之间相互作用和影响,也许才是调控组织对病原菌侵染防卫过程的关键所在。
     5.轮纹病菌和褐腐病菌侵染后,梨愈伤组织的可溶性蛋白含量变化趋势相似,均在侵染前期出现了一个上升高峰,后期则含量持续降低,以轮纹病菌侵染的组织可溶性蛋白含量始终高于接种褐腐病菌的组织。蛋白质SDS-PAGE电泳结果显示,在轮纹病菌侵染中后期诱导产生了一条新的蛋白条带,并且其表达量随侵染时间逐渐增加,推测这个特异的蛋白可能是组织防卫基因表达产生的病程相关蛋白,在组织对轮纹病菌的抗病防卫中起重要作用。
     6.对接菌后不同侵染时间的梨愈伤组织进行普通细胞学观察发现,组织内部侵染进程与表观变化相一致。进行DAPI特异性染色后观察发现,轮纹病菌侵染初期组织细胞核出现染色质的不均一,核质浓缩并有部分细胞核DNA发生断裂的现象。提取愈伤组织的DNA进行琼脂糖凝胶电泳后发现,轮纹病菌侵染24h~48h时出现了较为明显的DNA Ladder现象,褐腐病菌侵染的组织均未发现上述现象。推测组织在防卫轮纹病菌侵染的过程中发生了细胞过敏性反应。
     7.基于cDNA-SRAP技术,分析了褐腐病菌侵染过程中梨果实愈伤组织差异基因的表达。结果表明:由30个SRAP引物组合共扩增出457条带,其中差异回收条带数为16,最终获得5条差异基因表达条带。核酸序列同源性分析结果表明,有1条差异基因片段未搜索到任何同源蛋白;2条差异基因片段经序列比对,与苹果属的肉桂醇乙酰脱氢酶(CAD)同源性为96%;另2条差异基因片段分别与DNA结合蛋白(DBP)和寡肽转运蛋白(OPT)基因序列同源,其同源性为85%和78%,暂将这3个基因命名为PbCAD、PbDBP和PbOPT。荧光定量PCR结果表明,PbCAD基因在褐腐病菌侵染愈伤组织12和24h时相对表达量最高,为对照的2.94和2.66倍;PbOPT基因在褐腐病菌侵染愈伤组织12~36h时相对表达量明显升高,为对照的2.17~2.46倍,而其他时期表达量均与对照接近;PbDBP基因表达量在整个侵染时期均与对照接近。因此推测PbCAD和PbOPT基因可能是愈伤组织响应褐腐病菌侵染的相关防卫基因。
Plants have developed different adaptive mechanisms and defense responses to protectthemselves against disease, which are same with suffering other stress. The infected cells willgo through a series of responsive events related to plant resistance, including cells structuralchange,physiological and biochemical responses, necrosis and pathogen depression of planttissue and cells. It is very important to studying on the defense resistance mechanisms of thehost to pathogen infect for improve plant disease. The related studies have obtained muchtremendous accomplishments on the interactions of crops and pathogens,but far fromsufficient on that of fruits and pathogens.
     In this study, callus, elicitation from Jinmi pear fruits, was used as materials to study thegeneration or accumulation of cell membrane meability, soluble sugar, malonadehyde (MDA),the defensive enzymes. The difference between susceptible and resistant of callus to fungiwas analyzed by the means of fluorescence microscopy,molecular cell biology and cellchemical,ete. The ultrastructural changes of cells during the infection process of two differentfungi on callus were observed. At the meantime,the function of defensive enzymes andisozyme in the defense response were discussed. The cell hypersensitive response (HR) in theprocess of the interaction of pear callus and pathogen was preliminarily studied by the meansof electron and fluorescence microscopy and DNA ladder in order to understand the defensemechanisms of host and pathogen from different angles.
     The main results were as following:
     1. The callus was inducted with mature jinmi pear. Through the subculture, the callusthat was yellow, uniform, half density, vigorous growth and increasing at the moderate speedwere selected as the materials for the study. Compared with the infection situation betweenpear callus and fruit after them been inoculated by Botryosphaeria berengriana f.sp. piricola(BBP) and Monilinia fructigena Honcy (MFH), founding that the callus is same with the fruiton susceptible and resistant to the two kinds of pathogens, namely callus is susceptible to thebrown rot disease and resistant to the Pear ring rot disease.
     2. MDA content, relative electrical conductivity and cells protective enzymes were determined in callus infected by BBP and MFH. The MDA content and cell membranepermeability were determined to describe the difference of callus infected by BBP and MFH.The results showed that there was similar trend of increasing relative conductivity rate andMDA content of the callus infected by two kinds of fungi, but the change was smaller inBBP-infected callus than that in MFH-infected callus. It showed bigger range of the changeson MFH-infected callus than on BBP-infected callus. In order to understand the role of cellsprotective enzymes, we analyzed the activity of peroxidase (POD), superoxide dismutase(SOD) and catalase (CAT). The SOD、POD and CAT enzyme activity were higher inBBP-infected callus than in MFH-infected callus, and lasted for a long time in BBP-infectedcallus. THE more new isozymes were induced in BBP-infected callus. These results indicatethat there was a close relation between changes of enzyme activity and isozyme and callusresistance, it plays an important roal in defense mechanisms.
     3. In order to understand the adaptability of pear callus to fungal pathogens, we analyzedthe activity of several defense enzymes, including polyphenol oxidase (PPO), phenylalanineammonia-lyase (PAL), chitinase and β-1,3-glucan enzymes in callus inoculated by both BBPand MFH. This study mainly focuses on analyzing the relationship between the defenseenzyme activity and their roles in disease resistance at the cell level. Within120h afterinoculation, the activities of PPO, PAL, chitinase and β-1,3-glucan enzymes showed similartrend, increasing at first and followed by a decreasing. The peak value appeared in differenttime for each kind of enzyme, but the enzyme activity peaks were always higher inBBP-infected callus than that in MFH-infected callus. So it showed that defensive enzymesshould play an important role in the physiological defense mechanism to the fungi infectionand there is a positive correlation between the changes of the defensive enzymes and theresistance.
     4. The content of IAA, GA3, ZR and ABA changed differently after pear callus beeninoculated by both BBP and MFH. The tendency of change was the content of IAA and CTKincreased, but the content of GA and ABA declined. The IAA content increased in the BBPearly infection, especially in36h after inoculation, it reached a peak together with the GAcontent. The ZR content is also higher than control at the same time but the ABA contentdeclined. Compared with the control, the content of IAA and ZR increased in the early time ofMFH infection. The content of ZR and ABA changed significantly between two pathogens,but the content of IAA and GA3did not changed. The ZR content was significantly higherthan control but ABA content was lower than control in BBP-infected callus, and this wascontrasted with MFH-infected callus. It was suggested that the changes of plant hormonecontent were related to plant resistance, and there was a significant correlations and coordination between these hormones in plant defense response.
     5. There was a similar trend on change of soluble protein content after infections of twofungi, and appeared a rising peak in the early infection and the content reduced in the latetime. The soluble protein content was always higher in BBP-infected callus than inMFH-infected callus. SDS-PAGE protein electrophoresis results show that, a new protein wasinduced by BBP infection, and the expression of it increased with infection time gradually. Itinfers that the specific protein may be a PR and it plays an important role in the defensemechanisms.
     6. In different time after pear callus was inoculated by both BBP and MFH, nucleus weredyed by DAPI and observed under fluorescence microscopy. The results showed that somenucleus of BBP-infected callus was uneven and shrunken in chromatin24hours afterinoculation, which was stick or half-moon in shape, whereas most nucleus wereapproximately round. Most nucleuses of callus cells become abnormal48h after inoculation.In the cells of MFH-infected callus48h after inoculation,intercellular hyphae was found andmore branched at72h with vacuolar neighbor cells without evident chromatin condensation.DNA extracted from bark tissue by1.6%agarose-gel electrophoresis indicated there wereevident DNA ladder at24h after inoculation by BBP,but no the same phenomenece inMFH-infected callus and no systematic HR in it. There was tailed DNA in both callus inInfection later,which was thought as a necrosis by cytology results.
     7. In order to clone defence-related genes during infection process, in vitro systems basedon pear callus infected by M. fructicola were constructed and gene expression levels werecharacterized by cDNA-SRAP (cDNA sequence-related amplified polymorphism) at differenttime point (control,12,24,36,48and60h). We observed that457fragments were amplifiedfrom30SRAP primer groups, out of which16fragments (3.5%of the total) weredifferentially expressed in polyacrylamide gel electrophoresis (PAGE) detection. Those16fragments were re-amplified for strip recovery by agarose gel electrophoresis. Only five weresuccessfully recovered and subsequently sequenced. Sequence homology analysis of thosefragments by Blastn showed that: one had no homology to any known sequences in the NCBIdata base; two of them are of identical sequence; the three different sequences were of highsimilarity to cinnamyl alcohol dehydrogenase (CAD), DNA binding-protein (DBP) andoligopeptide transporter protein (OPT), with the identity being about96%,85%and78%,respectively. They were hence named as PbDBP, PbOPT and PbCAT. Differential expressionpatterns of PbDBP, PbOPT and PbCAT were observed at different time points (0-60h) usingqRT-PCR. Calli were co-cultured with M. fructicola for12–24h, PbCAD expression levelwas2.94–2.66-fold higher than the control. The higher expression levels of PbOPT gene was observed after co-cultured with M. fructicola for12–36h, they were2.46-,2.17-, and2.34-fold higher than the control, respectively. However, there were no significant higherexpression levels detected for PbDBP at all infected period. These results suggested thatPbCAD and PbOPT could be defence-related genes during the process of brown rot infectionin pear fruit callus.
引文
敖世恩,杨媚,周而勋,等.2006.离体筛选的水稻抗纹枯病突变体的生理生化特性分析.华南农业大学学报,27(2):39~41
    白智英,王冬梅,路丙社,等.2003.小麦与叶锈菌互作过程中细胞程序性死亡的细胞学观察.实验生物学报,36(5):353~360
    曹清河,陈劲枫,李英,刁卫平,万红建.2007.黄瓜-酸黄瓜渐渗系霜霉病抗性及感病前后几种酶活性的变化.植物病理学报,37(4):433~437
    曹有龙,贾勇炯,赵军,等.1999.应用组织培养技术离体筛选枸杞抗根腐病变异体的研究.植物病理学报,29(2):163~168
    曹玉芬,李树玲,黄礼森,等.2000.我国梨种质资源研究概况与优良种质的综合评价.中国果树,4:42~44
    曹玉芬,孙秉钧,李美娜,等.1999.梨品种果实对轮纹病的抗性鉴定.果树科学,16(3):180~184
    陈少裕.1991.膜脂过氧化对植物细胞的伤害.植物生理学通讯,27(2):84~90
    陈夕军,徐艳,童蕴慧,等.2009.水稻纹枯病菌毒素致病机理研究.植物病理学报,39(4):439~443
    程曦,田彩娟,李爱宁,邱金龙.2012.植物与病原微生物互作分子基础的研究进展.遗传,34(2):134~144
    程智慧,李娟,张国裕.2006.利用马铃薯茎段离体筛选耐盐变异体.园艺学报,33(3):635~638
    程智慧,牛青,孟焕文.2012.大蒜抗叶枯病变异系的离体筛选及其抗性分析.西北农林科技大学学报(自然科学版),40(2):109~117
    程智慧,邢宇俊.2005.利用马铃薯晚疫病菌粗毒素离体筛选马铃薯抗晚疫病无性系.西北植物学报,25(12):2402~2407
    董汉松.1995.植物诱导抗病性原理和研究.北京:科学出版社
    杜长城,郑兆欣.2004.果品贮藏期主要病害防治技术措施.天津农林科技,5:44~45
    段江燕,安建梅,郜刚.2008.感染青枯病马铃薯中几种酶及蛋白质含量变化的研究.农业与技术,28(1):21~25
    范旭东,王彩霞,叶刚,王国平,洪霓.2010.柑橘衰退病毒侵染对寄主植物同工酶及酸性病程相关蛋白表达的影响.果树学报,27(1):77~81
    房保海,张广民,迟长凤,等.2004.烟草低头黑病菌毒素对烟草丙二醛含量和某些防御酶的动态影响.植物病理学报,34(1):27~31
    方中达,陆家云,叶钟音,等.1996.中国农业百科全书(植物病理学卷).北京:农业出版社
    非损伤微测技术及其在细胞生物学研究中的应用-技术简介-美国扬格非损伤技术中心-分析测试百科网, http://www.antpedia.
    冯丽贞,陈全助,郭文硕,朱建华,陈红梅.2008.植物防御酶与桉树对焦枯病抗性的关系.中国生态农业学报,16(5):1188~1191
    高必达,陈捷.2006.生理植物病理学.北京科学出版社,
    高峻凤.2006.植物生理学实验指导.北京:高等教育出版社,211~218
    高武军,孙毅.1999.植物几丁质酶及其基因工程研究进展.世界农业,239(3):22~241
    高增贵,张宝艳,张小飞,庄敬华,赵辉.2011.玉米丝黑穗病菌对植株体内内源激素水平改变的影响.玉米科学,19(2):80~83
    葛秀春,宋凤鸣,郑重.1998水稻-稻瘟病菌互作中抗氧化物质含量及相关酶活性的变化.浙江农业大学学报,24(4):339~343
    郭彩杰,侯丽霞,崔娜,韩明利.2011.番茄耐低温相关基SRA标记筛选.植物生理学报,47(1):102~106
    郭红莲,程根武,陈捷,等.2003.玉米灰斑病抗性反应中酚类物质代谢作用的研究.植物病理学报,33(4):342~346
    郭尧君.1999.蛋白质电泳实验技术.北京:科学出版社,69
    韩笑冰,利容千,王建波.1998.黄瓜不同抗病品种与疫霉菌相互作用的超微结构研究.植物学报,40(10):895~900
    贺运春.2002.植物病害制片技术.北京:中国农业出版社,55~65
    何祖华.2007.植物抗病的分子生理.植物生理与分子生物学(第三版).北京:高等教育出版社,587~616
    胡景江,刘志龙,文建雷.2003.溃疡病菌低聚糖激发子诱导杨树细胞抗病机制的初步研究.西北农林科技大学学报(自然科学版),31(4):145~148
    胡景江,文健雷,景耀.2006.过氧化物酶和多酚氧化酶与杨树溃疡病抗性的关系.西北林学院学报,5(1):46~51
    胡景江,朱玮,文建雷.1999.杨树细胞壁HRGP和木质素的诱导积累与其对溃疡病抗性的关系.植物病理学报,29(2):151~156
    胡景江,朱玮,袁雪丽.1997.溃疡菌对杨树细胞壁中HRGP和木质素的诱导作用.西北林学院学报,12(3):14~17
    胡能书,万贤国.1987.同工酶技术及其应用.长沙:湖南科技出版社,96~106
    黄小红,陈清西,王君,等.2004.铜污染对三叶草幼苗生长及活性氧代谢影响的研究.应用生态学报,15(1):119~122
    纪睿,张正光,王源超,等.2005.疫霉菌激发子PB90诱导烟草悬浮细胞的凋亡.科学通报,50(5):448~452
    姜卫兵,高光林,俞开锦,马凯.2004.近年来我国梨品种资源的创新与展望.果树学报,19(5):314~320
    蒋选利,李振岐,康振生.2001.过氧化物酶与植物抗病性研究进展.西北农林科技大学学报(自然科学版),29(6):124~129
    景涛,熊慧玉.1999.植物同工酶与抗病关系研究.亚热带植物通讯,28(1):72~75
    蓝海燕,陈正华.2000.植物与病原真菌互作的分子生物学及其研究进展.生物工程进展,20(4):16~22
    郎东升,刘晓梅.2004.梨贮藏病害的防治技术.农产品加工,11:30~32
    乐关旺,陈实,潘庆华,曾任森,刘迎湖,骆世明.2007.水稻和稻瘟病菌互作中的信号传导及防御反应基因诱导表达的研究.植物病理学报,37(1):42~49
    李保珠,赵翔,安国勇.2011.赤霉素的研究进展.中国农学通报,27(01):1~5
    李波,贾秀峰,等.2004.聚乙二醇胁迫下不同苜蓿品种愈伤组织生理指标的变化.草叶科学,21(4):28~30
    李大伟,黄伟,巩振辉.2006.辣椒抗枯萎病体细胞变异无性系筛选粗毒素适宜剂量的研究.西北农业学报,15(6):130~134
    李广旭,杨华,高圣华,等.2006.轮纹病菌侵染对不同抗性苹果品种膜透性及防御酶的影响.植物保护学报,33(2):127~130
    李广旭,杨华,高艳敏,等.2005.轮纹病菌对不同抗性苹果品种防御酶的影响果树学报.果树学报,22(4):416~418
    李合生.2006.现代植物生理学.北京:高等教育出版社,363~366
    李红,李波,等.2009.NaN3诱变首蓿怠伤组织抗碱生理研究.黑龙江畜牧兽医科技版,12:69~70
    李怀方,裘维蕃.1986.细胞分裂素在感染烟草花叶病毒番茄株系的番茄品种中对抗病性的作用.中国科学B辑,86:276~282
    李静,于建娜,张利莉.2007.果品采后病害及生物防治研究进展.中国生物防治,23(增刊)97~102
    李淼,檀根甲,李瑶.2009.几种同工酶与猕猴桃品种对溃疡病抗性关系的研究.激光生物学报,18(2):218~225
    李树玲,林珂,黄礼森,等.1996.梨果实抗轮纹病初步鉴定.天津农学院学报,3(4):37~39
    李文浩,毕阳,葛永红,等.2008.采后Attapulgite处理对苹果梨青霉病的抑制效果.甘肃农业大学学报,43(6):154~158
    李亚玲,龙书生,郭军战,等.2003.玉米感染禾谷镰刀菌后PAL、POD活性和同工酶谱的变化.西北植物学报,23(11):1927~1931
    李永勋.1990.苹果梨贮藏期果实腐烂原因的探讨.延边大学农学学报,2:16~18
    梁喜龙,郑殿峰,左豫虎.2006.病害逆境下寄主植物生理生化指标的研究现状与展望.安徽农业科学,34(15):3576~3578,3581
    刘爱新,李多川,王金生,等.2005. HarPinxoo诱导烟草过敏性细胞死亡的细胞及分子特征.中国农业科学,38(l2):244~245
    刘海英,李川,范永山,等.2003.影响苹果果实轮纹病抗性的寄主因素及相关性分析.河北农业大学学报,26(1):56~60
    刘进平,郑成木.2004.利用辣椒疫霉培养滤液体外筛选胡椒抗瘟病无性系研究.热带亚热带植物学报,12(6):528~532
    刘守伟,吴凤芝,马艳玲.2009.枯萎病菌对不同抗性黄瓜品种几种酶活性的影响.植物保护,35(1):82~85
    刘铁铮,王景涛,徐国良,等.2006.梨果贮藏保鲜研究进展.江西农业学报,18(3):102~103
    刘亚光,徐刚,杨庆凯.2003.大豆叶片内几丁质酶活性的变化与大豆抗灰斑病关系的研究.东北农业大学学报,34(2):119~123
    刘招龙,张绍铃,孙益林.2006.梨叶片感染轮纹病菌后的生理变化.植物保护,32(6):78~80
    刘志,张华磊,谢兴斌,束怀瑞,郝玉金.2009.茉莉酸甲酯诱导的苹果悬浮细胞的防卫响应.园艺学报,36(2):171~178
    刘祖祺,张石城.1994.植物抗性生理学.北京:中国农业出版社,9
    罗玉明
    马汇泉,甄惠丽,孙伟萍.2004.几丁质酶及其在抗植物真菌病害中的作用.微生物学杂志,24(3):50~53
    马龙彪,张悦琴,吴则东.2001.抗甜菜褐斑病体细胞无性系变异的研究.中国糖料,1:11~5
    马峙英,刘叔倩,王省芬,张桂寅,孙济中,刘金兰.2000.过氧化物酶同工酶与棉花黄萎病抗性的相关研究.作物学报,26(4):431~437
    毛得奖,张爱霞,朱亚玲,项存悌.2005.4杨树冰核细菌溃疡病寄主内源激素含量变化研究.林业科学研究,18(4):436~440
    苗则彦,赵奎华,刘长远,等.2003.葡萄抗感白腐病品种PAL、PPO和SOD活性比较.沈阳农业大学学报,34(3):177~180
    乔卿梅,程茂高,蒋士君,王军红.2008.HarpinEa激发烟草过敏性反应与过氧化物酶和多酚氧化酶活力关系的研究.河南农业科学,1:30~36
    潘华珍,冯立明,许彩民,等.1984.丙二醛对红细胞的作用.生物化学与生物物理进展.2:33
    秦国政,田世平,刘海波,徐勇.2003.拮抗菌与病原菌处理对采后桃果实多酚氧化酶、过氧化物酶及苯丙氨酸解氨酶的诱导.中国农业科学,36(1):89~93
    任爱霞,胡家恕.2002.棉花黄萎病抗性与过氧化物酶同工酶分析.棉花学报,14(5):273~276
    邵登魁,裴建文,雷建明,等.2006.白菜型冬油菜白粉病病程中超氧化物岐化酶和过氧化物酶及多酚氧化酶的变化.西北农业学报,15(5):118~122
    史娟,李建设.2006.枯萎病菌诱导的几丁质酶和β-1,3-葡聚糖酶与寄主抗病性的关系.农业科学研究.27(3):24~26
    史娟,胡景江,王红玲,等.2002.霜霉病菌对葡萄细胞壁水解酶的诱导作用与寄主抗病性的关系.西北林学院学报,17(1):42~44
    史娟,杨之伟.2006.过氧化物酶活性及其同工酶与葡萄对霜霉病抗性的关系.农业科学研究,27(1):10~12
    孙斌,李多川.2003.小麦叶片β-1,3-葡聚糖酶的诱导、纯化与抗菌活性.植物生理与分子生物学学报,30(4):399~404
    孙晓丽,周荣华,贾继增.2006.白粉菌诱导的小麦叶片程序性细胞死亡.扬州大学学报(农业与生命科学版),27(2):21~25
    汤会君,张俊华,魏向峰.2005.不同抗性烟草品种感染病菌后几种酶活性测定.东北农业大学学报,36(4):340~344
    田国忠,李怀方,裘维蕃.1999.植物激素与植物病害的相互作用.植物生理学通讯,35(3):177~184
    田路明,董星光,曹玉芬,周宗山,吴玉星.2011.梨品种资源果实轮纹病抗性的评价.植物遗传资源学报,12(5):796~800
    唐倩菲,杨媚,周而勋,敖世恩,姜子德,陈厚彬.2006.香蕉受枯萎病菌侵染后内源激素含量的变化.华南农业大学学报,27(2):42~44
    陶小荣,周雪平,李桂新,等.2002.黄瓜花叶病毒2a基因上的两个氨基酸共同决定其在豆科植物上引发的过敏反应.中国科学:C辑,32(4):313~320
    王长春,蔡新忠,徐幼平.2006.番茄与叶霉菌互作的分子机理.植物病理学报,36(5):385~391
    王春林.2007. BTH诱导甜瓜(Cucumis melo L.)抗白粉病机理及信号转导途径的研究.[学位论文].兰州:甘肃农业大学
    王蒂.2004.植物组织培养.北京:中国农业出版社,56
    王广金,孙光祖,李学湛,等.1999.小麦赤霉病菌毒素对小麦抗病突变体及其亲本细胞超微结构的影响.植物病理学报,27(3):215~219
    王金生.1999.分子植物病理学.北京:中国农业出版社:256~261
    王娟,李德全.2001.逆境条件下植物体内渗透调节物质的积累与活性氧代谢.植物学通报,18:459~465
    王钧.1998.植物抗病研究的进展.植物生理学通讯,31(4):312~317
    王海华,曹赐生,高健.2000.植物抗病性的遗传基础及其分子机制.湘潭师范学院学报,21(6):88~92
    汪红,王烨,袁红.1999.酚类物质含量与棉花抗黄萎病性能关系研究.中国棉花,10:16~17
    王宏梅,蒋选利,白春微,左希,丁海霞.2009.不同抗性小麦品种受白粉菌侵染前后PPO、POD活性变化.种子,28(4):14~17
    王三根,梁颖.1995.6-BA对低温下水稻幼苗细胞膜系统保护作用的研究.中国水稻科学,9(4):223~229
    王生荣,朱克恭.2002.植物系统获得抗病性研究进展.中国生态农业学报,10(2):32~35
    王艳娜.2007.梨果实轮纹病发病过程中寄主-病原菌互作机理.[学位论文].北京:中国林业科学研究院林业研究所
    王友升,田世平.2007.罗伦隐球酵母、褐腐病菌与甜樱桃果实在不同温度下的互作效应.中国农业科学,40(12):2811~2820
    王媛.2007.杨树与溃疡病菌(Botryosphaeria dothidea)互作中的细胞物学、活性氧代谢及细胞过敏性反应.[学位论文].北京:中国林业科学研究院林业研究所
    温晓明.2008.梨果实贮藏期病害的防治.内蒙古农业科技,5:120
    吴俊江,刘丽君.2003.大豆接种疫霉根腐病菌后过氧化物酶活性的变化.中国油料作物学报,25(3):67~70
    吴俊江,刘丽君,高明杰,等.2001.不同抗性大豆品种(系)接种灰斑病1、7号生理小种后内源激素变化规律的研究.大豆科学,20(1):14~17
    吴强,冯汉青,李红玉,等.2006.条锈病侵染对小麦抗氛呼吸和活性氧代谢的影响.植物病理学报,36(1):49~56
    武维华.2003.植物生理学.北京:科学出版社,265~300
    奚元龄.1992.植物细胞培养手册.北京:农业出版社,258~262
    许志刚.1997.普通植物病理学.北京:中国农业出版社
    徐朗莱,叶茂炳.1991.过氧化物酶及其同工酶与小麦抗赤霉病性的关系.植物病理学报,21(4):285~290
    徐凌飞,赵竑博,马锋旺,梁东,万恩梅.2007.梨黑星菌粗毒素对抗病和感病梨离体叶片生理特性的影响.西北植物学报,27(6):1156~1160
    徐荣旗,石磊岩.2000.棉花黄萎病菌致害棉株叶片内源激素的动态变化.棉花学报,12(6):310~312
    薛春生,肖淑芹,韩洪强,高颖,陈捷.2008.灰斑病菌毒素对玉米植株防御酶系活性的影响及诱导抗性作用.西北农林科技大学学报(自然科学版),36(9):175~180
    阚光锋.2002.烟草品种对野火病的抗性鉴定与生化抗病机制研究.[学位论文].泰安:山东农业大学
    杨素欣,王振镒.1999.盐胁迫下小麦愈伤组织生理生化特性的变化.西北农业大学学报,27(2):1~5
    杨颖丽,史如霞,魏学玲,范庆,王莱.2008.NaCl胁迫对唐古特白刺愈伤组织的生理效应西北植物学报,28(11):2238~2243
    于惠敏.1998.植物中的细胞程序性死亡.植物学通报,15(6):30~37
    曾富华,易克,徐向丽,王海华.2005.不同诱导处理后水稻悬浮细胞的活性氧变化与有关酶系的关系.作物学报,36(1):18~23
    曾明,杨柏云.2006.同工酶技术在柑橘研究中的应用.江西科学,24(1):100~104
    曾永三,王振中.2003.豇豆锈菌诱导的2种酶活性与抗病性的关系.华中农业大学学报,22(2):117~122
    张彩霞,李壮,陈莹,田义,张利益,丛佩华.2010.植物与病原菌互作的蛋白质组学研究进展.西北植物学报,30(3):0626~0632
    张国华,张艳洁,丛日晨,等.2009.GA作用机制研究进展.西北植物学报,29(2):0412~0419
    张丽娟,杜金哲,杨庆凯.2006.大豆感染灰斑病菌后叶片中多酚氧化酶活性的变化.华北农学报,21(5):91~95
    张林青,程智慧.2008.大蒜白腐病菌对寄主防御酶系活性的影响.西北农林科技大学学报(自然科学版),36(4):171~174
    张林青,程智慧,孟焕文,张倩慧.2008.大蒜叶片活性氧及保护酶系对白腐病菌粗毒素胁迫的响应.西北植物学报,28(5):0974~0978
    张赛娜,马旭君,李科文,刘军梅,杨颖丽.2008.补血草愈伤组织中渗透调节物对NaCl胁迫的响应.西北植物学报,28(7):1343~1348
    章元寿.1996.植物病植物理生理学.南京:江苏科学技术出版社
    赵淑清,郭剑波.2003.植物系统性获得抗性及其信号转导途径.中国农业科学,36(7):781~787
    赵晓芳,王贵禧,王艳娜,梁丽松,祝美云.2008.鸭梨果实接种轮纹病菌后的生长期、贮藏期几丁质酶和β-1,3-葡聚糖酶活性变化.林业科学,44(3):163~165
    赵小虎,陈翠莲,焦春香,等.2006.不同油菜品种对油菜菌核病敏感性差异的生理生化特性研究.华中农业大学学报,25(5):448~492
    赵中秋,郑海雷,张春光.2001.植物抗病分子生物学基础.生命科学,13(3):135~138
    张建军,李祥,侯明生.1997.小麦植株内可溶性糖含量与对梭条斑花叶病毒抗性的关系.植物保护,23(5):16~18
    张莉,冯晓云,李文生,等.2007.虎杖提取物处理对采后梨果实抗性相关酶活性的诱导.食品工业科技,3:64~66
    张继澍.2006.植物生理学.北京:高等教育出版社,433~438
    张立钦,李传道,黄敏仁.1989.杨树组织培养愈伤组织对水疤型溃疡病的抗性.南京林业大学学报,13(4):9~15
    张少英,王俊斌.2005.甜菜几丁质酶和β-1,3-葡聚糖酶活性与其对丛根病抗性的关系.植物生理与分子生物学学报,31(3):281~286
    张玉星.2003.果树栽培学各论.北京:中国农业出版社
    郑殿峰,梁喜龙,左豫虎,等.2004.大豆根腐病菌对大豆幼苗生理生化指标的影响.中国油料作物学报,26(3):57~61
    郑雪芳,林抗美,黄素芳,等.2006.不同药剂防治桃树流胶病桃叶氧化酶活性与防效之相关分析.中国农学通报,22(7):245~247
    祝美云,赵晓芳,王贵禧,等.2008.鸭梨果实接种轮纹病菌及采收前后防御酶系活性变化的研究.农业工程学报,24(3):250~254
    朱有釭,宋佐衡,傅淑云,等译.1991.植物病理生理学.北京:农业出版社,521~574
    朱玉梅,张荣.2008.不同抗性小麦品种感染蓝矮病植原体后体内防御酶活性的研究.西北农林科技大学学报(自然科学版),36(6):165~169
    周自云,胡景江,王俊明.2006.几种激发子对杨树愈伤组织保护酶活性的诱导作用.西北林学院学报,21(1):43~46
    邹春静,盛晓峰,韩文卿,等.2003.同工酶分析技术及其在植物研究中的应用.生态学杂志,22(6):63~69
    邹芳斌,司龙亭,李新,王莉莉.2008.黄瓜枯萎病抗性与防御系统几种酶活性关系的研究.华北农学报,23(3):181~184
    邹琪
    左豫虎,芮海英,杨传平,刘惕若.2008.几丁质酶活性与大豆抗疫霉根腐病的关系.植物保护,34(6):49~53
    Agrawal G K, Jwa N S, Han K S, Agrawal V P, Rakwal R.2003. Isolation of a novel rice PR4type genewhose mRNA expression is modulated by blast pathogen attack and signaling components. Plant PhysiolBiochem,41:81~89
    Alvarez M E, Pennell R I, Meijer P J, et al.2000. Reactive oxygen intermediates mediate a systemic signalnetwork in the establishment of Plant immunity. Cell,92:773~784
    Aoun M, Rioux D, Simard M, Bernier L.2009. Fungal colonization and host defense reactions in Ulmusamericana callus cultures inoculated with Ophiostoma novo-ulmi. Phytopathol,99:642~650
    Apel K, Hirt H.2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction.Annual review of p lan t b iology,55:373~399
    Asada K.1992. Ascorbate peroxidase: a hydrogen peroxide-scavenging enzyme in plants. Plant Physiol,85:235~241
    Atkinson M M, Keppler L D, Orlandi E W, Baker C J,Mischke C F.1996. Involvement of plasmamembrane calcium influx in bacterial induction of the Kt/Ht and hypersensitive responses in tobacco.Plant Physio,92:215~221
    Baka Z A M, Loesel D M.1998.Ultrastructure and Lectin gold cytochemistry of the interaction between therust fungus Melampsora euphorbiae and its host. Euphorbia peplus Mycol Res,102(11):1387~1398
    Baker S J, Newton A C, Gurr S J.2000. Cellular characteristics of temporary part ial breakdown ofmlo-resistance in barley to powdery mildew. Physiological and Molecular Plant Pathology,56(1):1~11
    Balague C, Lin B, Alcon C, et al.2003. HLM1, an essential signaling component in the hypersensitiveresponse, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell,15:365~379
    Bashan Y, Okon Y, Henis Y P.1985. Polyphenoloxidase and phenols in relation to resistance againstPseudomonas sy-ringae pv. tomato in tomato plants. Can J Bot,65:366~372
    Bashan Y.1986. Evaluation of systemic resistance to blue mold induced in tobacco leaves by priorsteminoculation with phyoscyami. Phyto path,116:1~10
    Beck D L.1983. Disease resistance mechanism in plant and their microbial and met abolic regulation. CropSci,23(5):995~998
    Bhuiyan N H, Selvaraj G, Wei Y D, King J.2009. Gene expression profiling and silencing reveal thatmonolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildewinvasion. J Exp Bot,60(2):509~521
    Bi Y, Chen W, Zhang W, et al.2009. Product ion of reactive oxygen species, impairment of photosyntheticfunction and dynamic changes in mitochondria are early events in cadmium-induced cell death inArabidopsis thaliana. Biology of the Cell,101(11):629~643
    Biles C L, Martynr D.1993. Peroxidase, polyphenol oxidase and shikimate dehydrogenase isozymes inrelation to the tissue type, maturity and pathogen induction of watermelon seedlings. Plant Physiologyand Biochemistry,31:499~506
    Blume B, Nurnberger T, Nass N, Scheel D.2000.Receptor-mediated increase in cytoplasmic free calciumrequired for activation of pathogen defense in parsley. Plant Cell,12:1425~1440
    Boller T, Gehria A, Mauch F, Voegeli U.1983.Chitinase in bean leaves: induction by ethylene, purification,properties, and possible function. Planta,157:22~31
    Boller T, He S Y.2009. Innate immunity in plants: an arms race between pattern recognition receptors inplants and effectors in microbial pathogens. Science,324(5928):742~744
    Borsani O, Valpuesta V, Botella M A.2001. Evidence for a role of salicylic acid in the oxidative damagegenerated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol,126:1024~1030
    Bradford M M.1976.A Rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Anal Biochem,72:248~254
    Broglie K E.1993.Chitinase and plant protection. Dev Plant Patho,2:411~421
    Cahill D M, Weste G M, Grant B R.1996. Change in cytokinin concentrations in xylem extrudatefollowing infection of Eucalyptus marginata Donnexsm with hytophpra cinnamomirands. PlantPhysiol,81:1103~1109
    Campo S, Carrascal M, Coca M, Avianj, Sansegundo B.2004.The defence response of germinating maizeembryos against fungal infection: a proteomics approach. Proteomics,4:383~396
    Chand R, Sen D, Prasad K D, et al.2008. Screening for disease resistance in barley cultivars anginstBipolaris sorokiniana using callus culture method. Indian Journal of Experimental Biology,46(4):249~253
    Chen H, Li P, Gui Y, et a.l.2002.Biological control of rice disease and insect by chitinase-producingbacterium X2-23. Chinese Rice Research Newsletter,10(21):3~4
    Chivasa S, Hamilton J M, Pringler S, et al.2006.Proteomicanalys is of differentially expressed proteins infungal elicit or-treated A rabid opsis cell cultures. Journal of Experimental Botany,57:1553~1562
    Christensen A B, Cho B H, Naesby M,et al.2002. The molecular characterization of the two barleyproteins establishes the novel PR-17family of pathogenesis-proteins. Molecular PlantPathology,3:134~144
    Coldit Z F, Nyamsu Ren O, Niehau S K, et al.2004. Proteomic approach: Identification of Medicagotruncatula proteins induced in root safter infection with the pathogenic oomycete Aphanomyceseuteiches. Plant Molecular Biology,55:109~120
    Dangl J L, Dietrich R A, Richberg M H.1996. Death don’t have no mercy: cell death programs in plantmicrobe interactions. Plant Cell,8(10):1793~1807
    Dangl J L, Jones D G J.2001. Plant pathogens and integrated defence responses to infection.Nature,411:826~833
    Dassi B, Dumas-gaudot E, Gianinazzi S.1998.Do pathogenesis-related proteins play a role in bioprotectionon mycorrhizal tomato roots toward parasitica. Physiological and Molecular Plant Pa theology,52(3):167~183
    Diez J, Gil L.1998. Effects of Ophiostoma ulmi and Ophiostoma novo-ulmi culture filtrates on elm culturesfrom genotypes with different susceptibility to Dutch elm disease. Eur J For Pathol,28:399~407
    Dionisio-Sese ML, Tobita S.1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci,135:1~9
    Dodds P N, Lawrence G J, Catanzariti A M, et al.2006.Direct protein interaction underlies gene-for-genespecificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl AcadSci USA,103(23):8888~8893
    Donaldyk, Ralphm R, Julieann B, et al.2002.Characterization of a chitinase gene fromStenotrophomonasmaltophilia strain34S1and its involvement in biological control. Appl Environ Microbiol,68:1047~1054
    Doyle S M, Diamond M, Mccabe P F.2010.Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. Journal of Experim en talBotany,61(2):473~482
    Eason J R,Pinlkney T T,Johnston J W.2002. DNA fragmentation and nuclear degradation duringharvest-induced senescence of asparagus spears. Postharvest Biology and Techoology,26:231~235
    Ebner C, Hofmann-Sommergruber K, Breiteneder H.2001. Plant food allergens homologous topathogenesis—related proteins.Allergy,56(67):43~44
    Edreva A.2005. Pathogenesis—related proteins:research progress in the last15years.Gen Appl PlantPhysiol,31(1~2):105~l24
    Fabienne V, Xavier D, Mauri ce T, et al.2002. A R2R3-MYB gene, AtMYB30, acts as a positive regulatorof the hypersensitive cell death program in plant sin response to pathogen attack. Proc Nat l Acad SciUSA,99:10179~10184
    Fan X D,Wang C X,Ye G, Wang G P, Hong N.2010. Effect of Citrus tristeza virus on the expression ofisozymes and sour pathogenesis-related proteins in citrus plants. Journal of Fruit Science,27(1):77~81
    Feng L Z, Chen Q Z, Guo W S, Zhu J H, Chen H M.2008.Relationship between eucalyptus resistance toeucalyptus dieback and defense enzyme system. Chinese Journal of Eco Agriculture, Sept,16(5):1188~1191
    Fliegmann J, Mith fer A, Wanner G, Ebel J.2004.An ancient enzyme domain hidden in the putativeβ-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associatedmolecular patterns during broad host resistance. J Biol Chem,279(2):1132~1140
    Fujita M, Fujita Y, Noutoshi Y.2006. Crosstalk between abiotic and biotic stress responses: a current viewfrom the points of convergence in the stress signaling networks. Curr Opin Plant Biol,9:436-442
    Gada J,Mayda M E,Conejero V, et al.1996. Characterization of defece-related genes ectopicallyexpressed in Viroid infected tomato plants. Molecular Plant Microbe interactions,9(5):409~415
    Garcia A, Conzalez M C.1997. Morphological markers for the early select ion of drought tolerant ricevarieties. Cultivate Tropical,18(2):47~50
    Geddes J, Eudes F, Laroche A, et al.2008.Differential expression of proteins in response to the interactionbetw-een the pathogen Fusarium gramine arum and its host, Hord eumvulg are. Proteomics,8:545~554
    Gelli A, Higgins V J, Blumwald E.1997.Activation of plant plasma membrane Ca2+permeable channels byrace-specific fungal elicitors. Plant Physiol,113:269~279
    Gilroy S, Bethke P C, Jones R L.1993.Calcium homeostasis in plants. J Cell Sci,106:453~462
    Gomez L, Boller T.2002.Flagellin perception: a paradigm for innate immunity. Trends Plant Sci,7:251~256
    Grant M, Brown I, Adams S.2000.The RPM1plant disease resistance gene facilitates a rapid and sustainedincrease in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. PlantJ,23:441~450
    Grant M, Mansfield J.1999.Early events in host-pathogen interactions. Curr Opin Plant Biol,2:312~319
    Greenberg J T.1997.Programmed cell death: Away of life for Plants. Proe Natl Acad Sci USA,93:12094~12097
    Gross D C.1991. Molecular and genetic analysis of toxin production by pathovars of Pseudomonassyringae. Annu Rev Phytopathol,29:247~278
    Gsleszzi M A M, Sgsrbieri V, Costantinides S M.1981. Isolation, purification and physiocochemicalcharacterization of polyphenol oxidase from drarf variety of banana (Musacavendiahii). J Food Sci,46:150~155
    Gunawardena A H L,Pearee D M,Jaekson M B,et al.2001.Charaeterization of Progranuned cell deathduring aerenchyma formation induced by ethylene or hypoxia in roots of maize(Zea maysL.).Planta,212:205~214
    Hann D R, Rathjen J P.2007.Early events in the pathogenicity of Pseudomonas syringae on Nicotianabenthamiana. Plant J,49(4):607~618
    He S Y, Bauer D W, Collmer A, et al.1994. Hypersensitive response elicited by Erwinia amylororaharpinrequies active plant metabolism. Mol Plant Microbe Interact,7:289~293
    Heath M C.2000. Hypersensitive response-related death. Plant Mol Biol,44:321~334
    Heist E P, Nesmith W C, Schardl C L.2001. Cocultures of Peronospora tabacina and Nicotiana species tostudy host-pathogen interactions. Phytopathol,91:1224~1230
    Heisteruber D.1994.Soluble carbohydrates and invertase activity in stem rustinfected resistant andsusceptible near-isogenic wheat leaves. Physiol Mol Plant Pathol,44:111~124
    Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F.2001.Antioxidant systems and O2-/H2O2production in the apoplast of pea leaves.Its relation with saltinduced necrotic lesions in minor veins.Plant Physiol,127:827~831
    Horsfall J G, Conling E B.1980.An advanced treatise. Plant Disease,5:351~359
    Houterman P M, Speijer D, Dekker H L,et al.2007. The mixed xylem sapproteome of Fusariumoxysporum-inf ected tomato plants. Mol Plant Pathol,8:215~221
    Huang H C, Schuurink R, Denny T P.1988. Molecular cloning of a Pseudomonas syringae pv. syringaegene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants.J Bacteriol,170:4748~4756
    Hwang B K.1986. Sugar composition and acid invertase activity in spring barley plants in relation to adult-plant resistance to powdery mildew.hytopathology,76:365~369
    Jabs T, Tschope M, Colling C.1997. Elicitor-stimulated ion fluxes and O2from the oxidative burst areessential components in triggering defense gene activation and phytoalexin synthesis in parsley. ProcNatl Acad Sci USA,94:4800~4805
    Jabs T,Dietrich R A,Dangl J L.1996. Initiation of runaway cell death in an Arabidopsis mutant byextracellular superoxide. Seience,273:1853~1856
    Jetiyanon K.2007. Defensive-related enzyme response in plants treated with a mixture of Bacillus strains(IN937a and IN937b) against different pathogens. Biol Control,42:178~185
    Jiang X L, Li Z Q, Kang Z S.2001.The recent progress of research on peroxidase in plant diseaseresistance. Jour of Northwest Sci-Tech Univ of Agri and For.(Nat. Sci. Ed.),29(6):124~129
    Jones J D, Dangle J L.2006. The pl o ant immune system. Nature,444:323~329
    Kaku H, Nishizawa Y, Ishii-Minami N, et al.2006.Plant cells recognize chitin fragments for defensesignaling through a plasma membrane receptor. Proc Natl Acad Sci USA,103(29):11086~11091
    Keppler L D,Novaeky A.1987.The initiation of membrane lipid peroxidation during bacteria-inducedhypersensitive reaetion. Physiol.Mol Plant Pathol,30:233~245
    Kim S T, Kang Y H, Wang Y, et al.2009.Secret ome analys is of differentially induced proteins in ricesuspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics,9:1302~1313
    Kim S T, Chok S, Yu S, Kim S G, et al.2003.Proteomic analysis of differentially expressed proteinsinduced by rice blast fungus and elicit or in suspension-cultured rice cel ls. Proteomics,3:2368~2378
    Kim S T, Kim S G, Hwang D H.2004.Proteomic analysis of pathogen-responsive proteins from rice leavesin duced by rice blast fungus,Ma gnap or th e gr ise a. Proteomics,4:3569~3578
    Klarzynaski O, Plesse B, Joubert J M, et al.2000. Linearβ-1,3-glucanase are elicitors of defense responsesin tobacco. Plant Physiol,24:1027-1037
    Kneer R, Poulev A A, Olesinski A, RaskinI.1999.Characterization of the elicitor-induced biosynthesis andsecretion of genistein from roots of Lupinus luteus L. J Exp Bot,50:1553~1559
    Knight V I,Vang H,Lincoln J E,Lulai E C,et al.2001. Hydroperoxides of fatty acids induce programmedcell death in tomato protoplasts. Physiological and Molecular Plant Pathology,59:277~86
    Koh S, Wiles A M, Sharp J S, Naider F R, Becker J M, Stacey G.2002. An oligopeptide transporter genefamily in Arabidopsis. Plant Physiol,128:21~29
    Kong L R, Anderson J M, Ohm H W.2005. Induction of wheat defense and stress-related genes in responseto Fusarium graminearum.Genome,48:29~40
    Konishi H, Ishiguro K, Komatsu S.2001. A proteomics approach tow ardsunderst anding blast fungus infection of rice grown under different levels of nitrogen fertilization. Proteomics,1:1162~1171
    Lam E, Kato N, Lawton M.2001. Programmed cell death, mitochondria and the plant hypersensitiveresponse. Nature,411:848~853
    Lardner R, Mlahoney N, Zanker T P, et al.2006. Secondary netabolite production by the fungal pathogenEutypa lata:Analysis of extracts from grapevine cultures and detection of those metabolites in planta.Australian Jurnal of Grape and Wine Erwearch,12(2):107~114
    Lecourieux D, Mazars C, Pauly N.2002.Analysis and effects of cytosolic free calcium increases in responseto elicitors in Nicotiana plumbaginifolia cells. Plant Cell,14:2627~2641
    Lecourieux D, Ranjeva R, Pugin A.2006. Calcium in plant defence signaling pathways. NewPhytol,171:249~69
    Lee J, Bricker T M, Lefevre M, et al.2006.Proteomic and geneticapproaches to identify defence-relatedproteins in rice challenged with the fungal pathogen Rhizoctoniasolani.Mol. Plant Pathol,7:405~416
    Levine A, Pennell R I, Alvarez M E.1996. Calcium-mediated apoptosis in a plant hypersensitive diseaseresistance response. Curr Biol,6:427~437
    Li X Z, Zhang X H, Tang H L, et al.2003. Increase of β-1,3-glucanase and chitinase activities in cottoncallus cells treated by salicylic acid and toxin of Verticillium dahliae. Acta Botanica Sinica,45(7):802~808
    Liu F L, Andersen M N, Jensen C R.2004. Root signal controls pod growth in drought stressed soybeanduring the critical, abort ion-sensitive phase of pod development. Field Crops Research,85:159-166.
    Lizama U G, Estrada M I A, Caamal C M G, Souza P R, Oropeza S C, Islas F I, et al.2007. Chitosanactivates a MAP-kinase pathway and modifies abundance of defense-related transcripts in calli of Cocosnucifera L. Physiol Mol Plant Pathol,70:130~141
    Low P S, Merida J R.1996. The oxidative burst in plant defense: function and signal transduction. Physiol.Plant,96:533~542
    Ma Y, Szostkiewicz I, Korte A, et a.2009.l Regu lators of PP2C phosphataseact ivity funct ion as abscisicacid sensors. Science,324:1064~1068
    Ma Z Y, Liu S Q, Wang X F, Zhang G Y, Sun J Z, Liu J L.2000. Relationship between Peroxidaseisozymes and Resistance to Verticillium Wilt in Cotton. Acta Agronomica Sinica,26(4):431~437
    Manocha M S, Zhoughua Z.1997.Immunocytochemical and cytochemical localization of chitinase andchitin in the infected hosts of a biotrophic mycoparasite, Pip tocephalis virginiana. Mycologia,89(2):185~194
    Martin F, David A, Jose P G, et al.2006.Transcriptional regulation of gibberellin metabolism genes byauxin signaling in Arabidopsis. Plant Physiogy,142:553~563
    Maurice T, Tronchet A, Balagué C, Kroj T, Jouanin L, Roby D.2010.Cinnamyl alcohol dehydrogenases-Cand D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis.Mol Plant Pathol,11(1):83~92
    Mcsteen P, Zhao Y.2008.Plant hormones and signaling: Common themes and new developments. Dev Cell,14:467~473
    Mitchum M G, Yamaguchi S, Hanada A, et al.2006.Distinct and overlaping roles of two gibberellin3-oxidases in A rabid opsis development. Plant J,45:804~818
    Mittler R, Lam E, Shulaev V, Cohen M.1999.Signals controlling the expression of cytosolic ascorbateperoxidase during pathogen-induced programmed cell death in tobacco. Plant Mol Biol,39:1025~1035
    Mittler R, Lam E.1996. Sacrifice in the face of foes: pathogen-induced programmed cell death in plants.Trends Mocrobiol,4:105~115
    Morimoto K, Kim izuka T C, Ishiik, et al.1997.Cloning, sequencing and expression of gene encodingClostridiumparaputreficum chitinase ChiB and analysis of functions of novel cadherin-like domains anda chitinbinding domain. Bacteriol,179(23):7306~7314
    Murr D P, Morris L L.1974. Influence of O2and CO2on o-diphenol oxidase activity in mushrooms. J AmSoc Hortic Sci,99:155~158
    Nam Jun. Kang.2008. Inhibition of powdery mildew development and activation of antioxidant enzymesby induction of oxidative stress with foliar application of a mixture of riboflavin and methionine incucumber. Sci Hortic-amsterdam,118:181~188
    Nemchinov L G, Shabala L, Shabala S.2008. Calcium Efflux as a Component of the HypersensitiveResponse of Nicotiana benthamiana to Pseudomonas syringae. Plant Cell Physiol,49(1):40~46
    Oppenheim B, Chet I.1992.Cloned chitinases in fungal plant pathogen control strategies. Tibtech,10:392~394
    Paterson A H,Brubaker C L,Wendel J F.1993. A rapid method for extraction of cotton genomic DNAsuitable for RFLP or PCR analysis. Plant Mol Biol ReP,11:122~127
    Patterson B D.1984.An inhibitor of catalase induced by cold in chilling sensitive Plant. Plant Physiol,76:1014~1017
    Pennell R I, Lamb C.1997. Programmed cell death in plants. The Plant Cell,9:1157~1168
    Piedras P, Hammond-Kosack K E, Harrison K.1998. Rapid, Cf9-and Avr9-dependent production of activeoxygen species in tobacco suspension cultures. Mol Plant-Microbe Interact,11:1155~1166
    Pike S M, Zhang X C, Gassmann W.2005. Electrophysiological characterization of the ArabidopsisavrRpt2-specific hypersensitive response in the absence of other bacterial signals. PlantPhysiol,138:1009~1017
    Pontier D, Balague C, Roby D.1998. The hypersensitive response. A programmed cell death associatedwith plant resistance. C R Acad Sci,321(9):721~734
    Postel S, Kemmerling B.2009.Plant systems for recognition of pathogen-associated molecular patterns.Semin Cell Dev Biol,20(9):1025~1031
    Pring R J.1980. A fine structural study of the infection of leaves of phaseolusuvlgaris by uredosores ofuromyces phaseali. Physiological Plant Pathology,17:269~276
    Puckette M C, Weng H, Mahalingam R.2007.Physiological and biochemical responses to acuteozone-induced oxidative stress in Medicago truncatula.Plant Physiol. Biochem,45:70~79
    Ramesh M.1968. Applications of plant tissue and cell culture in the study of physiology of parasitism.Plant Sci,69(3):152~172
    Ray H H, Hammerschmid T R.1998. Responses of potato tuber to infection by Fusarium sambucinum.Physiological and Molecular Plant Pathology,53(2):81~92
    Razenf A, Baron K, Hill R D.2006.Turning on gibberellin and abseisic acid signaling. Curt Opin PlantBiol,9:454~459
    Ron M, Avni A.2004.The receptor for the fungal elicitor ethylene-inducing xylanase is a member of aresistance-like gene family in tomato. Plant Cell,16(6):1604~1615
    Sandra R, Marijana R S, Branka P K.2006. Influence of NaCl and mannitol on peroxidaseactivity and lipidperoxidation in Centaurea ragusina L.roots and shoots. J. Plant Physiol,163:1284~1292
    Schlumbaum A, Mauch F, Voegeli U, et al.1986. Plant chitinases are potent inhibitors of fungal growth.Nature,324:365~367
    Selit rennikoff C P, Antifungal proteins.2001. Apple Environ Microbiol.67:2883-2894
    Shabala L, Ross T, McMeekin T.2006.Non-invasive microelectrode ion flux measurements to studyadaptive responses of microorganisms to the environment. FEMS Microbiol Rev,30:472~486
    Shabala S, Newman I A, Morris J.1997.Oscillations in Ht and Ca2+ion fluxes around the elongation regionof corn roots and effects of external pH. Plant Physiol,113:111~118
    Shabala S, Newman I A.2000.Salinity effects on the activity of plasma membrane Ht and Ca2+transportersin bean leaf mesophyll: masking role of the cell wall. Ann Bot,85:681~686
    Shabala S.2000. Ionic and osmotic components of salt stress specifically modulate net ion fluxes from beanleaf mesophyll. Plant Cell Environ,23:825~837
    Shein V, Andreeva O N, Polyakova G G, Zrazhevskaya G K.2003. Effect of pine callus elicitation by theFusarium strains of various pathogenicityon the content of phenolic compounds. Russ. J Plant Physiol,50:634~639
    Shirasu K, Sehulze-Lefert P.2000. Regulators of cell death in disease resistance. Plant Mol Biol,44(3):371~385
    Silva H S A, Romeiro R S, Macagnan D, Halfeld-Vieira B A, Pereira M C B, Mounteer A.2004.Rhizobacterial induction of systemic resistance in tomato plants non-specific protection and increase inenzyme activities. Biol Control,29:288~295
    Sircar D, Mitra A.2008.Evidence for p-hydroxybenzoate formation involving enzymatic phenylpropanoidside-chain cleavage in hairy roots of Daucus carota. J Plant Physiol,165:407~414
    Sommer A, Neeman E, Steffens J C, Mayer A M, Harel E.1994.Import targeting and processing of a plantpolyphenol oxidase. Plant Physiol,105:1301~1311
    Stratmann J, Scheer J, Ryan C A.2000. Suramin inhibits initiation of defense signaling by systemin,chitosan, and a b-glucan elicitor in suspension-cultured Lycopersicon peruvianum cells. Proc NatlAcad Sci,97:8862~8867
    Swain S M,Singh D P.2005. Tall tales from sly dwarves: novel functions of gibberellins in plantdevelopment. Trends Plant Sci,10(3):123~129
    Takken F L W, Tameling W I L.2009.To nibble at plant resistance proteins. Science,324(5928):744~746
    Tan X,Calderon-Villalobos I I,Sharon M,et al.2007. Mechanism of auxin perception by the TIR1ubiquitin ligase.Nature,446:640~645
    Thieny L, Mavromatis K, Vorgias C E, et al.2001.Cloning, sequencing and characterization of twochitinase genes from the Antarcticarthrohactersp strain TAD20: isolation and partial characterization ofthe enzymes. Journal Bacterial,183(5):1773~1779
    Thipyapong P, Steffens J C.1997.Tomato polyphenol oxidase differential response of the polyphenoloxidase F promoter to injuries and woundsignals. Plant Physiology,115:409~418
    Trujillo M,Kogel K H,Huckelhoven R.2004. Superoxide and hydrogen peroxide play different roles innon-host interaction of barley and wheat with inappropriate formae speciales of Blumeria graminis. MolPlant Microbe Interact,17(3):304~312
    Trunova T I,Zvereva G H.1977. Effet of Protein synthesis inhibitors on frost hardiness of winter wheat.PlantPhysiol,24:39~40
    Tzeng D D S, Devay J E.1993.Role of oxygen radicals in plant disease development. Plant Pathol,10:1~34
    Van de Veerdonk F L, Kullberg B J, van der Meer J W, Gow N A, Netea M G.2008.Host–microbeinteractions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol,11(4):305~312
    van Leeuwen G C M, Stein A, Holb I, Jeger M G.2000. Yield loss in apple caused by Monilinia fructigena(Aderh.&Ruhl.) Honey, and spatio-temporal dynamics of disease development. Eur J Plant Pathol,106(6):519~528
    Van Loon L C, Rep M, Pieterse C M J.2006. Significance of inducible defense-related proteins in infectedplants. Annual Review of Phytopathology,44:135~162
    Van Loon L C.1987. Disease induction by plant viruses. Advance of Virus Research,33:205~255
    Vitecek J, W unschova A, Petrek J, et a.l2007.Cell death induced by sodium nitroprusside and hydrogenperox ide. Biologia Plantarum,51(3):472~479
    Vranov E, et a.l.2002. Signal transduction during oxidative stress. Journal of Experimental Botany,53(372):1227~1236
    Wan J R, Zhang X C, Neece D, et al.2008.A LysM receptor-like kinase plays a critical role in chitinsignaling and fungal resistance in Arabidopsis. Plant Cell,20(2):471~481
    Wang G D, Ellendorff U, Kemp B, et al.2008.A genome-wide functional investigation into the roles ofreceptor-like proteins in Arabidopsis. Plant Physiol,147(2):503~517
    Wang Y S, Tian S P, Xu Y, Qin G Z, Yao H J.2004. Changes in the activities of pro-and anti-oxidantenzymes in peach fruit inoculated with Cryptococcus laurentii or Penicillium expansum at0or20°C.Postharvest Biol Tec,34:21~28
    Wang Y, Li X, Bi Y, Ge Y H, Li Y C, Xie F.2008.Postharvest ASM or harpin treatment Induce resistanceof muskmelons against Trichothecium roseum. Agri Sci in China,7(2):217~223
    Wills R, McGlasson B, Graham D, Joyce D.1998. Postharvest, an introduction to the Physiology andHandling of Fruit, Vegetables and Ornamentals. Sydney, Australia: University of New South WalesPress Ltd,9
    Wulff B B, Chakrabarti A, Jones D A.2009.Recognitional specificity and evolution in thetomato-cladosporium fulvum pathosystem. Mol Plant Microbe In,22(10):1191~1202.
    Xu L L, Ye M B.1991.Peroxidase and isoperoxidase activity in resistance of Wheat to Scab. ActaPhytopathologica Sinica,21(4):285~290
    Xu Q,Reed J C.1998. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functionalscreening in yeast. Mol Cell,1:337~346
    Xu X B, Qin G Z, Tian S P.2008. Effect of microbial biocontrol agents on alleviating oxidative damage ofpeach fruit subjected to fungal pathogen. Int J Food Microbiol,126:153~158
    Xu X M, Robinson J D, Berrie A M, Harris D C.2001. Spatio-temporal dynamics of brown rot (Moniliniafructigena) on apple and pear. Plant Pathol,50:569~578
    Yang J, Zhang J, Wang Z, Zhu Q, Wang W.2001. Hormonal changes in the grains of rice subjected towater stress during grain filling. PlantPhysiology127:315~323
    Yang Y N, Qi M, Mei C S.2004. Endogenous salicylic acid protects rice plants from oxidative damagecaused by aging as well as biotic and abiotie stress. Plant J,40:909~919
    Yao H J, Tian S P.2005. Effect of pre-and post-harvest application of salicylic acid or methyl jasmonate oninducing disease resistance of sweet cherry fruit in storage.Postharvest Biol Tec,35:253~262
    Ye X S,Deverall B J.1989. Effect sofheat treatment or mixed inoculation on the development of ompatiblean dineompatible bean rustinfeetions. Physiological and Molecular Plant Pathology,34:427~437
    Zhang J, Li W, Xiang T T, et al.2010.Receptor-like cytoplasmic kinases integrate signaling from multipleplant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe,7(4):290~301
    Zhou W, Eudes F, Laroche A.2006.Identification of differentially regulated proteins in response to acompatible interaction between the pathogen Fusarium graminearum and its host, Triticumaestivum.Proteomics,6:4599~4609
    Zimmermann S, Nurnberger T, Frachisse J M.1997.Receptor-mediated activation of a plant Ca2+permeableion channel involved in pathogen defense. Proc Natl Acad Sci USA,94:2751~2755
    Zivanovic D B, Cuin T A, Shabala S.2007.Spectral and dose dependence of light-induced ion fluxresponses from maize leaves and their involvement in leaf expansion growth. Plant Cell Physiol,48:598~605

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700