用户名: 密码: 验证码:
稀土掺杂二氧化钛气相光催化降解有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以TiO2半导体为主的多相光催化氧化技术因与传统污染处理技术相比具有许多优点而倍受青睐;但是,目前以TiO2为基础的光催化技术还存在量子效率低、太阳能利用率低等技术难题,如何解决这些难题是当前光催化科学发展所面临的重大挑战。
    金属离子掺杂是改善催化剂光催化性能的有效途径,而稀土离子所具有的特殊电子结构能有效地对TiO2进行表面改性。目前,稀土离子掺杂的TiO2光催化剂主要用于液相光催化,将其用于气相光催化反应的研究较少。采用原位红外光谱考察其对多种典型有机污染物的气相光催化降解过程也鲜见报道。
    本文采用改进的溶胶-凝胶法和浸渍法制备了TiO2掺杂稀土离子La3+、Y3+、Gd3+、Er3+、Nd3+、Pr3+的RE/TiO2光催化剂。以气相光催化降解典型的有机污染物乙烯、溴代甲烷为模型反应,考察稀土离子掺杂对TiO2气相光催化性能的影响。运用ICP、FTIR、XRD、TEM、BET、TG/DTA、Raman、DRS、SPS等多种表征手段,深入探讨稀土离子对TiO2的表面改性机理,阐明稀土离子掺杂TiO2催化剂光催化性能得到改善的原因。另外,利用原位红外技术考察了RE/TiO2样品光催化降解乙烯、丙酮、苯的反应,对其光催化降解有机污染物的过程进行较深入的研究。
    结果表明,与纯TiO2相比,掺杂La3+、Y3+、Gd3+、Er3+、Nd3+的RE/TiO2样品上乙烯、溴代甲烷的转化率均有不同程度的提高,CO2的生成量也有相应增加,说明掺杂这些稀土离子可以使TiO2的光催化活性增强,而且表现出较强的矿化能力。但是,掺杂Pr3+的TiO2的光催化性能没有提高甚至降低。催化剂的表征结果显示,稀土离子La3+、Y3+、Gd3+、Er3+、Nd3+、Pr3+掺杂后,TiO2样品的锐钛矿含量增加,比表面积增大,粒径变小,表现出量子尺寸效应;稀土离子掺杂后TiO2样品的吸收边发生蓝移,表面光电压的响应阈值增大,使得光致电子-空穴对的氧化还原能力增强;此外,Pr3+除外的其它稀土离子掺杂的TiO2样品的表面光电压信号增强,导致光生电子-空穴对的分离效率提高,这些都可能是TiO2掺杂稀土离子La3+、Y3+、Gd3+、Er3+、Nd3+后光催化活性提高的原因。虽然Pr/TiO2催化剂的锐钛矿相含量增加、比表面积增大、粒径变小、吸收边发生蓝移、SPS的响应阈值增大,但是由于具有可变价态的Pr3+离子容易成为空穴捕获的不可逆陷阱,使得Pr/TiO2的表面光电压信号减弱,光生电子-空穴对没有得到有效分离,故显示出较差的光催化活性。
    原位红外光谱研究乙烯、丙酮、苯的光催化降解结果表明,乙烯可以被光催化氧化生成CO2和水,而丙酮、苯被光催化氧化除了生成CO2和水外,还可能有其它较稳定的产物生成。
TiO2-based heterogeneous photocatalysis as a method of environmental remediation receives more attentions as compared to the traditional methods because it has many advantages. However, there are still a lot of problems in TiO2-based photocatalysis such as low quantum efficiency and little utilization of solar energy and so on. As a result, it is a great challenge confronted to photocatalysis that how to solve these problems and make the photocatalytic technique be widely used in practice.
    Metal ions doping is considered to be an efficient way in respect of enhancing the photocatalytic activity. Rare earth elements have special electronic structure, so they can serve as electron trap and suppress the recombination of electron-hole pairs. A lot of investigations have been carried out on photocatalytic degradation of organic contaminants over rare-earth-doped TiO2 catalysts. By far, rare-earth-doped TiO2 photocatalysts have mainly been used in liquid photocatalysis rather than gas-phase photocatalysis. The in situ FTIR study of gas-phase photocatalytic degradation of some typical organic pollutants using rare-earth-doped TiO2 catalysts have seldom been reported, too.
    In this paper, TiO2 doped with La3+, Y3+, Gd3+, Er3+, Nd3+, Pr3+ (labeled as RE/TiO2, RE=La, Y, Gd, Er, Nd, Pr) photocatalysts were prepared by the sol-gel and impregnation methods. The photocatalytic degradations of ethylene and bromomethane were used as model reactions to evaluate the photocatalytic activity under UV light irradiation. The influences of rare earth doping on the structure of catalysts and their photocatalytic performance were systematically studied by using ICP, FTIR, XRD, TEM, BET, TG/DTA, Raman, DRS and SPS. The photocatalytic processes of ethylene, acetone, benzene were investigated by in situ FTIR and the degradation mechanisms were discussed.
    The results revealed that through La3+, Y3+, Gd3+, Er3+, Nd3+ doping, the conversion of ethylene and bromomethane over TiO2 remarkably enhanced ; At the same time, the production of CO2 increased. That is, TiO2 exhibited higher photocatalytic activity than pure TiO2 through La3+, Y3+, Gd3+, Er3+, Nd3+ doping. However, Pr3+ doping decreased the photocatalytic activity of TiO2. The characteristic
    
    
    results showed that La3+, Y3+, Gd3+, Er3+, Nd3+, Pr3+ doping could inhibit the anatase to rutile phase transformation , decrease particle sizes and increase the specific surface area. The DRS and SPS spectras of rare-earth-doped TiO2 catalysts showed blue shifts in the band gap transition, which could yield larger redox potential. Furthermore, the surface photovoltage intensity of rare-earth-doped TiO2 catalysts increased except by Pr3+ doping, which could lead to the effective separation of photogenerated electron-hole pairs. All the above might result in the improvement of the photocatalytic activity over TiO2 through La3+, Y3+, Gd3+, Er3+, Nd3+ doping, while the decrease of the photocatalytic activity over Pr/TiO2 catalyst might be due to its changeable electrovalence which made Pr3+ easily act as irreversible trap of hole.
    The photocatalytic degradation of ethylene, acetone, benzene studied by in situ FTIR showed that ethylene could be oxidized to CO2 and H2O under UV light, but acetone and benzene were converted to some other steady products besides CO2 and H2O.
引文
1、Fujishima, A.; Honda, K. Nature, 1972, 238,3
    2、Linsebigler, A. L.?; Lu, G.?; Yates, J. T.. Chem. Rev.,1995, 95, 735
    3、Fox, M. A.?;Dulay, M. Y., Chem. Rev.,1993, 93(1), 341
    4、Hoffmann, M. R.; Martin, S. T.; Choi, W. et al., Chem. Rev. ,1995, 95(1), 69
    5、董庆华,感光科学与光化学,1993,11(2),76
    6、魏宏斌,李田,严煦世,环境科学进展,1994,2(3),50
    7、郑红,汤鸿霄,王怡中,环境科学进展,1996,4(3),1
    8、Parmon,V. N.; Zamaraev, K. I. in Photo Catalysis Foundamentals and Applications, N.Serpone, E. Pelizzetti, Eds, WileyInterscience, New York, 1989, P.565
    9、Pelizzetti, E.; Schiavello, M. Eds, Photochemical Conversion and Storage of Solar Energy, Kluwer Academic Publishers, Dordrecht,1991.
    10、Ollis, D. F.; AlEkabi, H. Eds. Photocatalysis Purfication and Treament of Water and Air, Elsevier, Amsterdam,1993
    11、金振声,98’全国光催化学术会议论文摘要集,1998,p1
    12、吴越著,催化化学(下)北京:科学出版社,1998,p1429
    13、韩兆慧,赵华侨,半导体多相光催化应用研究进展,化学进展,1999,11(1),1-10
    14、李琳,多相光催化在水污染治理中的应用,环境科学进展,1994,2(6),23
    15、Pruden, A. L.; Ollis, D. F. J. Catal.,1983, 82, 404
    16、Hsiao, C. Y.; Lee, C. L.; Ollis, D. F. J. Catal., 1984, 88, 89
    17、Ollis, D. F.; Contaminant Degradation in Water, Environ. Sci. Technol., 1985, 19, 48-484
    18、Ollis, D. F.; Pelizzetti, E.; Serpone, N. Destruction of Water Contaminant, Environ. Sci. Technol. ,1991,25(9), 1523-1529
    19、Ollis, D. F. Heterogeneous Photocatalysis for Water Purification: Prospects and Problem. Homogeneous and Heterogeneous Photocatalysis, Ed by Pelizzetti, E.; Serpone, N.; Dordrecht, D. Reidel Publishing Company, 1986, p673-689
    20、Brogarello, E.; Serpone, N.; Barbeni, M. et al, Photocatalysis to Work, Homogeneous and Heterogeneous Photocatalysis, Ed by Pelizzetti E, Serpone N.Dordrecht : D. Reidel Publishing Company, 1986, p673-689.
    21、Oliver, B. G.; Carey, J. H. Photodegradation of wastes and Pollutants in Aquatic Environment. Homogeneous and Heterogeneous Photocatalysis, Ed by Pelizzetti, E.; Serpone, N.; Dordrecht, D. Reidel Publishing Company, 1986, p629-650
    22、Ollis, D. F.; Elizzetti, P. E.; Serponc, N. Heterogeneous Photocatalysis in the Environment:
    
    
    Application to Water Purification. Photocatalysis, Fundamentals and Applications, Ed. By Serpone N, Pelizzetti E. New York: John Wiley&Sons, 1989, pp609-637
    23、Ollis, D. F. Process Economics For Water Purification: A Comparative Assessment. Photocatalysis and Environment, Trends and Applecation, Dd by Schiavello, M. Dordrecht: Kluwer Academic Publishers, 1988, p663-677
    24、Pelizzetti, E.; Minero, C.; Pramauro, E. Photocatalytic Processes for Destruction of Organic Water Contaminants. Chemical Reactor Technology of Environmentally safe Reactors and Products, Ed by de Lasa, H. I. et al. Dordrecht:Kluwer Academic Publishers, 1993, p577-608
    25、黄汉生,现代化工,1998,18(12),39
    26、沈伟韧,赵文宽,贺飞等. 化学进展,1998,10(4),349
    27、徐炽焕,现代化工,1998,5,17-19
    28、藤屿昭,工业材料,1997,45(10),25
    29、付贤智,2000’ 全国光催化学术会议论文摘要集,2000,p21
    30、Hagfeldt, A.; Gratzel, M. Chem. Rev., 1995, 95(1), 49-68
    31、魏子栋,殷菲,谭君等. 化学通报,2001,2,76-80
    32、于向阳,梁文,杜永娟等. 材料导报,2000,14(2),38
    33、Kamat, P. V. Chem. Rev., 1993, 93, 341
    34、肖奇,邱冠周,胡岳华等. 材料导报,2000,14(8),35-38
    35、孙奉玉,吴鸣,李文钊等. 催化学报,1998,19(3),121
    36、沈伟韧,贺飞,赵文宽等. 武汉大学学报(自然科学版),1999,45(4),389-392
    37、Serpone, N. et al, Size effects on the photophysical properties of colloidal anatase TiO2 Particles:Size quantization of direct transtition in this indirect semiconductor . J. Phys.Chem., 1995, 99, 16646-16654
    38、Fu, X. Z.; Zeltner, W. A.; Anderson, M. A. Applied Catakysis B: Environmental 1995, 6, 209-224
    39、Chen, J.; David F.; Ollis et al. Wat. Res., 1999, 33(3), 661-668
    40、Rufus, B. I. et al., Indian Journal of Technology, 1989, 27(3), 171-173
    41、Choi, W.; Termin, A. J. Phy.Chem,1994, 98, 13669
    42、黄琮,王良焱,朱春媚等. TiO2光催化处理有机污染物的研究现状与展望,2001
    43、Litter. et al. , Applied Catalysis A: General 1999, 178, 191-203
    44、Litter. et al., Applied Catalysis A: General 1999, 177, 111-120
    45、于向阳,梁文,程继健,硅酸盐通报,2000,1,53-57
    46、Navio, J. A.?; Macias, M.?; Gonzalez, C. M. et al. J Mater. Sci,1992, 27(11), 3036
    47、Navio, J. A.; Colon, G.; Litter, M. I. et al. J. Mol. Catal. A, 1996, 106(3), 267
    
    48、Litter, M. I.; Navio, J. A. J. Photochem. Photobiol. A, 1994, 84(2), 183
    49、Litter, M. I.; Navio, J. A. J. Photochem. Photobiol. A , 1996, 98(3), 171
    50、Navio, J. A.?; Colon, G.?; Trillas, M. et al. J. Appl. Catal. B, 1998, 16(2),187
    51、Litter, M. I. Appl. Catal. B,1999, 23, 89
    52、崔斌,梁倩,顾利平等,西北大学学报(自然科学版),2000,30(5),397-399
    53、Yamashita, H.; Anpo, M., Kagaku ,1997, 52 (9):74
    54、Sakata, Y.?; Yamamoto, T.?; Okazaki, T. et al. Chem. Lett, 1998,12, 1253
    55、Iwasaki, M.; Hara, M.; Kawada, H. et al. J. Colloid Interface Sci. 2000,224(1), 202
    56、李芳柏,李湘中,李新军等. 化学学报,2001,59(7),1072-1077
    57、张峰,李庆霖,杨建军等. 催化学报,1999,20(3),329
    58、Kiriakidou, F.; Kondarides, D. I.; Verykios, X. E. Catalysis Today 1999, 54, 119-130
    59、Wilke, K.; Breuer, H. D. J. Photochem. Photobiol. A, 1999, 121, 49
    60、王艳芹,张莉,程虎民等. 高等学校化学学报,2000,6,958-960
    61、Lin, J.; Jimmy, C. Y. J. Photochem. Photobiol. A , 1998, 116, 63-67
    62、Ranjit, K. T.; Willner, I.; Bossmann, S. H.; Braun, A. M. Environ. Sci. Technol, 2001, 35, 1544-1549
    63、水淼,岳林海,徐铸德,物理化学学报,2000,16(5),459-46
    64、岳林海,水淼,徐铸德等. 浙江大学学报(理学版),2000,27(1),69-74
    65、岳林海,上海环境科学,1998,17(9),17-19
    66、于向阳,程继健,杨阳等. 华东理工大学学报,2000,26(3),287-289
    67、于向阳,程继健,杜永娟,玻璃与搪瓷,2000,28(2),15-20
    68、刘畅,暴宁钟,杨祝红等. 催化学报,2001,22(2),215-218
    69、吴越著,催化化学(下)北京:科学出版社,1998,p1036
    70、田部浩三著,郑禄彬等译,新固体酸和碱及其催化作用,北京:化学工业出版社,1992
    71、Bratsch, S. G. J. Chem. Edu., 1998, 60(10), 877-878
    72、Tanabe, K.?; Yamaguchi, T. Jpn. Patent., 55-115570, 1980
    73、Olah, G. A.; Lucus, J. J. Am. Chem. Soc., 89, 2227;4739,1969
    74、Kemp, J. D. U. S. Pat., 3, 852, 371, 1974
    75、Bloch, H.S. U. S. Pat., 3, 678, 120, 1972
    76、Olah, G. A. U. S. Pat., 3, 708, 553; 3, 766, 286, 1973
    77、Magnotta, V. C.?; Gates, B.C. J. Catal., 1977, 46, 266
    78、Hino, M.; Arata, K. J.Chem. Soc., Chem. Commun., 1988, 1259
    79、Hino, M.; Arata, K., J. Am. Chem. Soc.,1979, 101, 6439
    80、Hino, M.; Arata, K. J. Chem. Soc., Chem. Commun., 1979, 1148
    
    81、Hino, M.; Arata, K. J.Chem. Soc., Chem. Commun., 1980, 851
    82、Hino, M.; Arata, K. Chem. Lett., 1981, 1671
    83、Tanabe, K.?; Yamaguchi, T. Jpn. Patent., 55-115570, 1980
    84、Arata, K.?;Hino, M. Appl. Catal., 1990, 59,197
    85、Darrin, S.; Muggli, L. D. Applied Catalysis B: Environmental 2001, 839, 1-4
    86、苏文悦,陈亦琳,付贤智等. 催化学报,2001, 22(2),175-176
    87、付贤智,丁正新,苏文悦等. 催化学报,1999,20(3),321-324
    88、苏文悦,付贤智,魏可镁,光谱学与光谱分析,2000,20(5),655-657
    89、苏文悦,付贤智,魏可镁,物理化学学报,2001,17(1),28-31
    90、王心晨,[硕士学位论文],福州,福州大学化学系,2001,p10
    91、Vinodgopal, K.; Kamat, P. V. Environ. Sci. Technol., 1995, 29(3), 841
    92、刘秀珍,施利毅,华彬,上海环境科学,2000,19(9),414-417
    93、Kamat, P. V.; Fox, M. A. Chem. Phys. Lett., 1983, 102(4), 379-384
    94、Patrick, B.; Kamat, P. V. J. Phys. Chem. ,1992, 96, 1423-1428
    95、Ford, W. E.; Rodgers, M. A. J. J. Phys. Chem. ,1997, 101(6), 930-936
    96、罗菊仙,赵中一,中国地质大学学报,2000,25(5),536-541
    97、Takeda. N.; Dhtani, M. J. Phys. Chem, 1997,101, 2644
    98、Takeda, N.?; Iwata, N. J. Catalysis, 1998, 177, 240
    99、Shama, G.; Drott, D. Chem. Eng. Commun., 1997,158, 107-122
    100、吴合进,吴鸣,刘鸿等. 2000’ 全国光催化学术会议论文摘要集,2000,p29
    101、Dong, H. K.; Marc, A. A. Environ. Sci. Technol. , 1994, 28, 479-483
    102、Kvinodgopal, Ulick Stafford, Kimberly A Gray et al. J. Phys. Chem., 1994, 98, 6797-6803
    103、(a)李旦振,郑宜,付贤智,高等学校化学学报,2002年,23(12),2351-2356.
     (b)郑宜,李旦振,付贤智,高等学校化学学报,2001,22(3),443-445
    (c)李旦振,郑宜,付贤智,物理化学学报,2002,18(4),332-335
    (d)郑宜,李旦振,付贤智,催化学报,2001,22(2),165-166
    (e)李旦振,郑宜,付贤智,物理化学学报,2001,17 (3), 270-272
    104、Zou,Z.; Ye, J.; Oka, K.; Nishihara,Y. Phys. Rev. Lett.1998, 80, 1074
    105、Zou,Z.; Ye, J.; Arakawa, H. Catalysis Lett.2000, 68, 235
    106、Zou,Z.; Ye, J.; J.Alloys,Compounds 1999, 292, 72
    107、Zou,Z.; Ye, J.; Arakawa, H.Chem.Phys.Lett.2000, 332, 271
    108、Zou,Z.; Ye, J.; Abe, R.; Arakawa, H. Catal. Lett. 2000, 68, 235
    109、Zou,Z.; Ye, J.; Arakawa, H. J.Mater. Sci. Lett.2000, 19, 1909
    110、桑丽霞,付希贤等,化学工业与工程,2000,17(6),336-340
    
    111、白树林,付希贤等,应用化学,2000,17(3),343-345
    112、付希贤,桑丽霞,白树林等,化学物理学报,2000,13(4),503-507
    113、Guo, Y. H.; Hu, C. W.; Jiang, S. C. et al. Appl. Catal. B 2000, 36, 9-17
    114、Kato, H.; Kudo, A. Chem. Lett. 1999, 1207-1208
    115、Kudo, A.; Kat, H.; Nakagawa, S. J. Phys. Chem. B, 2000, 104, 571-575
    116、Machida, M.; Yabunaka, J.; Kijima, T.; et al. J. Inorg. Mater. 2001, 3, 545-550
    117、Friesen, D. A.; Morello, L.; Headley, J. V. et al. 2000, 133, 213-220
    118、Wu, J. H.; Uchida, S.; Fujishiro,Y. et al. J. Photochem Photobiol A: Chem, 1999, 128, 129-133
    119、Mylonas,A.; Hiskia, A.; Papaconstantinou, E. J. Mol. Catal. A: Chem. 1996, 114, 191-200
    120、Izumi, Y.; Ono, M.; Kitagawa, M. et al. Micropotous Mesopotous Mater. 1995, 5, 255
    121、Izumi, Y.; Hisano, K.; Hida, T. Appl. Catal. A?: Gen. 1999, 181, 277
    122、周亚美,上海环境科学,1997,16(2),35
    123、李琳,气相有机污染物的光催化氧化,化工进展,1995,5,45-49
    124、Mills, A.; Hunte, S.L. J. Photochem Photobiol A: Chem, 1997,108, 1
    125、藤屿昭,机能材料,1998,18(9),29
    126、邹兴,卢惠民,方克明,稀土,2000,2,16-18
    127、Fu, X. Z.; Clark, L. A.; Zeltneret, W. A. et al J. Photochem. Photobiol. A: chem. 1996, 97(3), 181
    128、金华峰,李文戈,无机化学学报,2002,3,265
    129、Fu, X.; Clark, L. A.; Yang, Q. Environ. Sci. Technol., 1996, 30, 647
    130、Xu, An-Wu; Gao, Y.; Liu, H. Q. J. Catalysis. 2002 , 207, 151
    131、邓景发,范康年编,《物理化学》,高等教育出版社,p631
    132、Fu. X. , Zeltner W. A., Anderson M. A., Studies in Surface Science and Catalysis : Applications in Photocatalytic Purification of Air . Semiconductor Nanoclusters, Ed by Kamat P. V. and Meisel D. Elsevier, New York, 1996, p445-461
    133、Katsanos, N. A.?; Karaiskakic, G..; Niotis, A. J. Catal., 1985, 94: 376-384
    134、井立强,徐自力,孙晓君等. 催化学报,2003,24(3),175-180
    135、陈爱华,陈爱平,曾炽涛等. 华东理工大学学报,2003,29(4),376-379
    136、郭泉辉,杨建军,毛立群等. 化学研究,2001,12,53-55
    137、Yang, Y. P.; Huang, K. L. Xitu(Chin. J. Rare Earth), 1996, 4, 20
    138、Edelson, L. H.;Glaeser, A. M. J. Am. Ceram. Soc, 1988, 71, 225-235
    
    139、Michael, G.; Russell, F. H. J. Phys. Chem,1990, 94, 2566-2572
    140、尹元根,多相催化剂研究方法,化学工业出版社
    141、翁之望,郭范,马剑华等. 中国稀土学报,增刊,2002,20,119-121
    142、施利毅,李春忠,房鼎业等. 华东理工大学学报1998, 24(3), 291-297
    143、Mocana, JVGarcia Ramos and CJSerna. J. Am. Ceram. Soc., 1992, 75, 2010
    144、叶钊,张汉辉,潘海波等. 光谱学与光谱分析2002,22,928-931
    145、杨咏来,徐恒泳,李文钊,材料导报,2003,17(2):12-14
    146、Wang, D.J.; Zhang, J.; Shi, T. S.; et al. J. Photochem. Photobi. A: Chem. 1996, 93, 21-25
    147、Daude, N.;Gout, C.?;Jouanin, C.; Phys.Rev.B,1977, 15(6), 3229-3235
    148、朱连杰,王德军,谢腾峰等. 高等学校化学学报,2001,22(5),827.
    149、张池明,刘旺,韩明勇等. 感光科学与光化学,1991,9(3),225.
    150、Tamaru, K. Appl. Spectrosc. Rev.1975, 9, 133
    151、苏文悦,付贤智,魏可镁,环境科学,2001,22(2),91.
    152、丁时锋,唐超群,环境科学与技术,2002,25,3-7
    153、Sauer, M. L.; Ollis, D. F. J. Catal., 1994, 149, 81
    154、Peral J,Ollis D F. J. Catal, 1992, 136, 554
    155、张汉辉,郑威编著,波谱学,厦门大学出版社 p23-31
    156、崔兆杰,高连存,宋华,环境工程,2002,20,75-78
    157、恽洪魁,高等有机,北京,高等教育出版社
    158、lichtin, N.N.; Sadeghi, M. J. Photochem. Photobio. A: Chem., 1998, 113, 81-88.
    159、Fu, X. Z.; Zeltner, W. A.; Anderson, M. A. Appl. Catal. B, 1995, 6, 209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700