用户名: 密码: 验证码:
AZ31镁合金板材磁脉冲成形性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金以其自身特有的特性如较低的密度、高比强度等逐渐受到工业应用的青睐。对于镁合金的成形方式,在以往的研究和应用中,通常采用加热成形的方法。在常温下,由于镁合金具有密排六方晶体结构,滑移系较少,成形性能较差。磁脉冲成形是一种高速成形工艺,可以显著提高金属材料的成形性能,特别是对于常温下成形性能较差的材料。本文针对工业中常用的AZ31镁合金板材进行磁脉冲成形研究。讨论和分析了AZ31镁合金板材磁脉冲成形极限、磁脉冲动态驱动下的成形性能及变形规律、AZ31镁合金板材在磁脉冲和磁脉冲动态驱动下的微观变形机制以及磁脉冲成形AZ31镁合金板材典型壳体件的变形行为。
     通过分析AZ31镁合金板材磁脉冲成形下的三种典型应变状态即单向拉伸、平面应变和双等拉伸的极限应变分布,建立了AZ31镁合金板材磁脉冲室温成形极限图。利用近似矩形平板单螺旋线圈对拉伸试样(与准静态下相同)进行胀形,实现单向拉伸应变状态;利用匀压线圈产生的均匀的磁压力作用于条形试样,实现平面应变状态;利用圆形平板线圈对方形试样的自由胀形,实现双等拉应变状态。通过与准静态下相应极限应变的对比表明,AZ31镁合金板材磁脉冲成形极限显著提高。
     通过成形极限的系统研究,发现AZ31镁合金板材磁脉冲成形过程中,在惯性效应的影响下成形性能显著提高。为了加强惯性效应的作用,将电导率较高的铝合金或者铜板置于AZ31镁合金板材与线圈之间,深入研究AZ31镁合金板材在磁脉冲动态驱动过程中的成形性能和变形规律。在磁脉冲动态驱动过程中,由于惯性效应的增强,AZ31镁合金板材的成形极限较无驱动时有明显提高。同时,对AZ31镁合金板材在磁脉冲动态驱动过程中典型位置的速度、应变速率和应力应变的变化规律进行了系统的研究。
     通过对准静态单向拉伸、准静态双等拉伸、磁脉冲单向拉伸、磁脉冲双等拉和磁脉冲动态驱动成形(2mmAl驱动片)的断口分析,结果表明:准静态下,断口区无明显韧窝,表现为脆性断裂;而磁脉冲单向拉伸和磁脉冲动态驱动成形断口区出现明显的韧窝,表现为韧性断裂的趋势。通过对准静态单向拉伸、磁脉冲单向拉伸成形断口区域的EBSD分析,表明准静态单向拉伸下的变形机制以基系滑移为主,而磁脉冲单向拉伸下,由于变形剧烈,晶粒较准静态下细化明显,其变形机制仍以基系滑移为主,孪晶较准静态略有增多。通过对准静态双等拉伸、磁脉冲双等拉和磁脉冲动态驱动成形断口区域的EBSD分析,表明准静态双等拉伸下的变形机制为基系滑移,而磁脉冲双等拉和磁脉冲动态驱动成形下,由于变形获得了较多的能量,更多的滑移系被激活,且有{10-12}拉伸孪晶出现(其中磁脉冲动态驱动最为明显)。
     采用多物理场耦合有限元分析软件ANSYS,建立了AZ31镁合金板材典型壳体件磁脉冲成形的3D有限元模型。3D有限元模型的建立,克服了磁脉冲成形以往模拟研究中只采用2D研究轴对称性结构的局限,从而可以对磁脉冲成形工艺中的非对称性结构的成形进行模拟分析。对壳体件成形中采用的匀压线圈产生的磁场分布、磁通密度和磁压力的变化规律进行了讨论和分析。研究了AZ31镁合金壳体件的磁脉冲成形过程中,板材与模具碰撞的变形特征。
     针对不同底部圆角(R=30mm、R=15mm、R=2mm和R=8mm)的壳体件进行了磁脉冲成形试验研究。研究中讨论了工艺参数对壳体件成形的影响。在成形过程中,由于AZ31镁合金板材以较高的速度与模具发生碰撞,碰撞部位即壳体的底部的速度发生反向,形成凹陷。为了克服凹陷缺陷的产生,研究中探索了铝合金驱动片对于底部凹陷部位的影响规律。分析了驱动片厚度、驱动片的驱动次数对于不同底部圆角壳体件成形的影响。针对匀压线圈打火和鼓包的缺陷,提出了外导槽与主线圈进行分离的分体式匀压线圈,可以有效的减小外导槽与板材之间的接触面积,增加上下直导线之间的距离,显著提高了匀压线圈的使用寿命。
Magnesium alloy is valued to used in industry, due to it has many specialproperties such as low density, high specific strength, etc. The warm forming wasemployed to form the magnesium alloy in the previous studies and applications. Theformability of magnesium alloys at room temperature is low because they have ahexagonal close-packed crystallographic structure with limited number of slipsystems. Magnetic pulse forming is high speed forming process, which cansignificantly improve the formability of metal material especially for the materialswith poor formability at room temperature. AZ31magnesium alloy commonly usedin industry is invetigated by the magnetic pulse forming in this paper. The forminglimit of AZ31magnesium alloy of magnetic pulse forming, the formability andforming rule of magnetic pulse dynamic driving, micromechanism of AZ31magnesium alloy in magnetic pulse and magnetic pulse dynamic driving and thedeformation behaviours of typical AZ31magnesium alloy shell of magnetic pulseforming are discussed and analysed, respectively.
     The forming limit diagram of AZ31magnesium alloy sheet of magnetic pulseforming is established by analyzing the three typical strain states namely uniaxialtension, plane strain and equi-biaxial tension. In order to complete uniaxial tensilestrain state, the specimens (same as that of quasi-static uniaxial tensile tests) arebulging by approximate rectangular flat single spiral coil. The uniform pressurefrom uniform coil is acted on the strip workpiece, which is used to achieve the planestrain state. Equi-biaxial tensile strain state is implemented by electromagnetic freebulging the square workpiece with circle flat spiral coil. Compared with quasi-staticforming limit accordingly, the results show that the forming limit of AZ31magnesium alloy sheet of magnetic pulse forming is remarkablely improved.
     From the systematic investigation of forming limit, it shows that theformability of AZ31magnesium alloy sheet of magnetic pulse forming is enhancedbecause of inertial effect. In order to strengthen the inertial effect, the aluminumalloy or cupper sheets with higher conductivity are put between coil and AZ31sheet.The formability and forming rule of AZ31magnesium alloy sheet in magnetic pulsedynamic driving are deeply researched. Due to the strength of inetial effect, theforming limit of AZ31magnesium alloy sheet is obviously increased compared withthe case without driving. Meanwhile, the changes of velocity, strain rate and stress- strain of typical positions in magnetic pulse dynamic driving are presented.
     The fracture areas of quasi-static uniaxial tension, quasi-static equi-biaxialtension, magnetic pulse uniaxial tension, magnetic pulse equi-biaxial tension andmagnetic pulse dynamic driving with2mm Al driver sheet were analyzed. Theresults show that the fractured sample for the quasi-static condition clearly displaysbrittle rupture. However, for magnetic pulse forming with the Al driver sheet, thefracture surfaces have plastic dimples that exhibit typical ductile rupture. Thedeformation mechanisms of quasi-static uniaxial tension, magnetic pulse uniaxialtension were analyzed by EBSD method. For quasi-static uniaxial tension, basalslips should be the main deformation mode. However, due to drastic deformation,grain is obviously refined in magnetic pulse uniaxial tension and twinning is morethan the case of quasi-static condition. The deformation mechanisms of quasi-staticequi-biaxial tension, magnetic pulse equi-biaxial tension and magnetic pulsedynamic driving were also analyzed by EBSD method. The results show that basalslips dominate in the quasi-static equi-biaxial tension and due to more energy fordeformation is achieved in magnetic pulse equi-biaxial tension and magnetic pulsedynamic driving, more slips and {10-12} extension twinning (it is the most obviousin magnetic pulse dynamic driving) are activated
     The3D finite element model of typical AZ31magnesium alloy shell ofmagnetic pulse forming is established by using the multi-physics coupling fieldfinite element analysis software ANSYS. The establishment of3D finite elementmodel can overcome the limitation of2D model which was used to analyze the axialsymmetry structure in magnetic pulse forming.3D finite element model can beemployed to simulate the forming of non-axial symmetry structure in magneticpulse forming.The uniform coil is used to deform the shell and the change rules ofmagnetic field, magnetic flux density, magnetic pressure are analyzed anddiscussed.The deformation characteristic of sheet and die collision is investigated inAZ31magnesium alloy shell of magnetic pulse forming.
     The magnetic pulse forming for AZ31magnesium alloy shell with three typicalbottom corner (R=30mm, R=15mm, R=2mm and R=8mm) is investigatedexperimentally. The effects of process parameters for forming shell are discussed.Due to AZ31magnesium alloy sheet with high velocity impacts with die, thedirection of bottom velocity is opposite. Thus, the hollow on the bottom of shell isoccurred. In order to overcome the defect of hollow, the effect of driver sheet isinvestigated. The effects of thickness of driver sheet, numbers of driving forformimg shell of different bottom corner are analyzed. Due to arcing and swell for uniform coil, the separated uniform coil viz separated the outer channel andprincipal coil is proposed. It can obviously reduce the contact area between outerchannel and sheet, increase the distance between up and down lead and remarkablyimprove the life of uniform coil.
引文
[1] Davies G. Materials for automotive bodies[M]. London: Elsevier,2003,91:158-159.
    [2] Friedrich H, Schumann S. Research for a“new age of magnesium”in theautomobile industry [J]. Journal of Materials Processing Technology,2001,117:276-281.
    [3] Iwanaga K, Tashiro H, Okamoto H. Improvement of formability f romroom temperature to warm temperature in AZ31magnesium alloy[J].Journal of Materials Processing Technology,2004,155/156:1313-1316.
    [4] Lee S, Chen Y H J, Wang Y. Isothermal sheet metal formability ofmagnesium alloy AZ31and AZ61[J]. Journal of Materials ProcessingTechnology,2002,124:19-24.
    [5] Von mises R. Mechanik der plastischen formanderung von kristallen[J]. Z.Angew. Math. Mech,1928,8:161-185.
    [6] Taylor G I. Plastic strain in metals[J]. Journal of the Institute of Metals,1938,62:307-324.
    [7] Chen F K, Huang T B. Formability of Stamping Magnesium Alloy AZ31Sheets[J]. Journal of Materials Processing Technology,2003,142:643-647.
    [8] Fuh-Kuo Chen, Tyng-Bin Huang, Chih-Kun Chang. Deep drawing ofsquare cups with magnesium alloy AZ31sheets[J]. International Journalof Machine Tools&Manufacture,2003,43:1553-1559.
    [9] Lee S, Kwon Y N, Kang S H, Kim S W, Lee J H. Forming limit of AZ31alloy sheet and strain rate on warm sheet metal forming[J]. Journal ofMaterials Processing Technology,2008,201(1-3):431-435.
    [10] Palumbo G, Sorgente D, Tricarico L. A numerical and experimentalinvestigation of AZ31formability at elevated temperatures using aconstant strain rate test[J]. Materials and Design,2010,31:1308-1316.
    [11] Doege E, Dr der K. Sheet Metal Forming of Magnesium Wrought AlloysFormability and Process Technology[J]. Journal of Materials ProcessingTechnology,2001,115:14-19.
    [12] Shoichiro Yoshihara, Ken-ichi Manabe, Hisashi Nishimura. Effect ofblank holder force control in deep-drawing process of magnesium alloysheet[J]. Journal of Materials Processing Technology,2005,170:579-585.
    [13] Yoshihara S, Yamamoto H, Manabe K, Nishimura H. Formabilityenhancement in magnesium alloy deep drawing by local heating andcooling technique[J]. Journal of Materials Processing Technology,2003,143-144:612-615.
    [14] Sheng Z Q, Shivpuri R. A hybrid process for forming thin-walledmagnesium parts[J]. Materials Science and Engineering A,2006,428:180-187.
    [15] Kaya S, Altan T, Groche P, Kl psch C. Variation of the flow stress ofmagnesium AZ31-O sheet at elevated temperatures using the hydraulicbulge test[J]. International Journal of Machine Tools&Manufacture,2008,48:550-557.
    [16] Abu-Farha F, Verma R, Hector Jr L G. High Temperature CompositeForming Limit Diagrams of Four Magnesium AZ31B Sheets Obtained byPneumatic Stretching[J]. Journal of Materials Processing Technology,2012,212:1414-1429.
    [17] Beerwald C, Brosius A, Kleiner M, Psyk V. Einfluss des magnetischenDruckes bei der elektromagnetischen Blechumformung[C]. In:Kolloquium Elektromagnetische Umformung, Dortmund,2003, pp.77-85.
    [18] Daehn G S, Altynova M, Balanethiram V S, Fenton G, Padmanabhan M,Tamhane A, Winnard E. High-Velcoity Metal Forming-An OldTechnology Addresses New Problems[J]. JOM,1995:42-45.
    [19] Weidner, Richard T. Physics[M]. USA: Allyn and Bacon,1989.
    [20] Wang L F, Chen Z Y, Li C X, Huang S Y. Numerical Simulation of theElectromagnetic Sheet Metal Bulging Process[J]. International Journal ofAdvanced Manufacturing Technology,2006,30(5-6):395-400.
    [21] Harvey G W, Brower D F. Metal Forming Device and Method[P]. US-Patent Nr,1958,2976907.
    [22] Kapitza P L. A method for producing strong magnetic fields[J].Proceedings of the Royal Society Serine A,1924,105:691-710.
    [23] Al-Hassani S T S. Magnetic pressure distributions in sheet metalforming[C]. In: Proceedings of the Conference on Electrical Methods ofMachining,1975, pp.1-10.
    [24] Takatsu N, Kato M, Sato K, Tobe T. High-speed forming of metal sheetsby electromagnetic force[J]. Japan Society Mechanical EngineeringInternational Journal (JSME) Series III,1988,31(1):142-148.
    [25] Imbert J M, Winkler S L, Worswick M J, Oliveira D A, Golovashchenko S.The effect of tool/sheet interaction on damage evolution inElectromagnetic Forming of Al alloy sheet[J]. Journal of MaterialsProcessing Technology,2005,127:145-153.
    [26] Imbert J M, Winkler S L, Worswick M J, Oliveira D A, Golovashchenko S.Formability and damage in electromagnetically formed AA5754andAA6111[C].1st International conference on High speed forming,2004.
    [27] Golovashchenko S F. Material Formability and Coil Design inElectromagnetic Forming[J]. Journal of Materials Engineering andPerformance,2007,16:314-320.
    [28] Seth M, Vohnout V J, Daehn G S. Formability of Steel Sheet in HighVelocity Impact[J]. Journal of Materials Processing Technology,2005,168:390-400.
    [29] Olieviera D A, Worswick M J, Finn M, Newman D. Electromagneticforming of aluminum alloy sheet: Free-form and cavity fill experimentsand model[J]. Journal of Materials Engineering and Performance,2005,170:350-362.
    [30] Al-Hassani S T S, Duncan J L, Johnson W. The Effect of Scale inElectromagnetic Forming when using Geometrically Similar Coils[C].Proc.1st Int. Conf. for High Energy Forming,1967.
    [31] Rajendran A M, Fyfe I M. Inertia effects on the ductile failure of thinrings[J]. Journal of Applied Mechanics,1982,49:31-36.
    [32] Hu Xiaoyu, Wagoner Robert H, Daehn Glenn S, Ghosh Somnath. Theeffect of inertia on tensile ductility [J]. Metallurgical and MaterialsTransactions A,1994,25A:2723-2735.
    [33] Balanethiram S, Daehn G S. Hyperplasticity: Increased Forming Limits atHigh Workpiece Velocity[J]. Scripta Materialia,1994,30:515-520.
    [34] Hu Xiaoyu, Daehn G S. Effect of velocity on flow localization intension[J]. Acta mater,1996,44(3):1021-1033.
    [35] Von Karman T, Duwez P. Propagation of Plastic Deformation in Solids[J].Journal of applied Physics,1950,21:987-990.
    [36] Follansbee P S, Kocks U F. A constitutive description of the deformationof copper based on the use of mechanical threshold stress as an internalstate variable[J]. Acta Metallica,1988,36:81-93.
    [37] Regazzoni G, Kocks U F, Follansbee P S. Dislocation Kinetics at highstrain rates[J]. Acta Metallica,1987,35(12):2865-2875.
    [38] Gorham D A. An effect of specimen size in the high-strain ratecompression test[J]. Journal De Physique III,1991,1:411-418.
    [39] Dioh N N, Leevers P S, Williams J G. Thickness effect in split Hopkinsonpressure bar test[J]. Polymer,1993,34:4230-4234.
    [40] Dioh N N, Ivancovic A, Leevers P S, Williams J G. Stress wavepropagation effects in split Hopkinson pressure bar tests[J]. Proceedings:Mathematical and Physical sciences,1995,449:187-204.
    [41] Oosterkamp L D, Ivankovic A, Venizelos G. High strain rate properties ofselected aluminum alloys[J]. Materials Science and Engineering A,2000,278:225-235.
    [42] Balanethiram V S. Hyperplasticity: Enhanced Formability of Sheet Metalsat High Velocity[J]. Ph. D. Dissertation of The Ohio State University,1996:1-181.
    [43] Altynova M, Hu X Y, Daehn G S. Increased ductility in electromagneticring expansion[J]. Metall Mater Trans A,1996,27(7):1837-1844.
    [44] Unpublished research by Pierrer L’Eplattenier at LSTC, Livermore CA,using LS-DYNA.
    [45] Scott Golowin, Manish Kamal, Jianhui Shang, Jake Portier, Ahmad Din,Daehn Glenn S, Bradley John R, Newman Keith E, Steve Hatkevich.Application of a Uniform Pressure Actuator for ElectromagneticProcessing of Sheet Metal[J]. Journal of Materials Engineering andPerformance,2007,4:455-460.
    [46] Manish K, Shang J, Cheng V, Hatkevich S, Daehn G S. Agilemanufacturing of a micro-embossed case by a two-step electromagneticforming process[J]. Journal of Materials Processing Technology,2007,190:41-50.
    [47]张守彬,程刚,于连仲,李硕本.电磁成形几个影响因素的研究[J].锻压技术,1988,1:26-29.
    [48]张士宏,尚彦凌.爆破片电磁成形工艺的研究[J].锻压技术,2000,25(1):28-30.
    [49]初红艳,费仁元,吴海波.椭圆线圈在平板电磁成形中的应用研究[J].锻压技术,2002,27(5):38-41.
    [50]初红艳,费仁元,陆辛.平板件电磁成形时线圈最小尺寸的计算[J].中国机械工程,2003,14(10):818-822.
    [51]初红艳,费仁元,陆辛.电磁成形铝板时变形高度与成形电压的关系[J].中国机械工程,2003,14(19):1628-1631.
    [52]刘大海.5052铝合金板材磁脉冲辅助冲压成形变形行为及机理研究[D].哈尔滨工业大学博士学位论文,2010:1-155.
    [53] Dahai Liu, Chunfeng Li, Haiping Yua, Zhengbo Ji. Research onformability of5052aluminum alloy sheet in a quasi-static-dynamictensile process[J]. International Journal of Machine Tools andManufacture,2009,49(2):117-124.
    [54]王蕾. EMF双极板磁脉冲成形研究[D].哈尔滨工业大学硕士学位论文,2011:1-135.
    [55] Jablonski J, Wrinkler R. Analysis of the electromagnetic forming process[J]. International Journal of Mechanical Sciences,1978,20:315-325.
    [56] Gourdin W H. Analysis and assessment of electromagnetic ring expansionas a high-strain-rate test[J]. Journal of Applied Physics,1989,65:411-422.
    [57] Fenton G K, Daehn G S. Modeling of electromagnetically formed sheetmetals[J]. Journal of Materials Processing Technology,1998,75:6-16.
    [58] Monaghan J J. Smoothed particle hydrodynamics[J]. Annual Reviewof Astronomy and Astrophysics,1992,30:543-574.
    [59] El-Azab A, Garnich M, Kapoor A. Modeling of the ElectromagneticForming of Sheet Metals: State-of-the-Art and Future Needs[J]. Journal ofMaterials Processing Technology,2003,142(3):744-754.
    [60] Oliveira D A, Worswick M. Electromagnetic forming of aluminium alloysheet[J]. Journal de Physique,2003,110:293-298.
    [61] Imbert J M, Winkler S L, Worswick M J, Oliveira D A. The Effect ofTool-sheet Interaction on Damage Evolution in Electromagnetic Formingof Aluminum Alloy Sheet[J]. Journal of Engineering Materials andTechnology,2005,27:127-153.
    [62] Hallquist J. LS-DYNA Theoretical Manual[M]. Livermore: Livermoresoftware technology corporation,1998:11-20.
    [63] Gurson A L. Continuum Theory of Ductile Rupture by Void Nucleationand Growth: Part1-Yield Criteria and Flow Rules for Porous DuctileMedia[J]. Journal of Engineering Materials and Technology,1977,99:2-15.
    [64] Bessonov N, Golovashchenko S. Numerical simulation of pulsedelectromagnetic stamping process [C]. In: Proceedings of the1stInternational Conference on High Speed Forming ICHSF,2004, pp.83-91.
    [65] Karch C, Roll K. Transient simulation of electromagnetic forming ofaluminium tubes[J]. Advanced Materials Research,2005,6-8:639-646.
    [66] Kleiner M, Brosius A. Determination of flow curves at high strain ratesusing the electromagnetic forming process and an iterative finite elementsimulation scheme[J]. Annals of the CIRP,2006,1:55-58.
    [67] Schinnerl M, Schoberl J, Kaltenbacher M, Lerch R. Multigrid methods forthe3D simulation of nonlinear magneto-mechanical systems[J]. IEEETransaction of Magnetics,2002,38:1497-1511.
    [68] Stiemer M, Unger J, Svendsen B, Blum H. Algorithmic formulation andnumerical implementation of coupled electromagnetic-inelastic continuummodels for electromagnetic metal forming[J]. International Journal forNumerical Methods in Engineering,2006,68:1301-1328.
    [69] Stiemer M, Unger J, Svendsen B, Blum H. An arbitrary LagrangianEulerian approach to the three-dimensional simulation of electromagneticforming[J]. Computer Methods in Applied Mechanics and Engineering,2009,198(17-20):1535-1547.
    [70] Conraux Ph, Pignol M, Robin V, Berghau J M.3D finite elementmodeling of electromagnetic forming processes[C]. In: Proceedings of the2nd International Conference on High speed Forming-ICHSF,2006, pp.73-82.
    [71] L’Eplattenier P, Cook G, Ashcraft C. Introduction of an electromagnetismmodule in LS-DYNA for coupled mechanical thermal electromagneticsimulation[C]. In: Proceedings of the3rd International Conference onHigh Speed Forming-ICHSF,2008, pp.85-96.
    [72] L’Eplattenier P, Cook G, Ashcraft C, Burger M, Imbert J, Worswick M.Introduction of an electromagnetism module in LS-DYNA for coupledmechanical-thermal-electromagnetic simulations[J]. Steel ResearchInternational,2009,80(5):351-358.
    [73] Imbert J, Worswick M, L’Epplattenier P. Effects of force distribution andrebound on electromagnetically formed sheet metal[C]. In: Proceedings ofthe4th International Conference on High Speed Forming-ICHSF,2010,pp.169-180.
    [74] Demir O K, Psyk V, Tekkaya A E. Simulation of tube wrinkling inelectromagnetic compression[J]. Production Engineering,2010,4(4):421-426.
    [75]李春峰,赵志衡,李建辉,李忠.电磁成形磁场力的研究[J].塑性工程学报,2001,8(2):70-72.
    [76]于海平,李春峰,李忠.基于FEM的电磁缩径耦合场数值模拟[J].机械工程学报,2006,43(7):231-234.
    [77]江洪伟,李春峰.电磁校形过程中磁场力耦合模拟分析[J].锻压技术,2006,6:56-59.
    [78]孙祥龙.平板毛坯电磁成形过程有限元分析[D].哈尔滨工业大学硕士学位论文,2005:20-25.
    [79] Yu H P, Li C F. Study of Coil Length on Tube Compression inElectromagnetic Forming[J]. Transactions of Nonferrous Metals Societyof China,2007,17(6):1270-1275.
    [80] Huang S Y, Chang Z H, Wang Z R. A Finite Element Analysis ofElectromagnetic Sheet Metal Expansion on Process[J]. Transactions ofNonferrous Metals Society of China,1998,8(3):490-495.
    [81] Xin L, Jintao H, Kebing C. Research and Deformation Simulation onElectric-Magnetic Forming Process of Metal Plate[C]. Proceedings of the6th ICTP,1999, pp.2483-2488.
    [82]崔晓辉,莫健华,王波,何文治.基于松散耦合法的电磁平板成形3D有限元仿真[J].机械工程学报,2011,47(16):45-50.
    [83]崔晓辉,莫健华,何文治.基于松散耦合法的电磁管件胀形3D模拟[J].中国有色金属学报,2011,21(11):2896-2901.
    [84] El-Magd E, Abouridane M. High Speed Forming of Light-WeightWrought Alloys[C]. Proc.1st Intern. Conf. on High Speed Forming,2004,pp.3-12.
    [85] Uhlmann E, Hahn R. Pulsed Magnetic Hot Forming of MagnesiumProfiles[J]. Prod.Eng. X/2,2003:87-90.
    [86] Uhlmann E, Jurgasch D. New Impulses in the Forming of MagnesiumSheet Metals[C]. In: Proc.1st Int. Conf. High Speed Forming,2004, pp.229-241.
    [87] Ulacia I, Arroyo A, Eguia I, Hurtado I, Gutiérrez M A. WarmElectromagnetic Forming of AZ31B Magnesium Alloy Sheet[C].4thInternational Conference on High Speed Forming,2010, pp.159-168.
    [88] Zhenghua Meng, Shangyu Huang, Jianhua Hu, Wei Huang, Zhilin Xia.Effects of process parameters on warm and electromagnetic hybridforming of magnesium alloy sheets[J]. Journal of Materials ProcessingTechnology2011,211:863-867.
    [89] Ulacia I, Dudamell N V, Galvez F,Yi S, Perez-Prado M T, Hurtado I.Mechanical behavior and microstructural evolution of a Mg AZ31sheet atdynamic strain rates[J]. Acta Mater,2010,58:2988-2998.
    [90] Avedesian M, Baker H. Magnesium and Magnesium Alloys[M]. MaterialsPark: ASM International,1999:1-350
    [91]李正. AZ31镁合金板条温热电磁成形实验及本构模型研究[D].武汉理工大学硕士学位论文,2009:1-76.
    [92] Shu D W, Ahmad I R. Magnesium Alloys: An Alternative for Aluminiumin Structural Applications[J]. Advanced Materials Research,2011,2011:1631-1635.
    [93] Keeler S P, Backofen W A. Plastic instability and fracture in sheetsstretched over rigid punches[J]. Transactions of American Society forMetals,1963,56(1):25-48.
    [94] P, Keeler S. Determination of forming limits in automotive stampings[J].Sheet Metal Industry,1965,42:683-691.
    [95] M, Goodwin G. Application of strain analysis to sheet metal formingproblems in the press shop[P]. SAE technical paper,1968,680093.
    [96] Hecker S S. Simple technique for determining forming limit curves[J].Sheet Metal Industry,1975,52:671-676.
    [97] Nakazima K, Kikuma T, Hasuka K. Study on the formability of steelsheets[J]. Yawata Tech.Rep,1971,284:678-680.
    [98] Marciniak Z, Kuczynski K. Limit strains in the processes of stretchforming sheet metal[J]. International Journal of Mechanical Sciences,1967,9:609-620.
    [99] Dehra M S. High Velocity Formability and Factors Affecting It[D]. Ph. D.Dissertation of The Ohio State University,2006:1-314.
    [100] Vohnout V J. A Hybrid Quasi-static/Dynamic Process for Forming LargeSheet Metal Parts from Aluminum Alloys[D]. Ph. D. Dissertation of OhioState University,1998:1-199.
    [101] Balanethiram V S, Daehn G S. Hyperplasticity: Increased Forming Limitsat High Workpiece Velocity[J]. Scripta Metallurgica et Materialia,1994,30(4):515-520.
    [102] Balanethiram V S, Hu X Y, Daehn G S. Hyperplasticity: EnhancedFormability at High Rates[J]. Journal of Materials Processing Technology,1994,45:595-600.
    [103] Sato Y S, Sugiura Y, Shoji Y, Park H C S. Post-Weld Formability ofFriction Stir Welded Al Alloy5052[J]. Materials Science and EngineeringA,2004,369:138-143.
    [104] Wagoner R H, Wang N M. An Experimental and Analytical Investigationof In-Plane Deformation of2036-T4Aluminum Sheet[J]. InternationalJournal of Mechanical Science,1979,21:255-264.
    [105] Holmberg S, Enguist B, Thilderkvist P. Evaluation of Sheet MetalFormability by Tensile Tests[J]. Journal of Material Processing andTechnology,2004,145:72-83.
    [106] Kliener M, Beerwald C, Homberg W. Analysis of process parameters andforming mechanisms with in the electromagnetic forming process[J].CIRP Annals-Manufacturing Technology,2005,54:225-228.
    [107] Peixinho Nuno, Doellinger Claudia. Characterization of DynamicMaterial Properties of Light Alloys for Crashworthiness Applications [J].Materials Research,2010,3(4):471-474.
    [108] Bariani P F, Bruschi S, Ghiotti A, Turetta A. Testing formability in the hotstamping of HSS[J]. CIRP Annals-Manufacturing Technology,2008,57:265-268.
    [109] Unger J, Stiemer M, Svendsen B, Blum H. Multifield modeling ofelectromagnetic metal forming processes[J]. Journal of MaterialsProcessing Technology,2006,177:270-273.
    [110] Manish Kamal M S. A UNIFORM PRESSURE ELECTROMAGNETICACTUATOR FOR FORMING FLAT SHEETS[D]. Ph. D. Dissertation ofOhio State University,2005:1-261.
    [111] Ulacia I, Salisbury C P, Hurtado I, Worswick M J. Tensile characterizationand constitutive modeling of AZ31B magnesium alloy sheet over widerange of strain rates and temperatures[J]. Journal of Materials ProcessingTechnology,2011,211:830-839.
    [112] Chunfeng Li, DahaiLiu, HaipingYu, ZhengboJi. Research on formabilityof5052aluminum alloy sheet in a quasi-static-dynamic tensile process[J].International Journal of Machine Tools&Manufacture,2009,49:117-124.
    [113] Hasenpouth Dan. Tensile High Strain Rate Behavior of AZ31BMagnesium Alloy Sheet[D]. Ph. D. Dissertation of Waterloo University,2010:1-231.
    [114] Regazzoni G, Johnson J N, Follansbee P S. Theoretical study of thedynamic tensile test[J]. Journal of Applied Mechanics,1986,53:519-528.
    [115] Hu X, Wagoner R H, Daehn G S, Ghosh S. The Effect of Initial on TensileDuctility[J]. Metallurgical and Materials Transactions A,1994,25:2723-2735.
    [116]徐芝纶.弹性力学[M].北京:高等教育出版社,1982.
    [117] Mamalis A G, Manolakos D E, Kladas A G. Electromagnetic forming toolsand processing conditions: numerical simulation[J]. Materials andManufacturing Processes,2006,21:411-423.
    [118] Guo Y, Zhuang Z, Li X Y, Chen Z. An investigation of the combined sizeand rate effectson the mechanical responses of FCC metals[J].International Journal of Solids and Structures,2007,44:1180-1195.
    [119] Beerwald C, Brosius A, Homberg W, Kleiner M, Wellendorf A. Newaspects of electromagnetic forming[C].6th ICTP Proc on Adv Tech ofPlasticity III M Geiger (ed) Springer,1999, pp.2471-2476.
    [120] Bach Fr W, Rodman M, Rossberg A, Weber J, Walden L. Verhalten vonAluminiumwerkstoffen bei der elektromagnetischen Blechumformung[C].In: Proceeding of the Kolloquium Elektromagnetische Umformung,2003,pp.11-18.
    [121] Risch D. Energietransfer und Analyse der Einflussparameter bei derformgebundenen elektromagnetischen Blechumformung[D]. Ph. D.Dissertation of Technische Universitat Dortmund,2009.
    [122] Vivek A, Kim K H, Daehn G S. Simulation and instrumentation ofelectromagnetic compression of steel tubes[J]. Journal of MaterialsProcessing Technology,2011,211:840-850.
    [123] Xiaohui Cui, Jianhua Mo, Fei Han.3D Multi-physics field simulation ofelectromagnetic tube Forming[J]. The International Journal of AdvancedManufacturing Technology,2012, DOI10.1007/s00170-011-3540-y.
    [124] Yang Wang, Yuanxin Zhou, Yuanming Xia A constitutive description oftensile behavior for brass over a wide range of strain rates[J]. MaterialsScience and Engineering A,2004,372(1-2):186-190.
    [125] Agnew S R, Duygulu. Plastic anisotropy and the role of non-basal slip inmagnesium alloy AZ31B[J]. International Journal of Plasticity,2005,21:1161-1193.
    [126] R, Barnett M. A taylor model based description of the proof stress ofmagnesium AZ31during hot working [J]. Metallurgical and MaterialsTransactions,2003,34:1799-1806.
    [127]刘庆.电子背散射衍射技术及其在材料科学中的应用[J].中国体视学与图像分析,2005,10:205-210.
    [128] Golowin S, Manish Kamal, Jianhui Shang, Jake Portier, Ahmad Din,Daehn G S, Bradley John R, Newman Keith E, Steve Hatkevich.Application of Uniform Pressure Actuator for Electromagnetic Processingof Sheet Metal[J]. Journal of Materials Engineering and Performance,2007,16(4):455-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700