用户名: 密码: 验证码:
持续淋溶条件下有机酸对土壤磷素释放的影响及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着根际微生态系统研究的不断开展,有机酸的生态功能逐渐被人们所关注。模拟植物根系分泌有机酸,并探讨其对植物根际土壤中磷素的活化效果和活化机制,一直是植物营养和土壤化学领域的重要研究课题。虽然国内外已相继开展了一些相关研究,并且取得了一定的进展,但大部分研究结果是在间歇浸提方式下获得的,有关持续淋溶条件下有机酸对土壤磷素的活化过程、特征以及有机酸对土壤磷素迁移转化影响方面的研究仍然极少涉及,存在进一步探讨和拓展的空间。
     本文采用土柱淋洗持续淋溶的方法,研究了几种低分子量有机酸在不同条件下对供试土壤中磷素的持续释放特征、淋溶过程中有机酸自身、溶液pH值以及淋出液中Ca、Mg、Fe、Al的变化特征,分析了淋溶结束后土壤磷素的垂直分布情况及各形态磷的变化情况,并以实验室合成磷酸盐为材料,探讨了供试有机酸对五种人工合成磷酸盐的活化效应及活化途径。主要研究结论如下:
     1.持续淋溶条件下,不同种类有机酸对单一阳离子饱和状态下土壤磷素的持续活化能力不同。在相同浓度条件下,柠檬酸对土壤磷素的累积活化能力最强;草酸在浓度高时对磷素的活化能力可与柠檬酸相当,而在中、低浓度时则低于柠檬酸和乙酸;乙酸对土壤磷素的活化表现出较强的持续能力。
     2.持续淋溶条件下,有机酸浓度对有机酸持续活化土壤磷素的能力也不相同。不论浓度高低,柠檬酸对土壤磷素都表现出很强的的活化能力,草酸只有在高浓度条件下才表现出与柠檬酸相当的磷素活化能力,乙酸各处理则表现为相对低水平的持续活化。Elovich、权函数方程和抛物线扩散方程均可用来拟合有机酸淋溶下土壤磷素的释放过程,根据方程的相关参数a、b得出有机酸各处理中土壤磷素释放的初始瞬时速率大小顺序为:柠檬酸>草酸>乙酸,且有机酸对土壤磷的活化率随时间的延长而下降;三种有机酸均能增大土壤磷的相对扩散系数R,促进土壤磷素扩散行为。
     3.持续淋溶过程中有机酸所提供的酸度(以氢离子衡量)、有机酸与土壤的作用时间(以淋溶速度衡量)以及微生物的活动均可以对有机酸持续活化土壤磷素能力起到一定程度的影响。较低浓度有机酸持续淋溶条件下,柠檬酸、乙酸所提供的酸度有利于促进磷的释放,酸度的促进作用主要体现在淋溶中、后期,低浓度草酸由于受钙的影响其酸度作用并不显著;高流速持续淋溶条件下,柠檬酸与乙酸对土壤磷的活化量有所增加,而草酸处理未见显著变化;微生物的存在一定程度上减缓了三种有机酸对土壤磷素的持续活化作用,其中对柠檬酸的抑制作用最为明显。
     4.持续淋溶作用下,淋出液中各形态有机酸浓度均在不断变化,但最终趋于稳定。淋溶过程中淋出液中溶解态有机酸占总有机酸的比例相应增大,分解态有机酸所占比例减少,吸附态有机酸占总有机酸的比例并无规律性变化。在整个淋溶过程当中,溶解态有机酸在赋存形态中所占比例最大,但它与土壤磷素累积释放量并无显著相关关系,而吸附态和分解态有机酸可以分别与土壤累积释磷量达显著和极显著相关关系。
     5.持续淋溶过程中,随着磷素的活化,土壤中的Ca、Mg、Fe、Al也在不断释放。有机酸浓度越高,淋出液中的Ca、Mg、Fe、Al数量越多。就有机酸种类而言,柠檬酸促进各离子释放的能力与柠檬酸活化土壤磷素的能力呈现很好的一致性。草酸对Fe、Al的释放能力总体上优于柠檬酸。
     6.有机酸持续淋溶有助于土壤中磷素的下移,且高浓度有机酸可以加速土壤磷的迁移。在各形态磷素组分中,高浓度有机酸淋溶可以显著降低土壤NaOH-Pi和HCl-P的含量,说明高浓度有机酸有利于Fe、Al结合态磷酸盐和稳定性钙磷的释放,但即使是高浓度有机酸也很难活化Residual-P,有机酸持续淋溶对土壤有机磷的影响并无特定规律。
     7.五种合成磷酸盐中较易被活化的为Ca_2-P、Ca_8-P,其次为Al-P、Fe-P,Ca_(10)-P最不易活化。低分子量有机酸对合成磷酸盐的活化作用情况受有机酸浓度的影响,高浓度处理条件下有机酸对五种合成磷酸盐的活化能力顺序为草酸≥柠檬酸>乙酸,中浓度条件下则为柠檬酸≥草酸>乙酸,低浓度有机酸很难活化各合成磷源。陈化作用可以在一定程度上降低合成磷酸盐的有效性,草酸对合成磷源的活化能力受陈化作用的影响程度要小于柠檬酸和乙酸。
     8.柠檬酸对合成磷酸盐中Ca_2-P、Ca_8-P和Al-P的活化机理为质子和有机阴离子的共同作用,对磷酸铁中磷的释放主要源于有机酸根的活化,而对Ca_(10)-P活化则几乎完全依靠质子作用。高分子量的腐殖酸也可以促进五种人工合成磷酸盐中磷素的释放,且对三种钙磷的释放效果较好。
As the continuously development of root micro ecological system, the ecological function of organicacid has been gradually concerns. To simulate plant roots secreting organic acid, and to investigate theactivation and mechanism of organic acid on phosphorus release in plant rhizosphere is still an importantresearch subject of plant nutrition and soil chemistry field. Although some related researches have alreadycarried out both at home and abroad, and made some progress, most of the results were came from themethods of batch experiments. The effect of organic acid on the activation process of P release,characteristics and vertical migration and transformation of soil P under the continuous leaching conditionsis still limited, and so that there is more space for discussing and developing.
     In this article, adopted the method of continuous leaching of soil column leaching, studied the effect ofseveral low molecular weight organic acid on constantly release characteristics of soil P in differentconditions, and the variation characteristics of organic acid, the solution pH value and Ca, Mg, Fe, Al in theleachates, analyzed the vertical distribution and the variation of different P fractions after the soft leaching,disscussed the mobilization of five different synthetic phosphate compounds by organic acids and itsactivation pathway. The main research conclusions of this article was shown as follows:
     1. In the continuous leaching condition, the continuous activation ability of different kinds of organicacid on soil P in the single saturated cationic state is different. In the condition of same concentration, theaccumulated activation ability of citric acid on soil P is the most powerful; the activation ability of oxalicacid can be quite with citric acid in high concentration, while it is will below citric acid and acetic acid inthe middle and low concentration; continuous activation ability of acetic acid on soil P is stronger.
     2. In the continuous leaching condition, the effect of organic acid concentration on continuousactivation ability of organic acid on soil P is not same. No matter high concentration or low concentration,citric acid always show a strong activation ability on soil P, activation ability of oxalic acid be quite withcitric acid only in high concentrations, while activation ability of acetic acid is relatively low in anyconcentration conditions. Elovich, weight function equation and parabolic diffusion equation can fittingrelease process of soil P very well. in the organic acid leaching conditions, the size order of the initialinstantaneous release rate of soil P leaching with each organic acid is: citric acid> oxalic acid> acetic acid,and the activation rate of organic acid on soil P decrease with the extension of time; all the three organicacids can increase the relative diffusion coefficient R of soil phosphorus and all of them promote thediffusion behavior of soil P.
     3. In continuous leaching process, acidity provide by organic acid (measured on hydrogen ion), timeof organic acid reacted in soil (measure on leaching speed), and microbial activity can influence continuousactivation ability of organic acid on soil at some degree. In the condition of low concentration organic acidcontinued leaching, acidity a provide by citric acid and acetic acid can promote the release of P, thepromoting function of acidity mainly embodied in the leaching middle and late, role of acidity provide bylow concentration oxalic acid is not significant due to the influence of calcium oxalate; In high velocitycontinued leaching condition, activation quantity of soil P made by citric acid and acetic acid increase, while oxalic acid treatment has not significant change; microbial slow the continuous activation function ofthree organic acid on soil p at certain degree, and its inhibitory on citric acid is most obvious.
     4. In continuous leaching function conditions, the concentration of organic acid forms in drench liquidare changing, but eventually be stable. In leaching process, the proportion of solution state organic acid indrench liquid account total organic acid increases accordingly, the proportion of decomposition state reduce,the proportion of sorption state organic acids change irregular. In the whole leaching process, theproportion of dissolve state organic acid is biggest, but between it with accumulation release quantity ofsoil phosphorus no significant correlation, while sorption state and decomposition state organic acid withaccumulation release quantity of soil p is significant and very significant correlation respectively.
     5. In continuous leaching process, Ca, Mg, Fe, Al in soil are constantly released with the activation ofsoil P. The higher concentration of organic acid, the more of Ca, Mg, Fe, Al ion pour out. The releaseability promote by citric acid with its activation ability on soil P have very good consistency. Releaseability on Fe, Al of Oxalic acid better than citric acid in general.
     6. Organic acid continued leaching can promote phosphorus to move down in soil, and highconcentration organic acid can accelerate the transfer of soil phosphorus. In the form of phosphorus, highconcentration organic acid leaching can significantly reduce the content of NaOH-Pi and HCl-P, and thisshow that high concentration organic acids is beneficial to the release of Fe, Al combination state phosphateand calcium bound phosphorus, but even if high concentration organic acid is also still hard to activate theResidual-P, influence of organic acid continued leaching on soil organic P is no specific order.
     7. In Five kinds of synthetic phosphate, Ca_2-P and Ca_8-P is most easily activated, followed by Al-P,Fe-P, and Ca_(10)-P is the most difficult activated. Activation function of low molecular weight organic acidon synthesis phosphate affect by the concentration of organic acid, in high concentration processingconditions, the sequence of activation ability of the five types of synthesis phosphate is oxalic acid≥citricacid> acetic acid; under the middle concentration condition, the sequence is citric acid≥oxalate quartile>acetic acid, but low concentration organic acid is hard to activate the synthetic phosphorus source. Agingfunction can reduce the effectiveness of the synthesis phosphate to certain extent, the effect of agingfunction on activation function of oxalic acid on synthesis of phosphorus source is smaller than effect oncitric acid and acetic acid.
     8. The activation mechanism of citric acid on Ca_2-P, Ca_8-P and Al-P in synthesis phosphate is thecommon function of protons and organic anion, the release of phosphorus in iron phosphate mainly comesfrom the activation organic acid radical, and the activation of Ca_(10)-P is almost entirely depends on protonrole. High molecular weight humic acid can also promote the release phosphorus in the five kind syntheticphosphates, and all the three calcium bound phosphate can be well activited by humic acid.
引文
1.安卫红,张淑民.1991.石灰性土壤无机磷的分级及其有效性的研究.土壤通报,22(1):34-37.
    2.安志装,介晓磊,李有田,等.2002.合成磷源在石灰性潮土中的有效性及氮肥形态对其的影响.土壤学报,39(5):735-742.
    3.蔡道基,杨佩芝,龚瑞忠.1989.化学农药环境安全评价试验准则,北京:国家环境保护局.
    4.曹享云.1994.营养胁迫与根系分泌物.土壤学进展,22(3):27–33
    5.曹一平,崔健宇.1994.石灰性土壤中油菜根际磷的化学动态及生物有效性.植物营养与肥料学报,1:49-54.
    6.陈金海,李艳丽,王磊,等.2011.两种基于芦苇秸秆还田的改良措施对崇明东滩围垦土壤理化性质和微生物呼吸的影响.农业环境科学学报.30(2):307-315
    7.程传敏,曹翠玉.1996.干湿交替过程中石灰性土壤磷吸附和解吸的变化.土壤肥料,(1):12-17.
    8.单艳红,杨林章,沈明星,等.2005.长期不同施肥处理水稻十磷素在剖面的分布与移动.
    9.冯固,杨茂秋,白灯莎.1996.用32P示踪研究石灰性土壤中磷素的形态及有效性的变化.土壤学报,33(3):301-306.
    10.冯跃华,张杨珠.2002.土壤有机磷分级研究进展.湖南农业大学学报(自然科学版),28(3):259-264.
    11.冯跃华,张杨珠.2002.土壤有机磷分级研究进展.湖南农业大学学报(自然科学版),28(3):
    12.高超,张桃林,吴蔚东.2002.氧化还原条件对土壤磷素固定与释放的影响.土壤学报,39(4):542-549.
    13.顾益初,钦绳武.1997.长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性.土壤.(1):13-17.
    14.郭智芬,涂书新,李晓华,等.1997.石灰性土壤不同形态无机磷对作物磷营养的贡献.中国农业科学,30(1):26-32.
    15.郭智芬,徐书新.1997.石灰性土壤不同形态无机磷对作物磷营养的贡献.中国农业科学,30(10):26-32.
    16.何振立,袁可能,朱祖祥.1990.有机阴离子对磷酸根吸附的影响.土壤学报,27(4):377-384.和机理.环境化学.24(1):7-11.
    17.贺铁,李世俊.1987. Bowman-Cole土壤有机磷分组法的探讨.土壤学报,24(2):152-159.
    18.胡红青,贺纪正,李学垣.1997b.土壤中低分子量有机酸对磷吸附的影响.迈向21世纪的土壤与植物营养科学.中国农业出版社,112-115.
    19.胡红青,贺纪正,李学垣,等.1997a.有机酸对酸性土壤吸附磷的影响.华中农业大学学报.
    20.胡红青,廖丽霞,王兴林.2002.低分子量有机酸对红壤无机态磷转化及酸度的影响.应用生态学报.13(7):867-870.
    21.胡红青.1994.有机酸影响酸性土壤与铝氧化物表面磷吸附-解吸的条件和机理.武汉.华中农业大学.
    22.黄庆海,李茶苟,赖涛.2000.长期施肥对红壤性水稻十磷素累积与形态分异的影响[J].土壤与环境,9(4):290-293.
    23.黄绍敏,宝德俊,皇甫湘荣,等.2006.长期施肥对潮土土壤磷素利用与积累的影响.中国农业科学,39(1):102-108.
    24.蒋柏藩,顾益初.1989.石灰性土壤无机磷分级体系的研究.中国农业科学,22(3):58-66.
    25.来璐,郝明德,彭令发.2003.黄土旱塬长期施肥条件下土壤磷素变化及管理.水土保持研究,10(1):68-70.
    26.李博文.1994.有机物料和有机磷组分对潮土磷酸酶活性的影响.河北农业大学学报,17(4):54-58.
    27.李博文.1994.有机物料和有机磷组分对潮土磷酸酶活性的影响.河北农业大学学报,17(4):54-58.
    28.李成保,徐仁扣,肖双成.2005.几种有机酸对土壤中磷活动性的增强效应.土壤学报,42(3):508-512.
    29.李和生,马宏瑞,赵春生.1998.根际土壤有机磷的分组及其有效性分析.土壤通报,29(3):116-118.
    30.李淑玲.1998.对碳酸钙与物理粘粒的固磷数量及固磷强度的探讨.宁夏农林科技.4:17-19.
    31.李孝良,于群英,陈世勇,等.2001.土壤无机磷形态生物有效性研究.安徽农业技术师范学院学报,15(2):17-19.
    32.李絮花.2003.23年肥料定位试验0-100cm土壤剖面中各形态磷之间的关系研究.水土保持学报,17(3):48-50.
    33.李燕丽,李博文,刘微,等.2011.有机酸淋洗对土壤Cd纵向迁移及有效性的影响.水土保持学报.25(1):34-38.
    34.梁玉英,黄益宗,孟凡乔,等.2005.有机酸对菜地土壤磷素活化的影响.生态学报,25(5):1171-1177.
    35.林德喜,范晓峰,胡锋,等.2006.长期施肥后简育湿润均腐土中磷素形态特征的研究.土壤学报,43(4):605-610.
    36.林玉锁,薛家骅.1989.几种动力学方程用于描述土壤中锌吸持动力学特性的比较.南京农业大学学报,12(1):112-117.
    37.林治安,谢承陶,张振山,等.石灰性土壤无机磷形态、转化及有效性研究.土壤通报,1997,28(6):2742-76.
    38.刘海婷,赵阳,于瑞莲,等.2011.泉州市不同利用方式下土壤磷的吸附与解吸特性.生态学
    39.刘建玲,张福锁,谬文华.2001.不同品种小麦根际磷转化及VA菌根对小麦根际磷转化的影响.植物营养与肥料学报,7(1):23-30.
    40.刘建中,李振声,李继云.1994.利用植物自身潜力提高土坡中磷的生物有效性.生态农业研究,2:16-23.
    41.刘丽,梁成华,王琦,等.2009.低分子量有机酸对土壤磷活化影响的研究.植物营养与肥料学报,15(3):593-600.
    42.刘世亮,介晓磊,李有田,等.2002.不同磷源在石灰性土壤中的供磷能力及形态转化.河南农业大学学报.36(4):370-373.
    43.刘修才,莫淑勋.1985.土壤中有机酸比色法测定的研究.土壤学报,22(3):290-196.
    44.刘颐华.2005.我国与世界磷资源及开发利用现状.磷肥与复肥.20(5):1-5.
    45.刘毅,陈吉宁.2006.中国磷循环系统的物质流分析.中国环境科学.26(2):238-242.
    46.鲁如坤,1998.土壤-植物营养学原理和施肥.(第一版).北京:化学工业出版社,179-190.
    47.鲁如坤,等.1995.土壤积累态磷研究Ⅱ.磷肥的表观积累利用率.土壤,27(6):286-289.
    48.鲁如坤,时正元,钱承梁.1997.土壤积累态磷研究Ⅲ.几种典型土壤中积累态磷的形态特征及其有效性.土壤,(2):57-60.
    49.鲁如坤.2000.土壤农业化学分析方法.北京:中国农业科技出版社.
    50.陆文龙,王敬国,曹一平,等.1998c.低分子量有机酸对土壤磷释放动力学的影响.土壤学报.35(4):493-500.
    51.陆文龙,曹一平,张福锁.1999b.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报,10(3):379-382.
    52.陆文龙,曹一平,张福锁.2001.低分子量有机酸对不同磷酸盐的活化作用.华北农学报.16(1):99-104.
    53.陆文龙,王敬国,曹一平,等.1998.低分子量有机酸对土壤磷释放动力学的影响.土壤学报,35(4):493-500.
    54.陆文龙,张福锁,曹一平,王敬国.1999a.低分子量有机酸对石灰性土壤磷吸附动力学的影响.土壤学报,36(2):189-197.
    55.陆文龙,张福锁,曹一平.1998b.磷土壤化学行为研究进展.天津农业科学,4(4):1-7.
    56.陆文龙,张福锁,曹一平.1998a.低分子量有机酸对土壤磷的活化作用.中国农业大学学报,3(增刊):49-53.
    57.马敬.1997.磷胁迫下植物根系有机酸的分泌及其对土壤难溶性磷的活化.北京:中国农业大学,8-18.
    58.莫淑勋.1986.土壤中有机酸的产生、转化及对土壤肥力的某些影响.土壤学进展,(4):1-10
    59.慕平,张恩和,王汉宁,等.2012.不同年限全量玉米秸秆还田对玉米生长发育及土壤理化性状的影响.中国生态农业学报,20(3):291-296.
    60.聂艳丽.郑毅.林克惠.2002.根分泌物对土壤中磷活化的影响[J].云南农业大学学报,17(3):281-286.
    61.庞荣丽,介晓磊,谭金芳.2005.有机酸对不同磷源施入土壤后速效磷变化的影响.土壤肥料科学.21(12):250-253.
    62.庞荣丽,介晓磊,谭金芳.2006a.有机酸对合成磷源施入石灰性潮土后速效磷动态变化的影响.中国土壤与肥料,(6):33-40.
    63.庞荣丽,介晓磊,谭金芳.2006b.低分子量有机酸对不同合成磷源的释磷效应.河南农业科学.(1):64-67.
    64.秦瑞君,陈福兴.1996.低分子有机酸离子对降低土壤铝毒的作用.土壤肥料,(5):12-14.
    65.秦胜金,刘景双,王国平,等.2007.三江平原不同土地利用方式下土壤磷形态的变化.环境科学,28(12):2777-2782.
    66.曲东,尉庆丰,张英莉.1994.酸性水对土娄土无机磷形态的影响.现代土壤科学研究,北京:中国农业科技出版社,279~281.
    67.曲东,尉庆丰,周建军.1996.有机酸对石灰性土壤磷素的活化效应.西北农业大学学报.24(1):101-103.
    68.邵煜庭,甄清香.1991.灌漠土磷素形态及其有效性的研究.中国农业科学,24(6):51-57.
    69.邵煜庭,甄清香.1991.灌漠土磷素形态及其有效性的研究.中国农业科学,24(6):51-57.
    70.沈宏,施卫明,王校常,等.2001.不同作物对低磷胁迫的适应机理研究[J].植物营养与肥料学报,7(2):172-177.
    71.沈宏,严小龙.2002.低磷和铝毒胁迫条件下菜豆有机酸的分泌与累积.生态学报,22(3):387-394.
    72.沈乒松,张鼎华.2005.酸性土壤无机磷研究进展.福建林业科技,32(1):75-78.
    73.沈仁芳,蒋柏藩.1992.石灰性土壤无机磷的形态分布及其有效性.土壤学报,29(1):80-86.
    74.沈仁芳,蒋柏藩.1992.石灰性土壤无机磷的形态分布及其有效性.土壤学报,29:80-86.
    75.沈仁芳,蒋柏藩.1992.石灰性土壤无机磷的形态分布及其有效性.土壤学报,29:80-86
    76.史瑞和.江苏省几种土壤磷素状况和磷肥肥效.土壤学报,1962,10:347-379.
    77.宋金凤,崔晓阳,王政权.2011.低分子有机酸对暗棕壤P、Fe、K有效性及林木吸收的影响.水土保持学报,25(1):123-127.
    78.孙权.1995.碳酸钙在宁夏灌淤土磷吸附作用中的地位.宁夏农学院学报,16(2):26-29.
    79.孙羲,章永松.1992.有机肥料和土壤中的有机磷对水稻的营养效果.土壤学报,29(4):365-369
    80.陶俊法.2009.应正确定位我国磷矿资源的现状与前景—我国磷矿资源服务年限分析.磷肥与复肥.24(3):6-8.土壤学报,42(6):970-976.
    81.王光火,朱祖祥,袁可能.1989.红壤对磷吸附机理的初步研究.科技通报,5(4):31-35.
    82.王建林,陈家坊.1991.土壤中可变电荷表面磷的解吸特性.土壤学报,28(1):14-23.
    83.王建林,陈家坊.1991.土壤中可变电荷表面磷的解吸特性.土壤学报,28(1):14-23.
    84.王秋杰,寇长林,王永歧,等.1996.砂土供磷特性及磷肥效应的研究.土壤学报,33(4):366-372.
    85.王树起,韩晓增,乔云发,等.2009.低分子量有机酸对大豆根系形态和磷素吸收积累的影响.大豆科学,28(2):210-216.
    86.王树起,韩晓增,乔云发,王守宇,严君,李晓慧.2009b.低分子量有机酸对大豆根系形态和磷素吸收积累的影响.大豆科学,28(2):210-216.
    87.王树起,韩晓增,严君,李晓慧,乔云发.2009a.低分子量有机酸对大豆磷积累和土壤无机磷形态转化的影响.生态学杂志,28(8):1550-1554.
    88.王新民,侯彦林,李见云.2004.夏玉米和冬小麦秸秆对石灰性土壤磷吸附特性及磷素形态的影响.土壤通报,35(2):177-180.
    89.王旭东等.1997.有机磷在娄土中组成变异的研究.土壤肥料,5:16-18
    90.王旭东等.1997.有机磷在娄土中组成变异的研究.土壤肥料,5:16-18
    91.王艳玲,何园球,李成亮.2007.柠檬酸对红壤磷的持续活化效应及其活化机理的探讨.土壤学报,44(1):130-136.
    92.王永和,曹翠玉.1993.有机肥料对石灰性土壤供磷特性的影响.土壤通报,24(6):256-258.
    93.王永和,曹翠玉.1993.有机肥料对石灰性土壤供磷特性的影响.土壤通报,24(6):256-258.
    94.文方芳,李菊梅.2009.不同农田管理措施对土壤有机磷影响的研究进展.中国土壤与肥料,(3):10-16.
    95.肖艳,张怀文,王克武,等.2004.柠檬酸对土壤养分的活化及对作物吸收Fe、P的影响.生态环境,13(4):638-640.
    96.邢素芝,汪建飞,项巧玲.2006.柠檬酸对土壤磷释放与吸附的影响.安徽科技学院学报,20(3):8-11.
    97.徐慧敏,徐福利,李宏智,王渭玲.2009.低分子有机酸对辣椒生长发育及叶片活性氧代谢的影响.西北农业学报,18(3):213-217.
    98.徐阳春,沈其荣,茆泽圣.2003.长期施用有机肥对土壤及不同粒级中有机磷含量与分配的影响.土壤学报,40(4):593-598.
    99.徐阳春,沈其荣,茆泽圣.2003.长期施用有机肥对土壤及不同粒级中有机磷含量与分配的影响.土壤学报,40(4):593-598.
    100.徐轶群,熊慧欣,赵秀兰.2003.底泥磷的吸附与释放研究进展.重庆环境科学.25(11):147-149.
    101.于天仁.1996.可变电荷土壤的电化学.北京:科学出版社,9-13.
    102.宇万太,陈欣,,张璐.1997.磷肥低量施用制度下土壤磷库的发展变化:土壤总磷库和有机、无机磷库.土壤学报,33(4):373-379
    103.袁东海,张孟群,高士祥,等.2005.几种粘土矿物和粘粒土壤吸附净化磷素的性能杂志,30(6):1114-1118.
    104.张崇玉,关勤农.2004.柠檬酸对石灰性土壤磷的释放效应.干旱地区农业研究,22(2):17-19.
    105.张恩和,黄高宝,黄鹏,等.1999.不同供磷水平下粮豆间套种植对根系分布和根际效应的影响[J].草业学报,8(3):35-38,60.
    106.张福锁,曹一平.1992.根际动态过程与植物营养.土壤学报,29(3):239-250.
    107.张教林,陈爱国.1999.热带胶园土壤磷素形态和生物有效性.土壤与环境,8(4):284-286.
    108.张漱茗,于淑芳.1992.石灰性土壤中磷形态和有效性的研究.土壤肥料,(3):1-4.
    109.张为政,陈魁卿.1988.有机肥对土壤有机磷组分及其有效性的影响.东北农业大学学报,19(2):112-117.
    110.张为政.1991.土壤磷组分的通径分析及其相对有效性.土壤学报,28:417-424.
    111.张为政.1991.土壤磷组分的通径分析及其相对有效性.土壤学报,28:417-424.
    112.张亚丽,沈其荣,曹翠玉.1998.有机肥对土壤有机磷组分及生物有效性的影响.南京农业大学学报,21(3):59-63.
    113.张志剑,王光火.1999.嘉兴地区水稻土磷素状况与环境效应评估.科技通报,15(5):377-381.
    114.章明奎.2007.砂质土壤磷素的组成特点与释放规律研究.土壤通报,38:268-272.
    115.章永松,林成永.2002.淹水对两种水稻土氧化层和还原层铁氧化物转化和磷吸附的影响(英文).浙江大学学报(农业与生命科学版),28(5):485-491.
    116.章永松,林成永.2002.淹水对两种水稻土氧化层和还原层铁氧化物转化和磷吸附的影响(英文).浙江大学学报(农业与生命科学版),28(5):485-491.
    117.章永松,林咸永,罗安程.1998.有机肥(物)对土壤中磷的活化作用及机理研究.Ⅱ.有机肥(物)分解产生的有机酸及其对不同形态磷的活化作用.植物营养与肥料学报,4(2):151-155.
    118.赵小蓉,林启美,李保国.2003.微生物溶解磷矿粉能力与pH及分泌有机酸的关系.微生物学杂志,(23):35-37.
    119.赵晓齐.1991.有机肥对土壤磷素吸附的影响.土壤学报,28(1):7-l3.
    120.周宝库,张喜林.2005.长期施肥对黑土磷素积累、形态转化及其有效性影响的研究[J].植物营养与肥料学报,11(2):143-147.
    121.周广业,阎龙翔.1993.长期施用不同肥料对土壤磷素形态转化的影响.土壤学报,30(4):443-446.
    122.周广业,阎龙翔.1993.长期施用不同肥料对土壤磷素形态转化的影响[J].土壤学报,30(4):443-446.
    123.朱利群,张大伟,卞新民.2011.连续秸秆还田与耕作方式轮换对稻麦轮作田土壤理化性状变化及水稻产量构成的影响.42(1):81-85.
    124. Ae N J, Arihara K, Okada T, et al.1990. Phosphorus uptake by pigeon pea and its role in croppingsystem of the India subcontinent. Science,248:477-480.
    125. Afif E, Matar A, Torrent J.1993. Availability of phosphate applied to calcareous soils of West Asiaand North Africa. Soil Sci. Soc. Am. J.,57:756-760.
    126. Amer F, Buldin D R, Black C A, et al.1955. Characterization of soil phosphorus by anion exchangeresin adsorption and P32equilibraton. Plant Soil,6:391-408.
    127. Appelt H, Coleman N T, Pratt P F.1975. Interactions between organic compounds, minerals, and ions involcanic-Ash-Derived soils:ⅠAdsorption of benzoate: p-OH benzoate, salicylate, and phthalate ions.Soil Sci. Soc. Am. Proc.,39(4):623-627.
    128. Barrow N J.1984. Modeling the effects of pH on phosphate sorption by soils. J. Soil Sci.,35:283-297.
    129. Bertrand, Holloway R E, Armstrong R D, et al.2003. Chemical characteristics of phosphorus inalkalime soils from southern Australia. Australian Journal of Soil Research,41:61-76.
    130. Borggard O K, Jorgensen S S, Moberg J P, et al.1990. Influence of organic matter on phosphateadsorption by aluminium and iron oxides in sandy soils. J. Soil Sci.,41:443-449.
    131. Bowman R A, Cole C V.1978. Transformations of organic phosphorus substrates in soils as evaluatedby NaHCO3extraction. Soil Sci.,125:49-54.
    132. Chang S C, Jackson M L.1957. Fractionation of soil phosphorous in soil. Soil Sci.84:1334-1347.
    133. Chien S H, Clayton W R.1980. Application of Elovich equation to the kinetics of phosphate release andsorption in soils. Soil Sci. Soc. Am. J.,44:265-268
    134. David L J and Peter R D.1994. Role of root derived organic acids in the mobilization of nutrientsfrom the rhizosphere. Plant and Soil.166:247-257.
    135.Dinkelaker B, R mheld V, Marschner H.1989. Citric-acid excretion and precipitation of calciumcitrate in the rhizosphere of white lupin (Lupinus albus L.). Plant, Cell and Environment,12:285-292.
    136. Drever, JI, and LL Stillings.1997. The role of organic acids in mineral weathering. Colloids Surface A:120:167–81
    137. Earl K D, Syers J K, McLaughlin J R.1979. Origin of the effect of citrate, tartrate, and acetate onphosphate sorption by soils and synthetic gels. Soil Sci. Soc. Am. J.,43:674-678.
    138. Elkhatib E A, Hern J L.1988. Kinetics of phosphorus desorption from Appalachian soils. Soil Sci.,145:222-229.
    139. Enell A, Reichenberg F, Warfvinge P.2004. A column method for determination of leaching ofpolycyclic aromatic hydrocarbons from aged contaminated soil. Chemosphere,54(6):707-715.
    140. Fan T W, Lane A N, Pedler J.1997. Comprehensive analysis of organic ligands in whole root exudatesusing nuclear magnetic resonance and gas chromatography mass spectrometry. Anal. Biochem.,251:57-68.
    141. Fox T, N Comerford, W Mcfee.1990a. Phosphorus and aluminum release from a spodic horizonmediated by organic acids. Soil Sci,54:1763-1767.
    142. Fox T R, Comerford N S, McFee W W.1990b. Kinetics of phosphorus release from spodozols. SoilSci. Soc. Am. J.,56:290-294.
    143. Fox,T R.,1995. The influence of low-molecular-weight organic acids on properties and processes inforest soils. In: McFee, W W, Kelly J M(Eds.), Carbon forms and functions in forest soils. SoilScience Society of America, Madison.pp.43-62.
    144. Fox T R,1992b. Comerford N B. Influence of oxalate loading on phosphorus and aluminumsolubility in spodosols. Soil Sci Soc,56:290-294.
    145. Gerke J, Meyer U.1995. Phosphate acquisition by red clover and black mustard on a humic podzol. J.Plant Nutri.,18:2409-2429.
    146. Gerke J.1992a. Phosphate, iron, and aluminium in the soil solution of three different soils in relationto varying concentration of citric acid. Z. Pflanzenernahr. Bodenk.,155:339-343.
    147. Gerke J and Hermann R.1992b. Adsorption of orthophosphate to humic-Fe-complexes and toamorphous Fe-oxide.Z.Pflanzenernahr Bodenk.155:233-236.
    148. Geelhoed J S, Mous S L J, Van Riemsdijk W H.1998. Competitive interaction between phosphate andcitrate on goethite. Environ. Sci. Technol.,32:2119-2123.
    149. Gerke J.1994. Kinetics of soil phosphate desorption as affected by citric acid. J. Plant Nutri. Soil,157:17-22.
    150. Gottschalk G (1986). Bacterial Metabolism, second ed. Springer-Verlag, New York.
    151. Guo F, Yost R S, Hue N V, et al.2000. Changes in phophorus fractions in soils under intensive plantgrowth. Soil Sci. Soc. Am. J.,64:1681-1689.
    152. Haynes R J, Shift R S.1985. Effect of liming and air-drying on the adsorption of phosphate by some acidsoils. J. Soil Sci.,36:513-521.
    153. Hedley M J, Stewart J W B, Chauhan B S.1982. Changes in inorganic and organic soil phophorusfractions induced by cultivation practices and by laboratory incubation. Soil Sci. Soc. Am. J.,46:970-975.
    154. Hu H Q, He J Z, Li X Y, Liu F.2001. Effect of several organic acids on phosphate adsorption byvariable charge soils of central China. Environment international26:353-358.
    155. Ivanoff D B, Reddy K R, Robinson S.1998. Chemical fractionation organic phosphorus in selectedhistosols. Soil Sci.,163:36-45.
    156. Iyamuremye F, Dick R P, Baham J.1996. Organic amendments and phosphorus dynamics Ⅱ.Distribution of soil phosphorus fractions. Soil Sci.,161:436-443.
    157. Jian Y, YangW Q, Zhang J, et al.2008. Investigation and assessment on soil residual pesticidecontamination in the Mountain-Hilly Transitional Zone: A case from Wutongqiao District in Si-chuan.Scientia Agricultura Sinica,41(7):2048-2054(in Chinese).
    158. Jones D L.1998. Organic acid in the rhizosphere-a critical review. Plant Soil,205:25-44.
    159. Jones D L, Kochian L V.1996. Critical-evaluation of organic-acid mediated iron dissolution in therhizosphere and its potential role in root iron uptake. Plant Soil,180:57-66.
    160. Jones DL, Dennis PG, Owen AG, et al.2003. Organic acids behavior in soils-misconceptions andknowledge gaps. Plant Soil,248:31-41.
    161. Johnson J F, Vance C P, Allan D L.1996. Phosphorus deficiency in Lupinus albus: Altered lateral rootdevelopment and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol.,112:31-41.
    162. Kastelan Macan,M&Petrovic,M.1996. The role of fulvic acids in phosphorus sorption and releasefrom m ineral particles.Wat.Sci.Tech,.Vo1.34.No7-8, PP.259-265.
    163. Kedziorek M A M, Dupuy A, Bourg A C M.1998. Leaching of Cd and Pb from a polluted soil duringthe percolation of EDTA: Laboratory column experiments modeled with a non-equilibriumsolubilization step. Environmental Science and Technology,32(11):1609-1614.
    164. Khasawneh F E, Sample E C, Kamprath E J.1980. World phosphate reserves and resources.In:Madison, Wis. The role of phosphorus in agriculture. American Society of Agronomy,1-17.
    165. Kochian LV.1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Ann. Rev. Plant.Physiol. Plant.Mol. Biol.,46:237-260
    166. Kpomblekou A K, Tabatabai M A.2003. Effect of low-molecular weight organic acids on phosphorusrelease and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agric. Ecosyst. Environ.,100:275–284.
    167. Krzyszowska A J, Blaylock M J, Vance G F.1996. Ion-chromatographic analysis of low molecularweight organic acids in spodosol forest floor solutions. Soil Sci. Soc. Am. J.,60:1565-1571.
    168. Kumar Vijay, Gilkes R J, Bolland M D A.1992. Phosphate fertilizer compounds in soils: theirinfluence on the relationship between plant yield and soil test value. Commun. Soil Scil. Plant Anal,23(13,14):1461-1477.
    169. Larsen S and Widdowson A E.1970. Evidence of dicalcium phosphate preciptation in a calareous soil.Soil Sci.21:364-367.
    170. Lookman R, Freese D, Merckx R, et al. Long-term kinetics of phosphate release from soil.1995.Environ. Sci. Technol.,29:1569-1575.
    171. Lopej-Hernandez D, Burnham C P.1974. The effects of pH on phosphate adsorption in soils. J. Soil Sci.,25:207-274.
    172. Margarita B, Escudey M, Galindo G, et al.2006. Comparison of extraction procedure used indetermination of phosphorus species by31P-NMR in Chilean volcanic soils. Communications in SoilScience and Plant Analysis,37:1553-1569.
    173. Marschner H.1995. Mineral nutrition of higher plants. Academic Press, London.
    174. McDowell R W, Sharpley A N.2003. Phosphorus solubility and release kinetics as a function of soil testP concentration. Geoderma,112:145-154.
    175. Michel A B, Pedro A S.1996. Soil phosphorus movement and budget after13years of fertilizedcultivation in the Amazon basin. Plant and Soil,184(1):23-31.
    176. Millet M, Wortham H, Sanusi A, et al.1997. Low molecular weight organic acids in fogwater in anurban area: Strasbourg (France). Sci. Tot. Environ.,206:57-65.
    177. Moknuge U.1975. The influence of pH on the adsorption of phosphate by soils from the Ocuinea andSudan savannah zones of Nigeria. Soil Sci. Soc. Am. Proc.,39:1100-1102.
    178. Monika A M K, Alain D, Alain C M B, et al.1998. Leaching of Cd and Pb from a polluted soil duringthe Percolation of EDTA: Laboratory column experiments modeled with a non-equilibriumsolubilization step. Environ. Sci.Technol.32:1609-1614.
    179. Murrmann R P, Peech M.1969. Effect of pH on labile and soluble phosphate in soils. Soil Sci. Soc.Am. Proc.,33:205-209.
    180. Parfitt R L.1978. Anion adsortion by soil and soil material. Adv. Agron.,30:1-50.
    181. Parfitt R L.1977. Phosphate adsorption on an oxisol. Soil Sci. Soc. Am. Proc.,41:1064-1067.
    182. Petersen G W,Corey R B.1966. A modified Chang and Jackson procedure for routine fractionation ofinorganic soil phosphatesv.Soil sci.Soc.Am.proc.30:563-565.
    183. Pavlatou A, Polyzopoulos N A.1988. The role of diffusion in the kinetics of phosphate desorption: therelevance of the Elovich equation. J. Soil Sci.,39:425-436.
    184. Rao A S, Reddy K S, Takkar P N.1996. Residual effects of phosphorus applied to soyabean or wheatin a soyabean-wheat cropping system on a typic haplustert. J. Agr. Sci.,127(3):325-330.
    185. Raven K P, Hossner L R.1994. Soil phosphorus desorption kinetic and its relationship with plant growth.Soil Sci. Soc. Am. J.,58:416-423.
    186. Ryan PR, Delhaize E, Randall PJ.1995. Malate efflux from root apices and tolerance to aluminum arehighly correlated in wheat. Aust. J. Plant Physiol.,122:531-536
    187. Samadi A, Gilkes R J.1998. Phosphorus transformations and their relationships with calcareous soilproperties of sourthern Western Australia. Soil Sci. Soc. Am. J.,63:809-815.
    188. Schwab AP, He Y, Banks MK (2005). The influence of organic ligands on the retention of lead in soil.Chemosphere,61(6):856-866.
    189. Schwab A P, Zhu D S, Banks M K. Influence of organic acids on the transport of heavy metals in soil.Chemosphere2008,72:986-994.
    190.Shariatmadari H, Shirvani M, JafariA.2006. Phosphorus release kinetics and availability in calcareoussoils of selected arid and semiarid toposequences. Geoderma,132:261-272.
    191. Sharpley A N.1983. Effects of soil properties on the kinetics of phosphorus desorption. Soil Sci Soc.Am. J.,47:462-467.
    192. Sharpley A N.1985. Phosphorus cycling in unfertilized and fertilized agricultural soils. Soil Sci SocAm J,49:905-911.
    193. Shen AL, Li XY, Kanamori T, et al.1997. Low-molecular-weight organic acids in two soils incubatedwith plant residues under different moisture conditions:Ⅰ.Aliphatic acids. Pedosphere,7(1):79-86.
    194. Shen Y, Strom L, Jonsson J, et al.1996. Low-molecular-organic acids in the rhizosphere soil solutionof beech forest (Fagus sylvatica L.) cambisols determined by ion chromatography using supportedliquid membrane enrichment technique. Soil Biol. Biochem.,28:1163-1169.
    195. Singh B B, Gilkes R J.1991. Phosphorus sorption in relation to soil properties for the major soil typesof Southwestern Australia. Aust. J. Soil Res.,29:603-618.
    196. Schwartz S M, J.E Varner,and W P Martin,1954. Soil. Sci. Soc. Am. Proc.18,174.
    197. Solis P, Torrent J.1989. Phosphate sorption by calcareous Vertisols and Inceptisols of Spain. Soil Sci.Soc. Am. J.,53:456-459.
    198. Solomon D, Lehmann J, Mamo T, et al.2002. Phosphorus forms and dynamics as influenced by landuse changes in the sub-humid Ethiopian highlands. Geoderma,105:21-48.
    199. Staunton S, Lerince F.1996. Effect of pH and some organic anions on the solubility of soil phosphate:implications for P bioabailability. European Journal of Soil Science,47:231-239.
    200. Stevenson FJ.1967. Organic acids in soil. In: Mclaren AD,Peterson GH. eds. Soil Biochemistry. NewYork: MarcelDekker,119-146.
    201. Strobel BW.2001. Influence of vegetation on low-molecularweight carboxylic acids in soilsolution─A review.Geoderma,99:169-198.
    202. Str m L.1990. Dissolution of feldspars in the presence of natural organic solutes. J. Soil Sci.,41:359-369.
    203. Susana Zubillag A M, Lopez camelo L G.1999. Changes phosphorus fractions in an aentisol withineralization and exhaustion processes. Revista dela Facultad de Agronomia,19(3):229-233.
    204. Syers J K, Iskander I K.1981. Soil phosphorus chemistry. Modeling Wastewater Reservation. E. and F.N. Spon Ltd, New York,571-599.
    205. Tiessen H, Moir J O.1993. Characterization of available P by sequential extraction. In: Carter MR ed.Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, Florida,75-86.
    206. Traina S J, Sposito G, Hesterberg D, et al.1986. Effects of pH and organic acids on orthophosphatesolubility in an acidic, montmorillonitic soil. Soil Sci. Sco. Am. J.,50:45-52.
    207. Trains S J, Sposito G,Bradford G R et al.1987. Kinetic study of citrate effects on orthophophatesolubility in an acidic montmorillonitic soil. Soil Sci Soc A J.,12(6):1483-1487.
    208. Verma L P, Singh A P, Srivaslva M K.1991. Relationship between Olsen P and inorganic P fractions insoils. J. Indian Soc. Soil Sci,39:361-362.
    209. Voegelin A, Barmettler K, Kretzschmar R.2003. Heavy metal release from contaminated soils:Comparison of column leaching and batch extraction results. Journal of EnvironmentalQuality,32(3):865-875.
    210. Wang G P, Liu J S, Wang J D, et al.2006. Soil phosphorus forms and their variations in depressional andriparian freshwater wetlands (Sanjing Plain, Northeast China). Geoderma,132:59-74.
    211. White R E.1983. The enigna of pH-p solubility relationships in soil. In phosphorus: indispensibleelement for improved agricultural production proceedings of the Third International Congress onphosphorus compounds. Institute Mondial du phosphate.
    212. Widdel F, Schnell S, Heising S, et al.1993. Ferrous iron oxidation by anoxygenic p hototrophicbacteria. Nature,362:834-836.
    213. Willett I R, Higgins M L.1978. Phosphorus sorption by reduced and reoxidized rice soils. Aust. J. SoilRes.,16:319-326.
    214. Zhang T C, Mohamed F D, Germana S N, et al.2007. Phosphorus fate and transport in soil columnsloaded intermittently with influent of high phosphorus concentrations. Water EnvironmentResearch,79(11):2343-2351.
    215. Zhang T Q, Mackenzie A F.1997. Changes of phosphorus fractions under continuous corn production ina temperate clay soil. Plant and soil,192:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700