用户名: 密码: 验证码:
松江鲈(Trachidermus fasciatus)种群的形态学与遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松江鲈(TrachidermusfasciatusHeckel)隶属于鲉形目(Scorpaeniformes)、杜父鱼科(Cottidae)、松江鲈属(Trachidermus),为小型降河洄游性鱼类,是我国野生动物重点保护二级水生动物、中国优先保护鱼类一级物种名录,于2004年被列入中国物种红色名录。本文利用形态学和线粒体DNA序列及ISSR(Inter-simple sequencerepeat)技术和微卫星DNA(Microsatellite DNA)方法分别对采自丹东、秦皇岛、文登、杭州湾、荣成、东营、大连、日本有明海等松江鲈群体进行了研究。
     (1)应用单因子方差分析、判别分析、主成分分析和聚类分析4种多元统计分析方法,对松江鲈20组形态学参数及5个群体分节特征进行分析。结果显示不同群体间分节特征差异不显著;多元统计分析结果表明地理距离较近的大连群体和秦皇岛群体存在较少的形态差异,同时,丹东和文登群体间形态差异不显著,这些差异仍属于种内不同地理群体间的差异。
     (2)利用基于电子探针(EPMA)的耳石Sr:Ca比初步开展了采自大连(野生群体)和东营(1个野生群体和1个养殖群体)等3个群体的松江鲈的生活履历及生活史类型研究。结果发现,松江鲈存在两种生活史类型,包括:海淡水洄游性个体生活史型以及出生并生活于河口或近海的非洄游性个体生活史型。该结果与传统的松江鲈为降河性洄游鱼类结论不同,为松江鲈种质资源保护提供了重要依据。
     (3)利用PCR技术扩增了丹东、秦皇岛、文登、东营、荣成、杭州湾、日本有明海等8个群体线粒体DNA控制区,在获得的854bp的D-loop全序列中,共发现51个多态核苷酸变异位点,研究结果表明松江鲈的中国与日本群体之间遗传分化显著,中国世系的各群体没有明显的地理谱系结构。
     (4)在8个群体松江鲈144个个体的控制区高变区486bp序列上,共检测到50个变异位点,72种单倍型,丹东群体的单倍型多样性指数最高(0.996),荣成群体最低(0.533);利用Kimura模型构建的NJ树显示:松江鲈8个群体内存在着两个明显的单倍型类群,比较两两群体之间遗传分化指数FST值发现,松江鲈中国群体和日本群体间存在显著遗传分化,最大遗传距离出现在丹东与日本群体之间,中性检验和核苷酸不配对分布揭示松江鲈经历了近期群体扩张事件。
     (5)扩增并测定了松江鲈细胞色素b基因全序列,在1141bp的Cyt b基因序列中,47个个体出现了31种单倍型,8个群体有2个共享单倍型,共发现38个变异位点,研究结果表明松江鲈中国沿海群体和日本有明海群体间的遗传差异显著,两个世系分歧时间约为41万年前。
     (6)对松江鲈的线粒体16SrRNA基因片段进行了扩增和序列测定,得到长度为572bp的序列片段,碱基含量的平均值为(%):A=28.8,T=23.9,C=23.8,G=23.5,11条序列片段共发现3个变异位点,4种单倍型h=0.4909,π=0.12%。其进化速率最慢,最为保守。
     (7)利用6个ISSR引物在3个群体85个松江鲈个体中扩增出的条带数目22~97不等,片段大小在0.2~2.5kb之间,其中多态片段为324条。丹东野生群体的Shannon多样性指数最高(H=0.3507),秦皇岛人工繁育群体最低(H=0.2769),即松江鲈野生群体的遗传多样性水平高于人工繁育群体。秦皇岛人工繁育群体与丹东和文登两野生群体间遗传分化系数(Gst=0.34900;Gst=0.39646)明显高于丹东野生群体和文登野生群体间的遗传分化系数(Gst=0.07240),而丹东和文登两野生群体间的基因流(6.40608)明显高于这两个群体与秦皇岛人工繁育群体的基因流(0.93266;0.76116)。
     (8)利用8个SSR引物对黄河口松江鲈进行了初步分析,研究结果表明50个个体在8个微卫星位点上具有8-15个等位基因,多态性适中,并具有较高的PIC值,表明东营松江鲈具有较高的遗传多样性;雌、雄个体间没有产生显著的遗传差异,显示松江鲈的遗传变异并非仅存在于雌、雄个体间。
Roughskin sculpin, Trachidermus fasciatus, which belongs to Scorpaeniformes,Cottidae, is a ClassⅡ of the National Key Protected Wildlife List and in China Red DataBook of Endangered Animals-Pisces. It feeds on zooplankton, fish and shrimp, and has acatadromous life style. Eight geographical groups of T. fasciatus, collected from Dandong,Qinhuangdao, Wendeng, Dalian, Hangzhouwan, Rongcheng, Dongying and Ariake Sea, aredescribed and compared on morphological characteristics and sequence comparison analysisof mtDNA, ISSR, SSR.
     (1)Fivemeristiccharactersandtwentymorphometriccharactersaremeasuredandthedata are analyzed by one-way ANOVA, discriminant analysis, principle component analysismethod and multivariate analysis method to study the morphological variations among5populations of T. fasciatus. There are no significant differences among the five groups onmorphological characters. As can be seen from the results, there are no significant differencesbetween Dandong and Wendeng geographical groups of T. fasciatus. Although there aresome differences between Daliang and Qinghuangdao geographical groups of T. fasciatus,which are still within the population level.
     (2)In the present study, the migratory history of Trachidermusfasciatus from Dalian(wild population) and Dongying (one wild population and one cultured population) wasinvestigated using the otolith Sr:Ca ratios by X-ray electron probe microanalyzer (EPMA).Results showed that both estuarine anadromous individuals and estuarine originnon-anadromous ones occurred in the T. fasciatus populations. The result didn’t agree withthe point that this species is only estuarine anadromous. The present is helpful for the fisheriesmanagement.
     (3)By amplyfing with PCR technique, mitochondrial control region sequences aredetermined from8groups, including Dandong, Qinhuangdao (aquacultured), Wendeng,Dalian, Hangzhouwan, Rongcheng, Dongying and Ariake Sea. Sequence length of thecomplete control region in individuals of T. fasciatus is854bp. There are51polymorphicnucleotide mutation loci in the sequences. The genetic distance between groups of china andgroup of Japan is significant.
     (4)SequencelengthofthehypervariablecontrolregioninindividualsofT.fasciatusis486bp, including50variable sites, and72haplotypes are found in144individuals. Thehaplotype diversity index of Dandong group is the highest (0.996) while Rongcheng group isthe lowest(0.533). A molecular phylogenetic tree constructed using the neighbor-joining (NJ)method suggested that there are2significant haplotypes in8groups. From the comparison ofthe genetic differentiation index FSTbetween two groups, we can found there is a significantgenetic differentiation between Chinese groups and Japanese groups. The maximum geneticdistance showed between Dandong group and Japanese group (Ariake Sea).
     (5)Bothmismatchdistributionanalysesandneutralitytestssuggestedalatepopulationexpansion for T. fasciatus population.1141bp sequence which encode the cytochrome bgene of mitochondrial DNA are amplified.31haplotypes are found in47individuals,including38variable sites. Two haplotypes are shared among8groups. The divergence timebetween two lineage (Chinese lineage and Japanese lineage) is410thousand years agoapproximately.
     (6)Mitochondrial16S rRNA gene is amplified and sequenced,4haplotypes aredetected in11individuals of T. fasciatus. Of the572bp in the16S rRNA gene,3sites arepolymorphic. The average base content are: A=28.8, T=23.9, C=23.8, G=23.5. The resultsshowed that16S rRNA is the most conservative part among the three parts in mtDNA.
     (7)Inter-Simple Sequence Repeat (ISSR) systems are used to detect the geneticdiversity in T. fasciatus. Eighty-five individuals from three populations are used6ISSR primers screened,22~27clear and reproducible bands are generated. A total of324reproducible loci ranging from0.2to2.5kp were amplified from all the85individuals. TheShannon’s diversity indices are0.3507in wild population (Dandong population) and0.2769in cultured population (Qinhuangdao population). Shannon’s index and the Gst showed thatthe wild stock in Dandong and Wendeng have the highest genetic variation. Apparently theinter-stock’s Gst (0.34900;0.39646) are higher than the wild population (0.07240). And thegene flow between wild populations (Dandong and Wendeng)(6.40608) are higher than thereared groups of Qinhuangdao (0.93266;0.76116), indicating that the genetic differencebetween wild and reared stocks hasn’t reached the population level yet.
     (8)SimpleSequenceRepeats(SSR)systemsareusedtodetectthegeneticdiversityinT. fasciatus. Fifty individuals from T. fasciatus populations are used8SSR primers screened.As the results showed,8-15alleles on8microsatellite site, which has high PIC and geneticdiversity. There is no significant genetic difference between male and female individuals,which indicate the genetic variation is not only exist in males and females.
引文
陈大鹏,沈怀舜,丁亚平,等.文蛤(Meretrix meretrix)地理种群ISSR分子标记的初步研究.南京师大学报(自然科学版),2004,27(3):74~77
    陈建华,赵志安,李堃宝.松江鲈鱼的染色体组型分析.动物学研究,1984,5(1):103~104
    郭新红,刘少军,刘巧,等.鱼类线粒体DNA研究新进展.遗传学报,2004,31(9):983~1000
    复旦大学生物系动物学教研组.松江鲈鱼性腺的周年变化.复旦学报(自然科学版),1975(4):78~82
    何平.真核生物中的微卫星及其应用.遗传,1998,20(4):42~47
    侯娅丽,刘文忠. ISSR分子标记及其在动物遗传育种中的应用.上海畜牧兽医通讯,2004,04:8~9
    季维智,宿兵.遗传多样性研究的原理与方法.杭州:浙江科学技术出版社,1999
    金鑫波.中国动物志,硬骨鱼纲,鲉形目.北京,科学出版社,2006:252
    乐佩琦,陈宜瑜.中国濒危动物红皮书—鱼类.北京科学出版社,1998:240~243
    李常保. RAPD标记与作物改良.生物技术通报,1998,6:20~27
    李建华,王继文.动物线粒体DNA在进化遗传学研究中的应用.生物学通报,2005,02:5~7
    刘海林,章群,唐优良,等.黄渤海松江鲈鱼线粒体控制区结构与序列多态性分析.海洋通报,2010,29(3):283~288
    刘名,王艳君,高天翔,等.中日太平洋鲱形态学比较研究.中国海洋大学学报,2007,37(4):131~136
    刘树俊,陈光潮. DNA指纹技术的应用和局限性.生物工程进展,1992,2(5):13~17
    朴红梅,李万良,穆楠,等. ISSR标记的研究与应用.吉林农业科学,2007,32(5):28~30
    任桂静.玉筋鱼和松江鲈微卫星标记的开发及群体遗传学研究.【博士学位论文】.青岛:中国海洋大学,2012
    邵炳绪.松江鲈的生态初步观察.复旦学报,1959,2:213~218
    邵炳绪,唐子英,孙帼英,等.松江鲈鱼繁殖习性的调查研究.水产学报,1980,4(1):81~89
    邵炳绪.松江鲈鱼甲状腺的周年变化及其与降河洄游的关系.海洋与湖沼,1978,9(2):230~235
    孙典荣,李渊,李文涛,等.大叶藻居群微卫星遗传多样性研究.水生生物学报,2013,37(1):82-89
    田明诚,徐恭绍,余日秀.大黄鱼形态特征的地理变异与地理种群问题.海洋科学集刊,1962,(2):79~97
    王金秋,潘连德,梁天红,等.松江鲈(Trachidermus fasciatus)鱼胚胎发育的初步观察.复旦学报(自然科学版),2004,43(2):250~254
    王金秋,石椿.松江鲈鱼(Trachidermus fasciatus)不同组织同工酶的研究.复旦学报(自然科学版),2001,40(5):465~470
    王伟继,孔杰. ISSR-PCR技术在对虾中的应用初步研究.海洋水产研究,2002,23(1):1~4
    王世锋,杜佳莹,苏永全,等.斜带髭鲷野生与养殖群体遗传结构的ISSR分析.海洋学报,2007,29:105~110
    王幼槐.关于松江鲈学名和模式产地以及地理分布之探讨.海洋渔业,2006,28(4):209~300
    王志勇,柯才焕,王艺磊,等.从AFLP指纹和标记基因序列看我国养殖的4种鲍的亲缘关系.高技术通讯,2004,12:93~98
    吴清江,桂建芳.鱼类遗传育种工程.上海:上海科学技术出版社.1999,29~30
    伍献文.中国经济动物志,淡水鱼类.北京:科学出版社,1963
    解生勇.分子细胞遗传学.北京:中国农业科技出版社,1998
    韦正道,王昌燮,杜懋琴,等.孵化期温度对松江鲈鱼的影响.复旦学报(自然科学版),1997,36(50):576~580
    韦正道,王昌燮,杜懋琴,等.控制松江鲈鱼生长的环境因子的研究.复旦学报(自然科学版),1997,36(5):581~585
    韦正道,王昌燮,杜愚琴,等.控制松江鲈鱼(Trachidermus fasciatus)生长的环境因子的研究.复旦学报,1997,36(5):581~585
    徐安毕,王文泉.几种分子标记方法相结合建立的新型分子标记方法.生物学通报,2007,42(1):26~28
    徐建荣,韩晓磊,李宁,等.松江鲈群体遗传多样性的AFLP分析.大连水产学院学报,2008,23(6):437~441
    徐建荣,韩晓磊,郁建锋,等.松江鲈群体遗传多样性的ISSR分析.淡水渔业,2009,01:22~25+36
    杨太有,陈宏喜,刘向奇,等.丹江口水库翘嘴红鲌(Erythroculter ilishaeformis)遗传多样性的RAPD和ISSR分析术.海洋与湖沼,2008,39:240~244
    杨太有,关建义,陈宏喜.三个地理群体赤眼鳟遗传多样性的ISSR分析.水生生物学报,2008,32:529~533
    于诗群,王世党.松江鲈鱼的生物学特征及养殖技术.北京水产,2008,04:50~52
    曾晓起,张文峰,高天翔.基因线粒体16S rRNA与CO I基因序列的刻肋海胆属系统发育研究.中国海洋大学学报,2012,42(6):47~51
    郑敏,罗玉萍.真核生物基因组多态性分析的DNA指纹技术.生物技术,1999,9(3):35~38
    张辉,戴伟湘,张岩,等.两种玉筋鱼形态学与生物学比较研究.中国水产科学,2011,18(1):83~88
    张忠廷等. RAPD在水稻温敏核不育研究的应用.遗传学报,1994,21(5):373~378
    Brown W M. Molecular Evolutionary Genetics. Plenum Press, New York,1985,95~130
    Chin E C, Senior M L, Shu H, et al. Marize simple repetive DNA sequences: aboundance andallele variation. Genome,1996,39:866~873
    Goto A, Arai T. Diverse migratory histories of Japanese Trachidermus and Cottus species(Cottidae) as inferred from otolith microchemistry. Fish Biology,2006,(68):1731~1741
    Koeher T D, Lee W J, Sobolewska H, et a1. A genetic linkage map of a cichlid fish, the Tilapia(Oreochroms nilolicus). Genetics,1998,148:1225~1232
    Hamada H, Petrino M G, Kakunaga T. A novel repeated element with Z-DNA-forming potential iswidely found in evolutionarily diverse eukaryotic genomes. Nature,1982,298:396~398
    Heckel. Bulletin of the Faculty of Agriculture, Kyushu University,1952(12):225~238
    Islam S, Hibino M, Tanaka M. Distribution and diet of the roughskin sculpin, Trachidermusfasciatus, larvae and juveniles in the Chikugo River estuary, Ariake Bay, Japan.Ichthyological Research,2007,54(2):160~167
    Nakamura Y, Leppert M, O’Connell P, et al. Variable number of tandem repeat (VNTR) markersfor human gene mapping. Science,1987,235:1616~1622
    Onikura N, Takeshita N, Matsui S, et al. Spawning grounds and nests of Trachidermus fasciatus(Cottidae) in the Kashima and Shiota estuaries system facing Ariake Bay,Japan.Ichthyological Research,2002,49:198~201
    Ren G., Liu Q., Gao T., Yanagimoto T. Population demography and genetic structure of the fatgreenling (Hexagrammos otakii) inferred from mtDNA control region sequence analyses.Biochemical Systematics and Ecology,2013,47:156-163
    Rognon, Guyomard. Mitochondrial DNA differentiation among East and West African Nile tilapiapopulations. Journal of Fish Biology,1997,51(1):204~211
    Takesshita N, Onikura N, Matsui S, et al. Embryonic larval and juvenile development of theroughskin sculpin,Trachidermus fasciatus (Scorpaeniformes; cottidae). IchthyologicalResearch,1997,4(3):257~266
    Takita T, Chikamoto H. Distribution and life history of Trachidermus fasciatus in rivers aroundAriake Sound Kyushu, Japan. Japanese Journal of Ichthyology,1994,41(2):123~129
    Weber J L, May P E. Abundant class of human DNA polymorphisms which can be typed usingthe polymerase chain reaction. The American Journal of Human Genetics,1989,44:388~396
    Welsh J, Mccleuand M. Fingerprintting genomes using PCR with arbitrary primers. Nucleic AcidsResearch,1990,18(24):7213~7218
    Willians J G, Kubelik A R, Refatski T A, et al. DNA polymorphisms amplified by arbitraryprimers are useful as genetic markers. Nucleic Acids Research,1990,18(22):6531~6535
    Yokoyama R., Goto A.. Evolutionary histry of freshwater sculpins, genius Cottus (Teleostei;Cottidae) and related taxa, as inferred from mitochondrial DNA phylogeny. MolecularPhylogenetics and Evolution,2005,36(3):654~668
    Yin L., Zhang H., Yanagimoto T., et al. Isolation and characterization of nine polymorphicmicrosatellite markers of the marbled rockfish Sebastiscus marmoratus (Scorpaeniformes,Scorpaenidae). Russian Journal of Genetics,2012,48(12):1264-1266
    Zardoya R, Meyer A. Phylogenetic Performance of mitochondrial protein-coding genes inresolving relationships among vertebrates. Molecular Biology and Evolution,1996,13(7):933~942
    Zhang H., Li P., Gao T., et al. Structure of mitochondrial DNA control region of Fenneropenaeuschinensis and phylogenetic relationship among different populations. Mitochondrial DNA,2012,23(3):216~222
    陈澄璟,阎斌伦,高天翔.中国沿海梭鱼群体的形态学比较研究.中国海洋大学学报,2012,42(7-8):90~97
    成庆泰,郑葆珊.中国鱼类系统检索.北京:科学出版社,1987,483~484
    高天翔,韩刚,马国强,等.黑鳃梅童鱼和棘头梅童鱼的形态学比较研究.中国海洋大学学报,2013,01:27~33
    高天翔,张秀梅,刘广东,等.10个日本绒螯蟹群体与中华绒螯蟹形态的主成分分析.大连水产学院学报,2003,18(4):273~277
    韩冰,王艳君,高天翔.黄、东海3个黄姑鱼群体和1个鮸鱼群体的形态学比较研究.海洋水产研究,2007,03:23~30
    洪孝友,朱新平,陈昆慈,等.孟加拉鲥、美洲鲥和中国鲥形态学比较分析.华南农业大学学报,2013,02:1~6
    纪东平,林龙山,高天翔.荣成俚岛和胶南斋堂岛斑头鱼渔业生物学特征的比较研究.中国海洋大学学报,2012,42(6):61~67
    姬广磊,高天翔,柳本卓.黄海和日本黄鮟鱇的形态和同工酶差异.海洋水产研究,2007,03:73~79
    刘名,王艳君,高天翔,等.中日太平洋鲱形态学比较研究.中国海洋大学学报,2007,37(增刊):131~136
    楼东,高天翔,张秀梅.花鲈群体形态学研究.青岛海洋大学学报,2002,32:85~89
    林立明,纪东平,高天翔.东营近海中国鱚生物学特性初步研究.齐鲁渔业,2012,29(5):15~16
    邵炳绪.松江鲈鱼甲状腺的周年变化及其与降河洄游的关系.海洋与湖沼,1978,9(2):230~235
    邵炳绪.松江鲈的生态初步观察.复旦学报,1959,2:213~218.
    邵炳绪,唐子英,孙帼英,等.松江鲈鱼繁殖习性的调查研究.水产学报,1980,4:81~89
    杨军山,陈毅峰.副沙鳅属的多变量形态分析.动物分类学报,2004,29(1):10~16
    张其永,蔡泽平.台湾海峡和北部湾二长棘鲷种群鉴别研究.海洋与湖沼,1983,14(6):511~522
    张辉,戴伟湘,张岩,等.两种玉筋鱼形态学与生物学比较研究.中国水产科学,2011,18(1):83~88
    张堂林,李钟杰,曹文宣.鱼类生态形态学研究进展.水产学报,2008,01:152~160
    Alexandra S. Morphometric variation among sardine (Sardina pilchardus) populations from thenortheastern Atlantic and the western Mediterranean. Journal of Marine Science,2003,60:1352~1360
    Ferdinand A. Sibbing,Leo A.J. Nagelkerke. Resource partitioning by Lake Tana barbs predictedfrom fish morphometrics and prey characteristics,2000,393~437
    Frédérich B, Liu S V, Dai C F. Morphological and genetic divergences in a coral reef damselfish,Pomacentrus coelestis. Evolutionary Biology,2012
    Gorgonio R C, Faustino C R, Alejandro V R, et al. Morphometric variation of wild troutpopulations from northwestern Mexico (Pisces: Salmonidae). Reviews in Fish Biology andFisheries,2003,13:91~110
    Matthew T M, Vincent M, Sylvester M, et al. Population morphological variation of the Nileperch (Lates niloticus, L.1758), of East African Lakes and their associated waters. AfricanJournal of Environmental Science and Technology,2011,5(11):941~949
    Mayr E,Linsley E G,Usinger R L. Methods and Principles of Systematic Zoolog. New York:Toronto and London: McGraw Hill Book Company,1953:23~39,123~154
    窦硕增.鱼类的耳石信息分析及其生活史重建——理论、方法及应用.海洋科学集刊,2007,48:93~112
    窦硕增,横内一樹,于鑫,等.基于EPMA的耳石Sr: Ca比分析及其在鱼类生活履历反演中的应用实例研究.海洋与湖沼,2011,42:512~520
    方华华,高天翔.耳石形态在斑尾复虾虎鱼群体鉴别中的研究.中国农学通报,2012,28(29):92~97
    付自东,谢天明,宋昭彬.鱼类耳石元素指纹研究进展.应用与环境生物学报,2007,02:136~141
    郭弘艺,唐文乔,魏凯,等.中国鲚属鱼类的矢耳石形态特征.动物学杂志,2007,01:39~47
    郭弘艺,唐文乔.长江口刀鲚矢耳石重量与年龄的关系及其在年龄鉴定中的作用.水产学报,2006,30(03):347~352
    姜涛,杨健,刘洪波,等.刀鲚、凤鲚和湖鲚矢耳石的形态学比较研究.海洋科学,2011,03:23~31
    解玉浩,唐作鹏,解涵,等.有明银鱼耳石显微结构和微化学研究.动物学报,2001,02:91~97
    徐胜勇,张辉,潘晓哲,等.许氏平鲉群体耳石形态学比较.中国海洋大学学报,2012,42(11):54~61
    赵林林,周恩臣,高天翔,等.黑鲷放流群体的耳石形态学研究.齐鲁渔业,2012,8:1~4
    Campana S E, Thorrold S R, Jones D G et al. Comparison of accuracy, precision, and sensitivityin elemental assays of fish otoliths using the electron microprobe, proton-induced X-rayemission, and laser ablation inductively coupled plasma mass spectrometry. CanadianJournal of Fisheries and Aquatic Sciences,1997,54:2068~2079
    Campana S E. Chemistry and composition of fish otoliths: pathways, mechanisms andapplications. Marine Ecology Progress Series,1999,188:263~297
    Collingsworth P D, van Tassell J J, Olesik J W et al. Effectsof temperature and elementalconcentration on the chemical composition of juvenile yellow perch (Perca flavescens)otoliths. Canadian Journal of Fisheries and Aquatic Sciences,2010,67:1187~1196
    Elsdon T S, and Gillanders B M. Interactive effects of temperature and salinity on otolithchemistry: challenges for determining environmental histories of fish. Canadian Journal ofFisheries and Aquatic Sciences,2002,59:1796~1808.
    Elsdon T S and Gillanders B M. Reconstructing migratory patterns of fish based on environmentalinfluences on otolith chemistry. Reviews in Fish Biology and Fisheries,2003,13:219~235.
    Elsdon T S, Gillanders B M,2006. Identifying migratory contingents of fish by combining otolithSr: Ca with temporal collections of ambient Sr: Ca concentrations. Journal of Fish Biology,69:643~657.
    Halden N M, Babaluk J A, Campbell, J I et al. Scanning proton microprobe analysis of strontiumin an arctic charr, Salvelinus alpinus, otolith-implications for the interpretation of anadromy.Environmental Biology of Fishes,1995,43:333~339
    Kuroki M, Kawai M, Jónsson B, et al. Inshore migration and otolith microstructure/microchemistry of anguillid glass eels recruited to Iceland. Environmental Biology ofFishes,2008,83:309~325
    Kuroki M, Ma T, Ishida R et al. Migratory history of wild and released ayu (Plecoglossus altivelis)in the Kurobe River, Japan. Coastal and Marine Sciences,2006,30:425~431
    Limburg K E. Otolith strontium traces environmental history of subyearling American shad Alosasapidissima. Marine Ecology Progress Series,1995,119:25~35
    Pannella G. Fish otoliths: daily growth layers and periodical patterns. Science,1971,173:1124~1126
    Phillis C C, Ostrach D J, Ingram B L, et al. Evaluating otolith Sr/Ca as a tool for reconstructingestuarine habitat use. Canadian Journal of Fisheries and Aquatic Sciences,2011,68:360~373
    Radtke R L, Townsend D W, Folsom S D, et al. Strontium:calcium concentration ratios in otolithsof herring larvae as indicators of environmental histories. Environmental Biology of Fishes,1990,27:51~61
    Secor D H, Dean J M, Campana SE. Recent Developments in Fish Otolith Research. Columbia, S.C: University of South Carolina Press,1995
    Secor D H, Rooker J R. Is otolith strontium a useful scalar of life cycles in estuarine fishesFisheries Research,2000,46:359~371
    Song Z B, Cao W X. The studies and applications of fish otolith microstructure. ActaHydrobiologica Sinica,2001,25(6):613~619
    Tsukamoto K, Arai T. Facultative catadromy of the eel Anguilla japonica between freshwater andseawater habitats.Marine Ecology Progress Series,2001,220:265~276
    Tzeng W N, Tsai Y C. Change in otolith microchemistry of the Japanese eel, Anguilla japonica,during its migration from the ocean to the rivers of Taiwan. J Fish Biol,1994,45:671~683
    Tzeng W N, Wang C H, Wickstr m H et al. Occurrence of the semi-catadromous European eelAnguilla anguilla (L.) in Baltic Sea. Marine Biology,2000,137:93~98
    Zhang G H. Otolith morphology and elemental composition with the application in stockdiscrimination of fish.[Doctoral Dissertation]. Wuhan: Institute of Hydrobiology, ChineseAcademy of Sciences,2000
    曹洁,刘卫东,葛陇利,等.圆斑星鲽mtDNA控制区结构.水产科学,2007,12:678~681
    赫崇波,曹洁,刘卫东,等.圆斑星鲽及相关种类线粒体DNA控制区结构分析.遗传,2007,29(7):829~836
    夏颖哲,盛岩,陈宜瑜.利用线粒体DNA控制区序列分析细鳞鲑种群的遗传结构.生物多样性,2006,14(1):48~54
    刘海林,章群,唐优良等.黄渤海松江鲈鱼线粒体控制区结构与序列多态性分析.海洋通报,2010,29(3):283~288
    邵爱华,朱江,史全良,等.暗纹东方鲀线粒体DNA控制区结构和系统发育分析.中国水产科学,2007,14(3):352~360
    苏天凤,江世贵.竹筴鱼属鱼类线粒体DNA控制区结构及其系统发育分析.南方水产科学,2011,7(1):18~25
    唐琼英,刘焕章,杨秀平,等.沙鳅亚科鱼类线粒体DNA控制区结构分析及系统发育关系的研究.水生生物学报,2005,29(6):645~653
    王金秋,石椿,成功.鸭绿江流域中国境内松江鲈鱼(Trachidermus fasciatus)天然群体的同工酶分析.复旦学报(自然科学版),2002,41(6):688~693
    徐建荣,韩晓磊,李宁,等.松江鲈群体遗传多样性的AFLP分析.大连水产学院学报,2008,23(6):437~441
    徐建荣,韩晓磊,郁建锋,等.松江鲈群体遗传多样性的ISSR分析.淡水渔业,2009,139(11):21~24
    杨博,陈小勇,杨君兴.白鱼线粒体DNA控制区结构和种群遗传多样性分析.动物学研究,2008,29(4):379~385
    张燕,张鹗,何舜平.中国鲿科鱼类线粒体DNA控制区结构及其系统发育分析.水生生物学报,2003,27(5):463~467
    赵金良,王伟伟,李思发,等.鳜类鱼类的线粒体DNA控制区结构及其系统发育分析.遗传学报,2006,33(9):793~799
    朱世华,郑文娟,邹记兴,等.鰺科鱼类线粒体DNA控制区及系统发育关系.动物学研究,2007,28(6):606~614
    诸廷俊,杨金权,唐文乔.长江口鲚属鱼类线粒体DNA控制区结构分析.上海水产大学学报,2008,17(2):152~157
    Bowen B. and Avise J. Genetic structure of Atlantic and Gulf of Mexico populations of sea bass,menhaden, and sturgeon: influence of zoogeographic factors and life-history patterns.Marine Biology,1990.107(3):371~381
    Broughton R, Dowling T E. Length variation in mitochondrial DNA of the Minow Cyprinellaspiloptera. Genetics,1994,138:179~190
    Excoffier L. Patterns of DNA sequence diversity and genetic structure after a range expansion:lessons from the infinite-island model. Molecular Ecology,2004,13:853~864
    Excoffier L, Laval G, Schneider S. Arlequin version3.01: An integrated software package forpopulation genetics data analysis. Evolutionary Bioinformatics,2005,1:47~50
    Guo X H, Liu S J, Liu Y. Comparative analysis of the mitochondrial DNA control region incyprinids with different ploidy level. Aquaculture,2003,224:25~38
    Han Z Q, Gao T X, Yanagimoto T., et al. Genetic population structure of Nibea albiflora inYellow Sea and East China Sea. Fisheries Science,2008.74(3):544~552
    Han Z Q, Gao T X, Yanagimoto T., et al. Deep phylogeographic break among Pennahia argentata(Sciaenidae, Perciformes) populations in the Northwestern Pacific. Fisheries Science,2008,74:770~780
    Lee W J, Conroy J, Howell W H, et al. Structure and evolution of teleost mitochondrial controlregion. Journal of Molecular Evolution,1995,41:54~66
    Pesole G, Gissi C, Chirico D E, et al. Nucleotide substitution rate of mammalian mitochondrialgenomes. Journal of Molecular and Evolution,1999,48:427~434
    Randi E, Lucchini V. Organization and evolution of the mitochondrial DNA control region in theavian genus Alectoris. Journal of Molecular and Evolution,1998,47:149~162
    Rosel P E, Haygood M G, Perin W F. Phylogenetic relationship among the true porpoise(Cetacean: Phocoenidae). Molecular Phylogenetics and Evolution,1995,4(4):463~474
    Saccone C, Pesole G, Sbisa E. The main regulatory region of mammalian mitochondrial DNA:Structure-function model and evolutionary pattern. Journal of Molecular and Evolution,1991,33:83~91
    Sbisa E, Tanzariello F, Reyes A, et al. Mammalian mitochondrial D-loop region structuralanalysis: Identification of new conserved sequences and their functional and evolutionaryimplications. Gene,1997,205:125~140
    Southern S O, Southern P J, Dizon A E. Molecular characterization of a cloned dolphinmitochondrial genome. Journal of Molecular Evolution,1988,28:32~42
    姜艳艳,孔晓瑜,喻子牛,等.黄海蓝点马鲛mtDNA D-Loop序列变异分析.中国水产科学,2003,10(3):177~183
    任桂静,刘奇,高天翔,等.基于线粒体DNA序列探讨斑头鱼分类地位.动物分类学报,2011,36(2):332~340
    孙鹏,李杰,尹飞,等.条石鲷养殖群体线粒体控制区序列遗传变异分析.海洋渔业,2011,01:9~14
    孙玉华,王伟,刘思阳,等.中国胭脂鱼线粒体控制区遗传多样性分析.遗传学报,2002,09:787~790
    杨凡,彭博,赵爽,等.基于线粒体控制区全序列的长江中下游鳊的遗传多样性研究.广东农业科学,2010,03:173~175+181
    杨金权,胡雪莲,唐文乔,等.长江邻近水域刀鲚的线粒体控制区序列变异与遗传多样性.动物学杂志,2008,01:8~15
    阎雪岚,唐文乔,杨金权.基于线粒体控制区的序列变异分析中国东南部沿海凤鲚种群遗传结构.生物多样性,2009,02:143~150
    Bowen B. and Avise J. Genetic structure of Atlantic and Gulf of Mexico populations of sea bass,menhaden, and sturgeon: influence of zoogeographic factors and life-history patterns.Marine Biology,1990.107(3):371~381
    Excoffier L. Patterns of DNA sequence diversity and genetic structure after a range expansion:lessons from the infinite-island model. Molecular Ecology,2004,13:853~864
    Excoffier L, Laval G, Schneider S. Arlequin version3.01: An integrated software package forpopulation genetics data analysis. Evolutionary Bioinformatics,2005,1:47~50
    Fay J C, Wu C I. A human population bottleneck can account for the discordance between patternsof mitochondrial versus nuclear DNA variation. Molecular Biology and Evolution,1999,16:1003~1005
    Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution,1985,39:783~791
    Fu Y X. Statistical tests of neutrality of mutations against population growth, hit ch hiking andbackground selection. Genetics,1997,147:915~925
    Grant W S, Bowen B W. Shallow population histories in deep evolutionary linages of marinefishes: Insights from sardines and anchovies and lessons for conservation. Journal ofHeredity,1998,89(5):415~426
    Hewitt G. The genetic legacy of the Quaternary ice ages. Nature,2000,405:907~913
    Hewitt G. Some genetic consequences of ice ages, and their role in divergence and speciation.Biological Journal of Linnean Society,1996,58:247~276
    Hundertmark K., Shields G., Udina I. Mitochondrial phylogeography of moose (Alces alces): laterPleistocene divergence and population expansion. Molecular Phylogenetics and Evolution,2002,22:375~387
    Lambeck K, Esat T M, Potter E K. Links between climate and sea levels for the past three millionyears. Nature,2002,419:199~206
    Liu J X, Gao T X, Wu S F, et al. Pleistocene isolation in the Northwestern Pacific marginal seasand limited dispersal in a marine fish, Chelon haematocheilus (Temminck and Schlegel,1845). Molecular Ecology,2007,16:275~288
    Liu M., Gao T., Sakurai Y., et al. Mitochondrial DNA control region diversity and populationstructure of Pacific herring (Clupea pallasii) in the Yellow Sea and the Sea of Japan.Chinese Journal of Oceanology and Limnology,2011,29(2):317~325
    Ren G., Liu Q., Gao T., et al. Population demography and genetic structure of the fat greenling(Hexagrammos otakii) inferred from mtDNA control region sequence analyses.Biochemical Systematics and Ecology,2013,47:156~163
    Rogers A. Genetic evidence for a Pleistocene population expansion. Evolution,1995,49:608~615
    Schneider S, Excoffier L. Estimation of past demographic parameters from the distribution ofpairwise differences when the mutation rates vary among sites: application to humanmitochondrial DNA. Genetics,1999,152:1079~1089
    Song N., Zhang X., Gao T., et al. Genetic variability in eight cultured and two wild populations ofJapanese flounder (Paralichthys olivaceus) based on the mitochondrial DNA control region.Journal of the World Aquaculture Society2011,24(4):512~521
    Tajima F. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,1989,123:585~595
    Tamaki K, Honza E. Global tectonics and formation of marginal basins: role of the western Pacific.Episodes,1991,14:224~230
    Weir B, Cockerham C. Estimating F-statistics for the analysis of population structure. Evolution,1984,38:1358~1370
    Zhang S. M., Wu Q. J., Zhang Y. P.. On the taxonomic of Yangtze sturgeon, Asian and Americangreen sturgeon based on mitochondrial control region sequences. Current Zoology,2001,06:632~639
    Zhang Y., Zhang H., Gao T., et al. Structure of mitochondrial DNA control region and molecularphylogenetic relationship among three flounders of genus Pleuronectes. BiochemicalSystermatics and Ecology,2011,39:627~634
    程起群,韩金娣,王云龙,等.凤鲚两群体线粒体细胞色素b基因片断多态性及进化特征.中国水产科学,2006,13(3):337~343
    程起群,温俊娥,王云龙,等.刀鲚与湖鲚线粒体细胞色素b基因片段多态性及遗传关系.湖泊科学,2006,18(4):425~430
    乐佩琦,陈宜瑜.中国濒危动物红皮书—鱼类.北京科学出版社,1998:240~243
    刘海林,章群,唐优良,等.黄渤海松江鲈鱼线粒体控制区结构与序列多态性分析.海洋通报,2010,29(3):283~288
    王金秋.松江鲈的生态学和繁殖生物学的研究进展.水生生物学报,1999,23(6):729~734
    王金秋,成功,唐作鹏.鸭绿江流域中国境内松江鲈的分布.复旦学报(自然科学版),2001,4(5):471~475
    王金秋,石椿,成功.鸭绿江流域中国境内松江鲈鱼(Trachidermus fasciatus)天然群体的同工酶分析.复旦学报(自然科学版),2002,41(6):688~693
    王金秋,潘连德,梁天红,等.松江鲈鱼(Trachidermus fasciatus)胚胎发育的初步观察.复旦学报(自然科学版),2004,43(2):250~254
    王幼槐.关于松江鲈学名和模式产地以及地理分布之探讨.海洋渔业,2006,28(4):209~303
    肖武汉,张亚平.鱼类线粒体DNA的遗传与进化.水生生物学报,2000,24(4):384~391
    徐建荣,韩晓磊,李宁,等.松江鲈群体遗传多样性的AFLP分析.大连水产学院学报,2008,23(6):437~441
    徐建荣,韩晓磊,郁建锋,等.松江鲈群体遗传多样性的ISSR分析.淡水渔业,2009,139(11):21~24
    赵峰,庄平,章龙珍,等.基于线粒体Cyt b基因的黄海南部和东海银鲳群体遗传结构分析.水生生物学报,2011,35(5):746~752
    朱世华,郑文娟,邹记兴,等.鰺科鱼类线粒体DNA控制区及系统发育关系.动物学研究,2007,28(6):606~614
    Avise J C. Phylogeography: The History and Formation of Species. Cambridge: HarvardUniversity Press.2000,20~147
    Bandelt H J, Macaulay V A, Richards M, et al. Median networks: speedy construction and gredyreduction, one simulation, and two case studies from human mtDNA. MolecularPhylogenetics and Evolution,2000,16:8~28
    Bermingham E S, McCafferty A, Martin P. Molecular Systematics of Fishes. Academic Press,New York,1997,113~128
    Bowen B W, Bass A L, Rocha L A, et al. Phylogeography of the trumpetfishes (Aulostomus): ringspecies complex on a global scale. Evolution,2001,55,1029~1039
    Excoffier L, Laval G, Schneider S. Arlequin version3.01: An integrated software package forpopulation genetics data analysis. Evolutionary Bioinformatics,2005,1:47~50
    Fu Y X. Statistical tests of neutrality of mutations against population growth, hit ch hiking andbackground selection. Genetics,1997,147:915~925
    Grant W S, Bowen B W. Shallow population histories in deep evolutionary linages of marinefishes: Insights from sardines and anchovies and lessons for conservation. Journal ofHeredity,1998,89(5):415~426
    Han Z. Q., Gao T. X., Yanagimoto T., et al. Genetic population structure of Nibea albiflora inYellow Sea and East China Sea. Fisheries Science,2008.74(3):544~552
    Han Z Q, Gao T X, Yanagimoto T, et al. Deep phylogeographic break among Pennahia argentata(Sciaenidae, Perciformes) populations in the Northwestern Pacific. Fisheries Science,2008,74:770~780
    Lambeck K, Esat T M, Potter E K. Links between climate and sea levels for the past three millionyears. Nature,2002,419:199~206
    Levinton J S, Su chanek T H. G eograph ic variation, niche bread th and genetic differentiation atdifferent geographic scales in the mussels Mytilus californianus and M. edulis. MarineBiology,1978,49:363~375
    Liu J X, Gao T X, Yokogawa K, et al. Differential population structuring and demographic historyof two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spottedsea bass (Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogenetics andEvolution,2006,39:799~811
    Liu Z J, Cordes J F. DNA marker technologies and their applications in aquaculture genetics.Aquaculture,2004,238(1-4):1~37
    Loeschcke V, Tomiuk J, Jian S K, et al. Conservation Genetics. Basel: Birkhauser Veriag,1994:37~53
    Lwin D W, Kocher T D, Wilson A C. Evolution of the cytoehrome b gene of mammals. MolecularEvo1ution,1991,32:128~144
    Norio O, Naohiko T, Seiichi M, et al. Estimation of the frequency of maturity and sexualdifferences in the maturation period of the roughskin sculpin Trachidermus fasciatus.Fisheries Science,2007,73:735~737
    Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past420,000yearsfrom the Vostok ice core, Antarctica. Nature,1999,399:429~436
    Posada D, Crandall K A. Modeltest: testing the model of DNA substitution. Bioinformatics,1998,14:817~8l8
    Slatkin M. Isolation by distance in equilibrium and non equilibrium populations. Evolution,1993,47:264~279
    Swofford D L. Phylogenetic Analysis Using Parsimony (and other methods), version4.Sunderland: Sinauer Associates, MA,2002
    Tajima F. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,1989,123:585~595
    Takeshita N, Onikura N, Matsui S, et al. Embryonic, larval and juvenile development of theroughskin sculpin, Trachidermus fasciatus (Scorpaeniformes, Cottidae). IchthyologicalReasarch,1997,44(3):257~265
    Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA)Software Version4.0. Molecular Biology and Evolution,2007,24(8):1596~1599
    Zardoya R. Meyer A. Phylogenetic Performance of mitochondrial protein-coding genes inresolving relationships among vertebrates. Molecular Biology and Evolution,1996,13(7):933~942
    陈子安,杜晓东,王庆恒,等.3种星虫线粒体16S rRNA、COI和Cyt b基因片段的序列比较.广东海洋大学学报,2007,27(4):3~10
    程国宝,李三磊,徐冬冬,等.梭鱼和鲻鱼线粒体16S rRNA和COI基因片段的比较分析.浙江海洋学院学报(自然科学版),2012,31(2):10~13
    高天翔,陈四清,刘进贤,等.圆斑星鲽与条斑星鲽线粒体DNA部分片段的序列比较研究.高技术通讯,2004,12(14):329~334
    高天翔,陈省平,韩志强,等.大银鱼和小齿日本银鱼线粒体细胞色素b和16S rRNA基因部分序列分析.中国海洋大学学报,2004,34(5):791~794
    孔晓瑜,刘亚军,喻子牛,等.牙鲆、石鲽和川鲽的线粒体16S rRNA基因片段的序列比较研究.青岛海洋大学学报,2001,05:713~717
    刘楚吾,徐田军,刘丽,等.笛鲷属(Lutjanus)鱼类线粒体16S rRNA基因序列比较及系统学分析.海洋与湖沼,2009,05:563~571
    麦维军,谢珍玉,张吕平,等.中国明对虾与5种虾类线粒体16S rRNA和CO I基因片段的序列比较及其系统学初步研究.海南大学学报,2009,01:15~23
    毛阳丽,蔡厚才,李成久,等.基于线粒体CO I与16S rRNA基因序列探讨贻贝属的系统发育.南方水产,2010,05:27~36
    邵爱华,杜建,陈葵,等.暗纹东方鲀线粒体DNA16S rRNA基因克隆、测序与在分子系统发育分析中的应用.江苏农业科学,2009,02:15~19
    宋林,韩志强,高天翔.鰶亚科两种鱼类的16S rRNA基因片段序列的比较研究.海洋湖沼通报,2007,01:125~129
    孙悦娜,冯建彬,李家乐,等.日本沼虾三群体线粒体16S rRAN基因片段序列的差异与系统进化.动物学杂志,2007,01:59~66
    童馨,杜博,喻达辉,等.浅色黄姑鱼线粒体16S rRNA基因片段序列特征分析.海洋水产研究,2007,03:85~91
    王茜,齐兴柱,骆剑.尖塘鳢属鱼类线粒体16S rRNA基因序列变异及分子系统进化.海南大学学报,2009,03:246~251
    应一平,杨巧莉,高天翔.基于16S rRNA和Cyt b基因序列的鰶亚科系统发育研究.动物分类学报,2011,04:911~918
    张龙岗,孟庆磊,安丽,等.两种鯻科鱼类线粒体16S rRNA基因片段序列分析.生物技术通报,2011,08:148~152
    周发林,江世贵,姜永杰,等.中国南海野生斑节对虾5个地理群体线粒体16S rRNA基因序列比较分析.水产学报,2009,02:208~214
    Avise J C. Phylogeography: The History and Formation of Species. Cambridge: HarvardUniversity Press.2000,20~147
    Cawthorn Donna-Mareè, Steinman Harris Andrew, Witthuhn R Corli. Evaluation of the16S and12S rRNA genes as universal markers for the identification of commercial fish species inSouth Africa. Gene,2011,491(1):40~48
    Excoffier L. Patterns of DNA sequence diversity and genetic structure after a range expansion:lessons from the infinite-island model. Molecular Ecology,2004,13:853~864
    Excoffier L, Laval G, Schneider S. Arlequin version3.01: An integrated software package forpopulation genetics data analysis. Evolutionary Bioinformatics,2005,1:47~50
    陈大鹏,沈怀舜,丁亚平,等.文蛤(Meretrix meretrix)地理种群ISSR分子标记的初步研究.南京师大学报(自然科学版),2004,27(3):74~77
    房新英,张全启,齐洁,等.野生和养殖牙鲆遗传差异的RAPD和ISSR研究.海洋与湖沼,2006,37(02):138~142
    高丽霞,李学军,李永东,等.淇河鲫与两野生鲫鱼群体遗传多样性的ISSR分析.水产科学,2011,07:53~56
    韩晓磊,郁建峰,陆秀乡,等.雅罗鱼亚科鱼类(鳡鱼、草鱼及赤眼鳟)的ISSR分子鉴定.水产科学,2010,09:546~549
    吕林兰,王爱民,杜晓东,等.马氏珠母贝DNA快速一步法(ROSE)提取及ISSR-PCR应用.海洋科学,2003,27(10):42~25
    孟继红,孔杰,庄志猛,等.真鲷自然群体和人工繁殖群体的遗传多样性.生物多样性,2000,8(3):248~252
    孙雪,张学成,毛云翔,等.几种江蓠属海藻的ISSR标记分析.高技术通讯,2003,13(9):89~93
    王军,全成干,苏永全,等.宫井洋大黄鱼遗传多样性的RAPD分析.海洋学报,2001,23(3):87~911
    王继伟,孔杰. ISSR-PCR技术在对虾中的应用初步研究.海洋水产研究,2002,23(1):1~4
    王世锋,杜佳莹,苏永全,等.斜带髭鲷野生与养殖群体遗传结构的ISSR分析.海洋学报,2007,29:105~110
    许广平,仲霞铭,丁亚平,等.黄海南部小黄鱼群体遗传多样性研究.海洋科学,2005,29(11):34~38
    杨太有,陈宏喜,刘向奇,等.丹江口水库翘嘴红鲌(Erythroculter ilishaeformis)遗传多样性的RAPD和ISSR分析术.海洋与湖沼,2008,39:240~244
    杨太有,关建义,陈宏喜.三个地理群体赤眼鳟遗传多样性的ISSR分析.水生生物学报,2008,32:529~533
    张媛,胡则辉,周志刚,等.利用RAPD-PCR与ISSR-PCR标记技术分析长江口刀鲚的群体遗传结构.上海水产大学学报,2006,15(04):390~397
    张志伟,陈大鹏,张曹进,等.半滑舌鳎基因组的提取及ISSR反应体系的建立.生物技术,2006,06:44~47
    郑芳,吕秀玲,孙红英,等. ISSR标记在河蟹种质检测中的应用.中国水产科学,2007,01:46~51
    Fang D Q, Roose M L. Identification of closely related cit reuscultivars with inter simple sequencerepeat markers. Theoretical and Applied Genetics,1997,95:408~417
    Gilbert J E, Lewis R V, WilkinsonM J, et al. Developing an appropriate strategy to assess geneticvariability in plant germplasm collections. Thero Appl Genet,1999,98:1125~1131
    Hartl D L, Clark A G. Principles of Population Genetics (2nd edn.). Sunderland MA: SinauerAssociates,1989
    Jonsson B O, Jonsdottir I S, Cronbeng X. Clonal diversity and allozyme variation in populationsof the arctic Carex bigelowii (Cyperaceae). Journal of Ecology,1996,84:449~459
    Liu J X, Gao T X, Yokogawa K, et al. Differential population structuring and demographic historyof two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spottedsea bass (Lateolabrax maculatus) in Northwestern Pacific. Molecular Phylogenetics andEvolution,2006,39:799~811
    Liu J X, Gao T X, Zhuang Z M, et al. Late Pleistocene divergence and subsequent populationexpansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) andAustralian anchovy (Engraulis australis). Molecular Phylogenetic Evolution.2006,40(3):712~723
    Slatkin M. Gene flow in natural populations. Annual Review of Ecology and Systematics,1985,16:393~430
    Sunden S L F, Davis S K. Evaluation of genetic variation in a domestic population of Penaeusvannamei Boone: a comparison with three natural populations. Aquaculture,1991,97:131~142
    Wolfus G, Garcia D K, Alcivar-Warren A. Application of the microsatellite technique foranalyzing genetic diversity in shrimp breeding programs. Aquaculture,1997,152:35~47
    Yang W P, Olivema A C, Godwin I, et al. Comparison of DNA maker technologies incharacterizing plant genome diversity: variability in Chinese sorghums. Crop Science,1996,36:1669~1676
    陈建华,赵志安,李堃宝.松江鲈的染色体组型分析.动物学研究,1984,5(1):103~104
    耿波,孙效文,梁利群,等.利用17个微卫星标记分析鳙鱼的遗传多样性.遗传,2006,06:683~688
    郝君,孙效文,梁利群,等.大黄鱼微卫星标记的富集与筛选.中国水产科学,2006,05:762~766
    何平.真核生物中的微卫星及其应用.遗传,1998,20(4):42~47
    金鑫波.中国动物志硬骨鱼纲鮋形目.北京:科学出版社,2006:252
    廖小林,俞小牧,谭德清,等.长江水系草鱼遗传多样性的微卫星DNA分析.水生生物学报,2005,02:113~119
    刘海林,章群,唐优良,等.黄渤海松江鲈鱼线粒体控制区结构与序列多态性分析.海洋通报,2010,29(3):283~288
    刘丽,刘楚吾,郭昱嵩,等.青石斑鱼微卫星DNA标记的筛选及群体遗传多样性分析.中国水产科学,2008,01:22~29
    鲁双庆,刘臻,刘红玉,等.鲫鱼4群体基因组DNA遗传多样性及亲缘关系的微卫星分析.中国水产科学,2005,04:371~376
    罗文永,胡骏,李晓方.微卫星序列及其应用.遗传,2003,05:615~619
    潘连德,蔡飞,马召腾,等.中国境内松江鲈鱼的种群特征以及资源保护.水产科技情报.2010,37(5):211~214
    乔慧,吴滟,博洪拓,等.应用SSR和SRAP标记构建青虾遗传连锁图谱.中国水产科学,2012,02:16~24
    全迎春,孙效文,梁利群.应用微卫星多态分析四个鲤鱼群体的遗传多样性.动物学研究,2005,06:596~602
    孙效文,张晓峰,赵莹莹,等.水产生物微卫星标记技术研究进展及其应用.中国水产科学,2008,04:689~703
    孙昭宁,刘萍,李健,等.微卫星DNA标记用于中国对虾亲子关系的鉴定.海洋水产研究,2007,03:8~14
    任桂静.玉筋鱼和松江鲈微卫星标记的开发及群体遗传学研究.【博士学位论文】.青岛:中国海洋大学,2012
    汪桂玲,袁一鸣,李家乐.中国五大湖三角帆蚌群体遗传多样性及亲缘关系的SSR分析.水产学报,2007,02:26~32
    汪松,乐佩琦,陈宜瑜,等.中国濒危鱼类动物红皮书.北京:科学技术出版社,1998:240~243
    徐建荣,韩晓磊,李宁,等.松江鲈群体遗传多样性的AFLP分析.大连水产学院学报,2008,23(6):437~441
    Bassam B., Caetano-Anolles G., Gresshoff P.. Fast and sensitive silver staining of DNA inpolyacrylamide gels. Anal Biochemistry,1991,19:680~683
    Botstein D., White R.L., Skolnick M., et al. Construct ion of a genetic linkage map in man usingrestriction fragment length polymorphisms. American Journal of Human Genetics,1980,32:314~331
    Goudet J.. FSTAT (Version1.2): a computer program to Calculate F-statistics. Journal of Heredity,1995,86:485~486
    Kumar S., Tamura K., Nei M.. MEGA3: Integrated software for molecular evolution-ary geneticsanalysis and sequence alignment. Briefings in Bioinformatics,2004,5:150~163
    Nakamura Y, Leppert M, O’Connell P, et al. Variable number of tandem repeat (VNTR) markersfor human gene mapping. Science,1987,235:1616~1622
    Nei M., Tajima F., Tateno Y.. Accuracy of estimated phylogenetic tree from molecular data.Journal of Molecular Evolution.1983,19:153~170
    Nelson R., Beacham T., Small M.. Microsatellite analysis of the population structure of aVancouver Island sockeye salmon (Oncorhynchus nerka) stock complex usingnondenaturing gel electrophoresis. Molecular Marine Biology Biotechnology,1998,7:312~319
    Nikolic N, Feve K, Chevalet C, et al. A set of37microsatellite DNA markers for geneticdiversity and structure analysis of Atlantic salmon Salmo salar populations. Journal of FishBiology,2009,74:458~466
    O’connell M., Dillon M.C., Wtight J.M., et al. Genetic structuring among Alaskan Pacific herringpopulations identified using microsatellite variation. Journal of Fish Biology,1998,53:150~163
    Qu C M, Liang X F, Huang W, et al. Isolation and Characterization of46Novel PolymorphicEST-Simple Sequence Repeats (SSR) Markers in Two Sinipercine Fishes (Siniperca) andCross-Species Amplification. International journal of molecular sciences,2012,13(8):9534~9544
    Raymond M., Rousset F.. GENEPOP (version-1.2): population genetics software for exact testsand ecumenicism. Journal of Heredity,1995,86:248~249
    Zatcoff M. S., Ball A. O., Chapman R.W.. Characterization of polymorphic micro-satellite locifrom black grouper, Mycteroperca bonaci (Teleostei: Serranidae). Molecular EcologyNotes,2002,2:217~219
    陈澄璟,阎斌伦,高天翔.中国沿海梭鱼群体的形态学比较研究.中国海洋大学学报,2012,42(7-8):90~97
    窦硕增.鱼类的耳石信息分析及其生活史重建——理论、方法及应用.海洋科学集刊,2007,48:93~112
    窦硕增,横内一樹,于鑫,等.基于EPMA的耳石Sr: Ca比分析及其在鱼类生活履历反演中的应用实例研究.海洋与湖沼,2011,42:512~520
    房新英,张全启,齐洁,等.野生和养殖牙鲆遗传差异的RAPD和ISSR研究.海洋与湖沼,2006,37(02):138~142
    高丽霞,李学军,李永东,等.淇河鲫与两野生鲫鱼群体遗传多样性的ISSR分析.水产科学,2011,07:53~56
    高天翔,陈四清,刘进贤,等.圆斑星鲽与条斑星鲽线粒体DNA部分片段的序列比较研究.高技术通讯,2004,12(14):329~334
    韩真,肖永双,高天翔.中国近海9个小黄鱼群体的形态学比较研究.南方水产科学,2012,8(3):25~33
    赫崇波,曹洁,刘卫东,等.圆斑星鲽及相关种类线粒体DNA控制区结构分析.遗传,2007,29(7):829~836
    孙典荣,李渊,李文涛,高天翔.大叶藻居群微卫星遗传多样性研究.水生生物学报,2013,37(1):82~89
    宋娜,高天翔,王志勇.中国近海路氏双髻鲨群体线粒体DNA控制区序列比较分析.水产学报,2012,36(8):1153~1158
    杨博,陈小勇,杨君兴.白鱼线粒体DNA控制区结构和种群遗传多样性分析.动物学研究,2008,29(4):379~385
    曾晓起,张文峰,高天翔.基因线粒体16S rRNA与CO I基因序列的刻肋海胆属系统发育研究.中国海洋大学学报,42(6):47~51
    Campana S E, Thorrold S R, Jones D G et al. Comparison of accuracy, precision, and sensitivityin elemental assays of fish otoliths using the electron microprobe, proton-induced X-rayemission, and laser ablation inductively coupled plasma mass spectrometry. CanadianJournal of Fisheries and Aquatic Sciences,1997,54:2068~2079
    Campana S E. Chemistry and composition of fish otoliths: pathways, mechanisms andapplications. Marine Ecology Progress Series,1999,188:263~297
    Elsdon T S and Gillanders B M. Reconstructing migratory patterns of fish based on environmentalinfluences on otolith chemistry. Reviews in Fish Biology and Fisheries,2003,13:219~235.
    Meyer A. Evolution of Mitochondrial DNA in Fishes. In: Biochemistry and Molecular Biology ofFishes. Vol.2.P.W.Hochachka and P. Mommsen (eds) Elsevier Press, Amsterdam, TheNetherlands,1993,1~36
    Meyer A. Evolution of mitochondrial DNA in fishes. Journal of Biochemistry and MolecularBiology,1993,2:1~36
    Secor D H, Rooker J R. Is otolith strontium a useful scalar of life cycles in estuarine fishesFisheries Research,2000,46:359~371
    Soltis P S, Gitzendanner M A. Molecular systematics and the conservation of rare species.Conservation Biology,1999,13:471~481.
    Yang Q., Gao T., Miao Z. Differentiation between populations of Japanese grenadier anchovy(Coilia nasus) in Northwestern Pacific based on ISSR markers: Implications forbiogeography. Biochemical Systermatics and Ecology,2011,39:286~296
    Ying Y., Gao T., Miao Z. Genetic differentiation of Japanese sardinella,(Sardinella zunasi)populations in the Northwest Pacific revealed by ISSR analysis. Journal of OceanUniversity of China,2011,10(3):417~424
    Zhang Y., Zhang H., Gao T., et al. Structure of mitochondrial DNA control region and molecularphylogenetic relationship among three flounders of genus Pleuronectes. BiochemicalSystermatics and Ecology,2011,39:627~634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700