用户名: 密码: 验证码:
CO_2和甲醇直接合成碳酸二甲酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳酸二甲酯(DMC)作为20世纪以来发展最快的绿色化学品之一,近年来受到了广泛的关注。其主要用途有:可作为无毒的羰基化试剂和甲基化试剂用于有机合成工业,是集清洁性与安全性于一身的绿色溶剂,还是继甲基叔丁基醚(MTBE)之后提高汽油辛烷值的新型添加剂。主要合成路线有光气法和非光气法。20世纪80年代以来,国内外对DMC的非光气合成进行了大量的研究,在越来越注重环境和关注节约型社会的今天,合成DMC的路线正朝着简单化、无毒化和无污染化的方向发展,CO_2和甲醇直接合成DMC的路线越来越受到了关注。
     CO_2既是潜在的C_1资源又是一种工业排放的废气,同时还是引起温室效应的主要气体之一。因此,CO_2的减排及其资源化利用已引起人们的广泛关注。由CO_2和甲醇直接合成DMC,无论是从能源的角度还是环境的角度,对社会的可持续发展都具有重要意义。该合成路线的关键问题是CO_2的活化。研究表明,铈锆固溶体Ce_xZr_(1-x)O_2具有较高的催化活性。
     为了进一步探索铈锆固溶体的制备方法、结构及其催化直接合成DMC性能之间的关系,本课题主要从以下几个方面进行了研究:
     1.通过热力学估算,从热力学角度分析了压力和温度的变化对CO_2和甲醇直接合成DMC的平衡转化率的影响,并且探讨在该体系中添加2,2-二甲氧基丙烷(DMP)、二甲氧基甲烷(DMM)、三甲氧基甲烷(TMM)以及三甲氧基乙烷(TME)等脱水剂对反应过程的影响,力求从热力学的角度为选择化学脱水剂和反应条件提供指导。
     2.分别以水杨酸、酒石酸、己二酸和柠檬酸等为配位剂,铈和锆的硝酸盐为前躯体,采用配位.分解法制备Ce_(0.5)Zr_(0.5)O_2固溶体。通过XRD、Raman、SEM、液氮温度下的氮气吸脱附和化学吸附等方法对固溶体的晶型、孔型结构、比表面积以及氧化还原性能和CO_2的化学吸附性能等进行考察,并结合其催化直接合成DMC的活性,将固溶体的催化性能与其结构的关系进行了关联和解析。结果表明,配位酸的种类和焙烧温度是影响Ce_(0.5)Zr_(0.5)O_2的晶形和是否发生晶相分离的关键因素;铈锆固溶体的晶形及其是否晶相分离是影响其催化合成DMC活性的关键因素。当以水杨酸为配位酸并且焙烧到1273 K时,制备的铈锆固溶体为四方晶形,基本上没有相分离,其催化活性最好;当以酒石酸为配位酸且焙烧到1273 K时,铈锆固溶体发生相分离,没有检测到DMC的生成,几乎没有催化直接合成DMC的活性。
     3.采用配位.分解法制备Ce_xZr_(1-x)O_2铈锆固溶体。通过XRD、Raman、SEM、液氮温度下的氮气吸脱附和化学吸附等方法对该固溶体的晶型、孔型结构、BET比表面积以及氧化还原性能和CO_2的化学吸附性能等进行考察,并结合其催化直接合成DMC的活性,对催化剂的性能与其结构的关系进行了关联和分析。结果表明,铈锆的物质的量之比和焙烧温度对其晶形影响很大:催化剂的晶形对其催化活性起着关键性的作用。当铈锆的物质的量之比接近1,且焙烧温度为1273 K时,铈锆固溶体为Ce_(0.5)Zr_(0.5)O_2四方晶相,其催化性能最好。
     为了促使反应平衡向右移动,采用在反应体系中添加化学脱水剂的方法来消耗所生成的水。结果表明,在同样的反应条件下,甲醇的转化率由未加TMM的1.8%提高到7.9%;当TMM为50 wt%,在20 MPa、373 K条件下反应34 h,甲醇的转化率达到了10.4%,甲醇的转化率得到显著提高;四方相的铈锆固溶体催化剂以及水的消耗是直接合成DMC的有效途径,并对该反应机理进行解析。
     4.为了提高催化剂的活性,对铈锆固溶体催化剂进行了改性,并对其催化合成DMC的性能进行探讨。
     (1)采用在铈锆固溶体中添加钇的方法对铈锆固溶体改性。配位-分解法制备铈锆钇固溶体(Ce_xZr_(1-x-0.1)Y_(0.1)O_2)催化剂,通过对其结构的表征,并结合其催化直接合成DMC的活性,对催化剂的性能与其结构的关系进行了关联和分析。结果表明,各金属的物质的量之比和焙烧温度对其孔型、比表面积、孔容以及氧化还原等的影响很大;而影响铈锆钇固溶体催化性能的主要因素是其比表面积和孔容。其中,焙烧1073 K的铈锆钇Ce_(0.5)Zr_(0.4)Y_(0.1)O_2固溶体具有大的比表面积和孔容,其活性较好。然而,其催化活性并没有Ce_(0.5)Zr_(0.5)O_2(焙烧1273 K)的催化活性高。
     (2)采用负载离子液体的方法对铈锆固溶体进行改性。浸渍法制备一系列负载离子液体催化剂[emim]Br/Ce_(0.5)Zr_(0.5)O_2,并用于催化直接合成DMC。结果表明,负载[emim]Br的量对催化剂的活性起着关键性的作用。当[emim]Br:Ce_(0.5)Zr_(0.5)O_2=1:2时,[emim]Br/Ce_(0.5)Zr_(0.5)O_2的活性较高,远远高于[emim]Br或Ce_(0.5)Zr_(0.5)O_2。这可能是离子液体和铈锆固溶体的协同作用,促进了催化剂的活性提高。采用负载离子液体的方法改性铈锆固溶体,当[emim]Br:Ce_(0.5)Zr_(0.5)O_2=1:2时,其催化性能远远好于Ce_(0.5)Zr_(0.5)O_2(焙烧到1273 K时的铈锆固溶体)的催化性能。
In recent years,much attention has been paid to dimethyl carbonate(DMC),because DMC is one of the fastest growing environmentally benign chemical products.DMC has many potential applications:first,its versatility as a reagent and a solvent.It can be used as a chemical intermediate, such as a non-toxic carbonylaring and methylating agent.Second,it is non-toxicity for human health and environment.It can also be used as a potential gasoline fuel additive which has about three times higher in oxygen content than that of methyl tert-butyl ether(MTBE).Several reaction routes have been reported for DMC synthesis so far.Among the investigated methods,the direct synthesis of DMC from CO_2 and CH_3OH is the more preferred route as it matches the view of the so-called "Sustainable Society" and "Green Chemistry".Moreover,conversion of carbon dioxide to useful industrial compounds has attracted much attention because of its environmentally benign nature (nontoxic,noncorrosive,and nonflammable) and also a greenhouse gase and a major emission product.The direct synthesis of DMC from CO_2 and CH_3OH has been attempted to match the view of the so-called "Sustainable Society" and "Green Chemistry".The activation of CO_2 is the key problem in its conversion process.Some effective catalysts,such as organometallic compounds, carbonate salts and oxides have been reported for the rifled reaction.The Ce_xZr_(1-x)O_2 solid solutions showed potentially higher catalytic performance.
     In order to further explore the relationships between the structure and the catalytic activities of Ce_xZr_(1-x)O_2 solid solutions as catalysts for synthesis of dimethyl carbonate direct from carbon dioxide and methanol,the fellowing work has been done in this dissertation.
     1.A thermodynamic analysis of the synthesis processes is carried out with the emphasis on the calculations of the effect of the addition of the 1,1,1-trimethoxy methane(TMM),trimethoxy ethane(TME),2,2-dimethoxy propane(DMP) and 2,2-dimethoxy methane(DMM) at different temperatures and pressures.Optimum reaction conditions for DMC synthesis were investigated in this work,which will provide the thermodynamic basis for designing DMC synthesis process and developing catalysts for this process.
     2.The Ce_(0.5)Zr_(0.5)O_2 solid solutions were prepared by a complex-decomposition method using salicylic acid,tartaric acid,adipic acid,and citric acid as complexants and cerium and zirconium nitrides as precursors,respectively.These solid solutions can be used in dimethyl carbonate(DMC) synthesis from methanol and CO_2.Combined with the characterization results by means of X-ray diffraction(XRD),Raman,SEM,N_2 adsorption-desorption isotherms,H_2-TPR and CO_2 pulse chemisorption,we discussed the relationships between the catalytic activities and catalytic properties. Results indicated that crystal structure of Ce_(0.5)Zr_(0.5)O_2 was the key factor in determining the catalytic activity for DMC synthesis.The solid solution prepared by salicylic acid as complexants and calcined at 1273 K showed a good catalytic activity for the selective DMC synthesis from CH_3OH and CO_2.Moreover,the catalytic activity of the Ce_(0.5)Zr_(0.5)O_2 was significantly decreased when phase separation as a result of the enrichment either of Ce or Zr was occurred.
     3.The solid solutions of Ce_xZr_(1-x)O_2 with various x values were synthesized by complex-decomposition and used as catalysts for the titled reaction.Combined with the characterization results by means of X-ray diffraction(XRD),Raman,SEM,mercury porosimetry, N_2 adsorption-desorption isotherms,H_2-TPR and CO_2 pulse chemisorption,we discussed the relationships between the catalytic activities and catalytic properties.Results indicated that Ce_(0.5)Zr_(0.5)O_2 with tetragonal phase exhibited very effective in methanol conversion.
     In order to increase the methanol conversion and the selectivity to DMC,the method of removing H_2O was used with an additive of TMM.Results indicated that,the addition of TMM was very effective for the increase of the methanol conversion.The methanol conversion increased from 1.8%to 7.9%at the same reaction conditions over Ce_(0.5)Zr_(0.5)O_2.The methanol conversion reached about 10.4%using TMM as dehydrating reagent at 423 K and 12 MPa after 34 h reaction.The combination of this selective bimodal porous catalyst with an effective H_2O removal system can provide a novel process of selective DMC production starting from CO_2 with a dramatic efficiency. The elucidation of the mechanism of the activity enhancement enables catalyst design for much higher performance.
     4.In order to enhance the catalytic activity,the methods of modifying the solid solutions of Ce_xZr_(1-x)O_2 were used.These solid solutions modified can be used in dimethyl carbonate(DMC) synthesis from methanol and CO_2.
     (1) The method of doping Y on Ce_xZr_(1-x)O_2 was used.The solid solutions of Ce_xZr_(1-x-0.1)Y_(0.1)O_2 with various x values were prepared by complex-decomposition method,and applied for the direct synthesis of dimethyl carbonate in a batch reactor under 20 MPa.The performance of Ce_xZr_(1-x-0.1)Y_(0.1)O_2 for the titled reaction strongly depends on x values and calcination temperatures, and the Ce_(0.5)Zr_(0.4)Y_(0.1)O_2 calcined at 1073 K showed the optimal performance.However,the catalytic activity of Ce_(0.5)Zr_(0.4)Y_(0.1)O_2 calcined at 1073 K was lower than the Ce_(0.5)Zr_(0.5)O_2 solid solution calcined at 1273 K.
     (2) The method of loading ionic liquid(ILs) on the solid solutions was used.The [emim]Br/Ce_(0.5)Zr_(0.5)O_2 catalysts were prepared by impregnation method and applied for the direct synthesis of dimethyl carbonate.The results indicated that the[emim]Br contents of [emim]Br/Ce_(0.5)Zr_(0.5)O_2 catalysts influenced the DMC formation.Moreover,the catalytic performance was higher for the solid solution loaded ILs with the[emim]Br:Ce_(0.5)Zr_(0.5)O_2=1:2 as catalyst.It may be that the synergistic effect of ILs and the solid solution improves the catalytic performance for the titled reaction.It is very interesting that the catalytic activity of the ionic liquid loaded solid solution catalyst is higher than the Ce_(0.5)Zr_(0.5)O_2 solid solution calcined at 1273 K.
引文
[1]Tundo P,Selva M.The Chemistry of Dimethyl Carbonate[J].Accoults of Chem.,Res,2002,35(9):706-716.
    [2]张雪娇,程永清.化工生成中“绿色原料”-碳酸二甲酯的应用[J].化学工业与工程技术,2005,26(2):40-43.
    [3]Memoli S,Selva M,Tundo P.Dimethyl Carbonate for Eco-friendly Methylation Reactions[J].Chemoshpere,2001,43:115-121.
    [4]江琦.碳酸二甲酯在化工领域中的运用[J].石油化工,2000,29(2):144-147.
    [5]Tundo P,Selva M,Memoli S.Dimethyl Carbonate as a Green Reagent,Green Chemical Synthesis and Process[M].Anastas P.,Heine L G,Williamson T.,Eds.,ACS Symposium Series,2002,76:87-99.
    [6]Michael A P,Christolpher L M.Review of Dimethyl Carbonate(DMC)Manufacture and its Characteristics as a Fuel Additive[J].Energy Fuel,1997,11:2-29.
    [7]Tundo P,Selva M.The Chemistry of Dimethyl Carbonate[J].Accoults of Chem.,Res,2002,35(9):706-716.
    [8]屈强好.碳酸二甲酯的市场需求和生产技术进展[J].化学中间体,2005,6:22-27.
    [9]Romano U,Tesei R,Mauri M M.Synthesis of Dimelhyl Carbonate from Methanol,Carbon Monoxide,and Oxygen Catalyzed by Copper Compounds[J].Eng.Chem.Pord Res.Rev,1980,19:396-403.
    [10]Dreoni D,Rivetti F,Romano U.Process and Catalyst for Preparing Organic Carbonates.US 5395949[P].1949.
    [11]Romano U,Tesei R,Cipriani G,et al.Method for the Preparation of Esters of Carbonic Acid.US 4218391[P].1980.
    [12]陈焕章.碳酸二甲酯的研究开发[J].化工时刊,1994,7:3-8.
    [13]陈忠,杨建设.碳酸二甲酯的生产技术综述[J].精细石油化工,1998,6:45-49.
    [14]吴迎春.添加剂在汽油新时代的关键作用[J].石油炼制译丛,1991,10:40-45.
    [15]赵天生,韩怡卓,孙予罕.碳酸二甲酯的合成方法的研究进展[J].石油化工,1998,27(6):457-463.
    [16]苏越华,吴晓华,姜玄珍.甲醇气相氧化羰基化合成碳酸二甲酯[J].高校化学工程学报,1999,13(6):546-567.
    [17]刘淑芝,崔宝臣,荆国林.非光气法合成碳酸二甲酯催化剂研究进展[J].化工进展.2002,21:250-253.
    [18]Romano U,Tesei R,Giprianni.Method for the Preparation of Esters of Carbonic Acid:US,2418391[P].1980-08-19.
    [19]Hattacharya A B.Fuel Oxygenates:Organic Carbonate Synthesis[J].Chem.,Soc.Div.Fule.Chem.,1995,4(1):119-122.
    [20]Ko Y M,Ta K S.Catalysts Used for Producing Carbonic Acid Esters and Methods of Producing Carbonic Acid Esters Using the Same:EP,528498[p].1993-02-24.
    [21]Daniele D,Rivetti F,Romano U.Oxidative Carbonylation of Methanol to Dimethyl Carbonate(DMC):A New Catalytic System[J].J organic chem.,1995,488(1-2):C15-C19.
    [22]李忠,潘亚利,谢克昌.碳酸二甲酯的合成化学[J].煤炭转化,2001,24(2):46-51.
    [23]肖翠玲,王艳花.21世纪基础化学原料--碳酸二甲酯[J].化工进展,2000,19(2):40-42.
    [24]李安民,李忠.由甲醇制备碳酸二甲酯的生成技术[J].煤炭转化(增刊),1999.22:83-87.
    [25]刘宗健,蔡烨.酯交换法合成碳酸二甲酯的进展[J].浙江化工,1999,30: 18-21.
    [26]刘宗健,蔡烨.酯交换法合成碳酸二甲酯的催化剂研究[J].化工生产与技术,1998,20:13-52.
    [27]姜忠义,王泳.酯交换法合成碳酸二甲酯的催化精馏过程研究[J].化学工程,2001:29-33.
    [28]谢克昌,李忠.甲醇及其衍生物[M].北京:化学工业出版社,2002:273-320.
    [29]陈小鹏,张冬云,韦小杰.一种合成碳酸二甲酯的方法及设备[P].CN:1349973A,2002.
    [30]江琦,林齐合,黄仲涛.甲醇镁作用下的碳酸二甲酯直接合成[J].华南理工大学学报,1996,24(12):49-53.
    [31]桂新胜,曹发海,房鼎业.间接搅拌釜中甲醇与二氧化碳合成碳酸二甲酯[J].华东理工大学学报,1998,24(1):7-10.
    [32]殷元骐主编.羰基化合物[M].北京:化学工业出版社,1995.
    [33]赵天生,韩怡卓,孙予罕.甲醇和二氧化碳合成碳酸二甲酯体系的热力学分析[J].天然气化工,1998,23:52-57.
    [34]Kizlink J,Pastucha I.Preparation of DMC from Methanol and Carbon Dioxide in the Presence of Organotin Compounds[J].Collect Czech Chem Commun,1993,58(9):1399-1401.
    [35]Kizlink J,Pastucha I.Preparation of DMC from Methanol and Carbon Dioxide in the Presence of Sn(Ⅳ) and Ti(Ⅳ) Alkoxides[J].Collect Czech Chem Commun,1995,60(4):687-692.
    [36]Jiang Q,Lin Q H,Huang Z T.A New Catalytic Process for the Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol[J].Cuihua Xuebao,1996,17(2):91-92.
    [37]江琦,林齐合,黄仲涛.甲醇镁作用下的碳酸二甲酯直接合成[J].华南理工大学学报(自然科学版),1999,24(12):49-53.
    [38]王书明,江琦.双组分催化剂作用下的碳酸二甲酯直接合成[J].现代化工,2002,22(7):30-33.
    [39]江琦,李涛,刘峰.添加剂在碳酸二甲酯直接合成中的作用[J].应用化学,1999,16(5):115-116.
    [40]杨杰,江琦.用于直接合成碳酸二甲酯的新型高活性催化剂[J].催化学报,2004,25(4):253-254.
    [41]McGhee W,Riley D.Replacement of Phosgene with Carbon Dioxide:Synthesis of Alkyl Carbonates[J].J Org.Chem.,1995,60(19):6205-6207.
    [42]Fang S,Fujimoto K.Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol Catalyzed by Base[J].Appl.Catal.A:Gen.,1996,142:L1-L3.
    [43]曹发海,刘殿华.超临界二氧化碳与甲醇直接合成碳酸二甲酯[J].华东理工大学学报,2000,26(6):248-250.
    [44]曹发海,刘殿华,房鼎业.碱性催化剂作用下二氧化碳与甲醇直接合成碳酸二甲酯的探索性研究[J].化学世界,2000,11:594-596.
    [45]赵天生,韩怡卓,孙予罕,等.近超临界条件下直接合成碳酸二甲酯[J].燃料化学学报,1999,12:53-57.
    [46]Zhao T S,Han Y Z,Sun Y H.Novel Rreaction Route for Dimethyl Carbonate Synthesis from CO_2 and Methanol[J].Fuel Processing Technology,2000,62(2):187-194.
    [47]钟顺和,黎汉生,王建伟.二氧化碳和甲醇直接合成碳酸二甲酯用Cu_2Ni/ZrO_(2-)SiO_2催化剂[J].催化学报,2000,21(2):117-120.
    [48]钟顺和,黎汉生,王建伟.二氧化碳和CH_3OH直接合成碳酸二甲酯用Cu-Ni/V_2O_5-SiO_2催化剂[J].物理化学学报,2000,16(3):226-231.
    [49]钟顺和,黎汉生,王建伟,等.用二氧化碳和甲醇直接合成碳酸二甲酯的研究[J].石油炼制与化工,2000,31(6):51-55.
    [50]钟顺和,雷泽,王建伟,等.Cu-Ni/ZrSiO催化剂的制备及其对二氧化碳和CH_3OH合成碳酸二甲酯的反应性能[J].天然气化工,2001,26:12-16.
    [51]黎汉生,钟顺和,王建伟.K_2O助剂对合成碳酸二甲酯用Cu-Ni/ZrO_2_SiO_2催化剂的吸附和催化性能的影响[J].催化学报,2001,22(4):353-357.
    [52]钟顺和,程庆彦,黎汉生.负载型Sn_2(Ome)_4/SiO_2催化剂的制备及其催化二氧化碳与CH_3OH直接合成碳酸二甲酯的性能[J].催化学报,2002,23(6):543-548.
    [53]钟顺和,程庆彦,黎汉生.负载型Sn_2(OMe)_2Cl_2/SiO_2催化剂的制备、表征与催化合成碳酸二甲酯[J].高等学校化学学报,2003,1:125-129.
    [54]Gao J,Zhong S H.Synthesis and Characterization of Supported Complex Catalyst CU_2(OAc)_2/SiO_2-TPD,In Situ-IR Study for Synthesis of EC by Activation of CO_2 and EO[J].Chem.J.of Chin.Universities,2001,2(22):280-284.
    [55]钟顺和,孔令丽,黎汉生,等.Ti_2(OMe)_4/SiO_2催化剂的制备及其合成碳酸二甲酯的反应性能[J].燃料化学学报,2002,5:454-458.
    [56]钟顺和,孔令丽,雷泽,等.KF在CO_2和CH_3OH直接合成DMC负载型金属催化剂中作用的研究[J].分子催化,2002,16(6):401-407.
    [57]Tomishige K,Kunimoril K.Catalytic and Direct Synthesis of Dimethyl Carbonate Starting from Carbon Dioxide Using CeO-2-ZrO_2 Solid Solution Heterogeneous Catalyst:Effect of H)2O Removal from the Reaction System[J].Appl.Catal.A:Gen.,2002,237:103-109.
    [58]Xie S B,Alexis T B.An in Situ Raman Study of Dimethyl Carbonate Synthesis from Carbon Dioxide and Methanol over Zirconia[J].Catal.Lett.,2000,70:137-143.
    [59]Yoshiki I,Sakaihori T,Tomishige K,et al.Promoting Effect of Phosphoric Acid on Zirconia Catalysts in Selective Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide[J].Catal.Lett.,2000,66:59-62.
    [60]Wu X L,Xiao M,Menga Y Z,et al.Direct Synthesis of Dimethyl Carbonate on H_3PO_4 Modified V_2O_5[J].J.Molecular Catal.A:Chemical,2005,38:158-162.
    [61]何永刚,淳远,朱建华.固体碱在二氧化碳甲醇法合成碳酸二甲酯反应中的作用[J].无机化学学报,2000,16(3):477-483.
    [62]吴清,朱建华.在固体碱上用甲醇和二氧化碳直接合成碳酸二甲酯[J].吉首 大学学报,1999,20(3):36-40.
    [63]Isaacs N,O'Sullivan B,Verhaelen C.High Pressure Routes to Dimethyl Carbonate from Supercritical Carbon Dioxide[J].Tetrahedron,1999,55:11949-11959.
    [64]Li Y,Zhao X Q,Wang Y J.Synthesis of Dimethyl Carbonate from Methanol,Propylene Oxide and Carbon Dioxide over KOH/4A Molecular Sieve Catalyst[J].App.Catal.A:Gen.,2005,279:205-208.
    [65]王新,李渊,赵新强,等.环氧丙烷、二氧化碳和甲醇催化合成碳酸二甲酯[J].化学反应工程与工艺,2004,3:15-19.
    [66]聂芊,吴艳华,吴春.高分子金属配合物用于合成碳酸二甲酯的催化性能[J].化学与粘合,2003,4:172-181.
    [67]聂芊,吴艳华,吴春.二氧化硅负载聚苯乙烯马来酸-锰-联吡啶配合物催化合成碳酸二甲酯的研究[J].化学与黏合,2005,27(1):27-29.
    [68]聂芊,吴春,吴艳华.二氧化硅负载聚丙烯酸.丙烯酰胺锰配合物催化合成碳酸二甲酯的研究[J].化学试剂,2002,24(1):11-13.
    [69]聂芊,吴春,吴艳华.以高分子金属络合物为催化剂从二氧化碳合成碳酸二甲酯的研究[J].哈尔滨商业大学学报,2002,3:113-116.
    [70]张克武,张杰美.评“正常沸点下液体蒸发焓的基团贡献计算法”兼论Benson 法在理论上的缺陷和改进途径[J].黑龙江大学自然科学学报,2004,21(2):91-96
    [71]Sergey P,Verevkin.Improved Benson Incrments for the Estimation of Standard Enthalpies of Formation and Enthalpies of Vaporization of Alkyl Ethers,Acetals,Kwtals and Others[J].J Chem.Eng.Data,2002,47(5):1071-1097.
    [72]Moiseeva N F,Dorofeeva O V.Group Additivity Scheme for Calculating the Chemical Thermodynamic Properties of Gassous Ploycyclic Aromatic Hydrocarbons Containing Five-membered Rings[J].Thermochemica Acta,1990,168:179-186.
    [73]傅献彩,沈文霞,姚天扬,等.物理化学(上册)[M].北京:高等教育出版社,1990.474-482.
    [74]张寒琦,林英杰,宋利珠,等.实用化学手册[M].北京:科学出版社,2001.272-378.
    [75]姚允斌,解涛,高英敏.物理化学手册[M].上海:科学技术出版社,1985.912-935.
    [76]王福安,江登高.化工数据导引[M].北京:化学工业出版社,1995.
    [77]Benson S W.Thermochemical Kinetics.Methods for the Estimation of Thermochemical Data and Rate Parameters[M].New York:John Wiley & Sons,Inc.,1968:18-51.
    [78]Benson S W,Cruickshank F R,Golden D M,et al.Additivity Rules for the Estimation of Thermochemical Properties[J].Chem Rev,1969,69(3):279-324.
    [79]Cohen N,Benson S W.Estimation of AdditivityMethods,Heat Formation of Organic Compounds by Additivity Methods[J].Chem.Rev.,1993,93:2419-2438.
    [80]Zhang Z F,Chen J G,Guo W B,et al.Thermodynamic Analysis for the Synthesis of Dimethyl Carbonate from Dimethyl Ether[J].天然气化工,2006,11(4):66-70.
    [81]刘文钦,袁存光,等.仪器分析[M].山东东营:石油大学出版社,1994:361-365.
    [82]傅献彩,沈文霞,姚天扬,等.物理化学[M].北京:高等教育出版社,1990,726-756.
    [83]Tagawa T,Pleizier G.,Amenomiya Y.Methanol Synthesis from CO_2+H_2 1.Characterization of Catalysis by TPD[J].Appl.Catal.,1985,18:285-293.
    [84]Jessop P G,Ikariya T,Noyori R.Homogeneous Catalysis in Supercritical Fluids [J].Chem Rev,1999,99(2):475-493.
    [85]Jiang C,Guo Y,Wang C,et al.Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide in the Presence of Polyoxometalates under Mild Conditions [J].Appl.Catal.A.,2003(256):203-212.
    [86]Tomishige K,Sakaihori T,Ikeda Y,et al.Anovel Method of Direct Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Catalyzed by Zirconia [J].Catal.Lett.1999,58:225-229.
    [87]Tomishige K,Furusawa Y,Ikeda Y,et al.CeO_2-ZrO_2 Solid Solution Catalyst for Selective Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide [J].Catal.Lett.,2001,76(1-2):71-74.
    [88]Yoshida Y,Arai Y,Kado S,et al.Direct Synthesis of Organic Carbonates from the Reaction of CO_2 with Methanol and Ethanol over CeO_2 Catalysts[J].Catal.Today.,2006,115:95-101.
    [89]Ikeda Y,Asadullah M,Fujimoto K,et al.Structure of the Active Sites on H_3PO_4/ZrO_2 Catalysts for Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide[J].J.Phys.Chem.B,2001,105:10653-10658.
    [90]Xu B Q,Yamaguchi T,Tanabe K.Acid-Base Bifunctional Behavior of ZrC_2 in Dual Adsorption of CO_2 and NH_3[J].Chem.Lett.,1988:1663-1666.
    [91]Nakabayashi H.Preparation of Micro-Crystalline ZrO_2 with Monoclinic Structure and its Strong Acid and Base Sites[J].Chem.Lett.,1996:945-946.
    [92]Kaspar J,Fomasiero P,Graziani M.Use of CeO_2-Based Oxides in the Three-Way Catalysis[J].Catal.Today,1999,50:285-298
    [93]Gonzalez-Velasco J R,Gutierrez-Oritiz M A,Marc J L,et al.Contribution of Cerium/Zirconium Mixed Oxides to the Activity of a New Generation of Three Way Catalysts[J].Appl.Catal.B:Environmental,1999,22:167-178.
    [94]Monte R D,Kaspar J.On the Role of Oxygen Storage in Three-Way Catalysis[J].Topics in Catal.,2004,28(1-4):47-57.
    [95]Oh S H,Eickel C C.Effects of Cerium Addition on CO Oxidation Kinetics over Alumina-Supported Rhodium Catalysts[J].J.Catal,1988,112:543-555.
    [96]金恒芳,胡延平,李灿,等.二氧化铈还原表面上水煤气变换反应机理[J].催化学报,1996,17(2):123-127.
    [97]Deganello F,Martorana A.Phase Analysis and Oxygen Storage Capacity of Ceria-Lanthana-Based TWC Promoters Prepared by Sol-Gel Routes[J].J of Solid State Chemistry,2002,163:527-533.
    [98]Zheng X C,Wang S P,Wang S R.Preparation,Characterization and Catalytic Properties of CuO/CeO_2 System[J].Mater.Science and Eng.C,2005,25:516-520.
    [99]Pintar A,Batista J,Hocevar S.TPR,TPO and TPD Examinations of Cu_(0.15)Ce_(0.85)O_(2-y) Mixed Oxides Prepared by Co-Precipitation,by the Sol-Gel Peroxide Route,and by Citric Acid-Aassisted Synthesis[J].J.Colloid and Interface Science,2005,285:218-231.
    [100]Chick L A,Pederson L R,Maupin G D,et al.Glycine-nitrate Combustion Synthesis of Oxide Ceramic Powders[J].Mater Lett.,1990,10:6-12.
    [101]Potdar H S,Deshpande S B,Khollam Y B,et al.Synthesis of Nanosized Ce_(0.75)Zr_(0.25)O_2 Porous Powders via an Autoignition:Glycine Nitrate process[J].Mater Lett.,2003,57:1066-1071.
    [102]Dhage S R,Gaikwad S P,Muthukumar P,et al.Synthesis of Ce_(0.75)Zr_(0.25)O_2 by Citrate Gel Method[J].Mater Lett.,2004,58:2704-2706.
    [103]Guo T F,Sun Q P,Zhang X.The Role of Catalysis and Transformation Shear in Carck tip Zone Shape and Toughening of Zirconea Ceramics[J].J.Solids Structure,1997,34(31-32):4213-4236.
    [104]Roh H S,Jun K W,Dong W S,et al.Highly Stable Ni Catalyst Supported on Ce-ZrO_2 for Oxy-Steam Reforming of Methane[J].Catal.Lett.,2001,74:31-36.
    [105]Kang Z C,Eyrin G L.Lattice Oxygen Transfer in Fluorite-Type Oxides Containing Ce,Pr,and Por Tb[J].J of Solid State Chemistry,2000,155:129-137.
    [106]Luo X,Zhu B,Xia C,et al.Transparent Ion-Conducting Ceria-Zirconia Films Made by Sol-Gel Technology[J].Solar Energy Materials and Solar Cells,1998,53:341-347.
    [107]Shchukin D G,Caruso R A.Inorganic Macroporous Films Preformed Nanoparticles and Membrane Templates:Synthesis and Investigation of Photocatalytic and Photoelectrochemical Properties[J].Adv.Funct.Mater,2003, 13:789-794.
    [108]Cabanas A,Darr J A,Lester E,et al.A Continuous and Clean One-Step Synthesis of Nano-Particulate Ce_(1-x)Zr_xO_2 Solid Solutions in Near-Critical Water[J].Chem.Commun,2000:901-902.
    [109]Kaspar J,Fornasiero P,Baiducci G,et al.Effect of ZrO_2 Content on Textural and Structural Properties of CeO_2-ZrO_2 Solid Solutions Made by Citrate Complexation Route[J].Inorg.Chim.Acta,2003,349:217-226.
    [110]Li J G,Ikegami T,Wang Y R,et al.Nanocrystalline Ce_(1-x)Y_xO_(2-x/2)(0<x<0.35)Oxides via Carbonate Precipitation:Synthesis and Characterization[J].J.Solid State Chem.,2002,168:52-59.
    [111]Zhang J,Ju X,Wu Z Y,et al.Structural Characteristics of Cerium Oxide Nanocrystals Prepared by the Microemulsion Method[J].Chem.Mater,2001,13:4192-4197.
    [112]Manziek L,Langenmayr E,Lamola A,et al.Functionalized Emulsion and Suspension Polymer Particles:Nanoreactors for the Synthesis of Inorganic Materials[J].Chem.Mater,1998,10:3101-3108.
    [113]He Y J,Yang B L,Cheng C X.Controlled Synthesis of CeO_2 Nanoparticles from the Coupling Route of Homogenous Precipitation with Microemulsion[J].Mater.Lett.,2003,57:1880-1884.
    [114]Hirano M,Hirai K.Effect of Hydrolysis Conditions on the Direct Formation of Nanoparticles of Ceria-zirconia Solid Solutions from Acidic Aqueous Solutions [J].J.Nanopart.Res.,2003,5(1-2):147-156.
    [115]Yang Z M,Zhang J S,Cao X M.Preparation and Character of Three-way Catalyst by Citric Acid Sol-Gel Method.Chin.J.Mater.Research[J].2003,17(4):370-374.
    [116]Yashima M,Morimoto K,Ishizawa N,et al.Zirconia-Ceria Solid Solution Synthesis and the Temperature-Time-Transformation Diagram for the 1:1Composition[J].J.Am.Ceram.Soc.,1993,76:1745-1750.
    [117]Yashima M,Morimoto K,Ishizawa N,et al.Diffusionless Tetragonal-Cubic Transformation Temperature in Zirconia-Ceria Solid Solutions[J].J.Am.Ceram.Soc.,1993,76:2865-2868.
    [118]Yashima M,Arashi H,Kakihana M,et al.Raman Scattering Study of Cubic-Tetragonal Phase Transition in Zr_(1-x)Ce_xO_2 Solid Solution[J].J.Am.Ceram.Soc.,1994,77(4):1067-1071.
    [119]Yashima M,Ohtake K,Kakihana M,et al.Synthesis of Metastable Tetragonal(t')Zirconia-Ceria Solid Solutions by the Polymerized Complex Method[J].J.Am.Ceram.Soc.,1994,77(10):2773-2776.
    [120]Yuan Q,Liu Q,Song W G,et al.Ordered Mesoporous Ce_(1-x)Zr_xO_2 Solid Solutions with Crystalline Walls[J].J.Am.Chem.Soc.,2007,12:6698-6699.
    [121]Nunan J G,Williamson W B,Robota H J.SAE Paper No.960798,1996.
    [122]Sing K S W,Everett D H,Haul R A,et al.Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity[J].Pure & Appl.Chem.,1985,57(4):603-619.
    [123]Yang Z B,Lin P Y,Xiao L.CeO_2-ZrO_2 Solid Solutions Prepared by Modified Sol-Gel Method and their Characteristics[J].J.Functional Mater.,2000,31(6):657-659.
    [124]Kenneth S W,Williams R T.Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials[J].Adsorption Science & Technology 2004,22(10):773-782.
    [125]近藤精一,石川达雄,安部郁夫著,李国希译.吸附科学[M].北京:化学工业出版社,2006年第一版:32-70.
    [126]徐如人,庞文琴等著.分子筛与多孔材[M].北京:科学出版社,2004年第一版:145-148.
    [127]Rouquerol J,Avnir D,Fairbridge C W,et al.Recommendations the Characterization of Porous Solids[J].Pure & Appl.Chem.,1994,66(8):1739-1758.
    [128]Otsuka K,Wang Y,Nakamura M.Direct Conversion of Methane to Synthesis Gas Through Gas-Solid Reaction Using CeO_2-ZrO_2 Solid Solution at Moderate Temperature[J].Appl.Catal.A:Gen.,1999,183:317-324.
    [129]Trovarelli A,Zamar F,Llorea J,et al.Nanophase Fluorite-Structured CeO_2-ZrO_2Catalysts Prepared by High-Energy Mechanical Milling[J].J.Catal.,1997,169:490-502.
    [130]Yao H C,Yu Y F.Ceria in Automotive Exhaust Catalysts:I.Oxygen Storage[J].J.Catal.,1984,86:254-265.
    [131]Fally F,Perrichon V,Vidal H,et al.Modification of the Oxygen Storage Capacity of CeO_2-ZrO_2 Mixed Oxides after Redox Cycling Aging[J].Catal.Today,2000,59:373-386.
    [132]Jiang Q,Li T,Liu F.The Effect of Iodomethane on the Direct Synthesis of Dimethyl Carbonate[J].Cuihua Xuebao,1999,20(6):585-586.
    [133]Yong RJ,Catalyst for Making Dialkyl Carbonates[P].USP:6010976,2000.
    [134]江琦,冯景贤.吸水剂在碳酸二甲酯合成中的作用[J].化学世界,2000,41(10):533-535.
    [135]Choi J,Sakakura T,Sako T.Reaction of Dialkylthin Methoxide with Carbon Dioxide Relevant to Mechanism of Catalytic Carbonate Synthesis[J].J.Am.Chem.Soc.,1999,121:3793-3794.
    [136]Sakakura T,Choi J C,Saito Y.Synthesis of Dimethyl Carbonate from Carbon Dioxide:Catalysis and Mechanism[J].Polyhedron,2000,19:573-5761.
    [137]江琦,王书明.超细粒子催化剂作用下碳酸二甲酯的合成[J].微纳电子技术,2003,7-8:496-498.
    [138]Lopez E F,Escribano V S,Panizza M,et al.Vibrational and Electronic Spectroscopic Properties of Zirconia Powders[J].J.Mater Chem.,2001,11:1891-1897.
    [139]McBride J R,Hass K C,Poindexter B D,et al.Raman and X-ray Studies of Ce_(1-x)RE_xO_(2-y),where RE=La,Pr,Nd,Eu,Gd,and Tb[J].J.Appl.Phys.,1994, 76:2435-2441.
    [140]Sakakura T,Choi J C,Saito Y,et al.Metal-Catalyzed Dimethyl Carbonate Synthesis from Carbon Dioxide and Acetals[J].J.Org.Chem.1999,64:4506-4508.
    [141]Noyori R.Supercritical Fluids:Introduction[J].Chem.Rev.,1999,99(2):353-354.
    [142]汪文栋,林培琰.镨在三效催化剂中的作用[J].稀土,2000,21(4):34-37.
    [143]汪文栋,林培琰,孟明,等.用Pr修饰的(Ce_2Zr)O_2固溶体在三效催化剂中的作用[J].中国稀土学报,2002,20(3):265-269.
    [144]杨志柏,林培琰,汪文栋,等.以Nd改性CeO_2-ZrO_2固溶体助剂的研究[J].催化学报,2001,22(4):365-369.
    [145]陈敏,张培壮,黄志彬,等.高比表面超细铈锆钡粉体的制备[J].无机材料学报,2004,19(3):661-664.
    [146]Gu Y L,Shi F,Deng Y G.Ionic liquid as an Efficient Promoting Medium for Fixation of CO_2:Clean Synthesis of α-Methylene Cyclic Carbonates from CO_2and Propargyl Alcohols Catalyzed by Metal Salts under Mild Condition[J].J.Org.Chem.,2004,69:391-394.
    [147]Cai Q H,Zhang L,Shan Y K,et al.Promotion of Ionic Liquid to Dimethyl Carbonate Synthesis from Methanol and Carbon Dioxide[J].Chin.J.Chem.,2004,22(5):1-3.
    [148]Vincenzo C,Angelo N,Luigi L,et al.Heck Reaction in Ionic Liquids Catalyzed by a Pd-Benzothiazole Car-bene Complex[J].Tetrahedron Lett.,2000,41:8973-8976.
    [149]Carmichael A J,Eale M J,Holberg J D,et al.The Heck Reaction in Ionic Liquids:Amultiphasic Catalyst System[J].Org.Lett.,1999,1:997-1000.
    [150]Zhang Z F,Liu Z T,Liu Z W,et al.DMC Formation over Ce_(0.5)Zr_(0.5)O_2 Prepared by Complex-Decomposition Method[J].Catal.Lett.,2009,129:428-436.
    [151]Swatloski R P,Spear S K,Holbrey J D,et al.Dissolution of Cellose with Ionic Liquids[J]. J. Am. Chem. Soc., 2002,124(18): 4974-4975.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700