用户名: 密码: 验证码:
高地应力软岩隧道围岩压力研究和围岩与支护结构相互作用机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道支护结构受力的大小是隧道结构设计、施工的一个基本依据。岩体开挖后受扰动而产生应力重分布过程极其复杂,尤其是在不良地质环境下更甚。国内外工程中,很多隧道遇到了挤压大变形问题,如奥地利的陶恩隧道(Tanern)、阿尔贝格隧道(Arlberg)和日本的惠那山隧道(Enason),国内的家竹箐隧道、乌鞘岭隧道、新关角隧道及木寨岭隧道等,都具有围岩软弱、地应力较高、变形大且持续时间长等特点。在高地应力软弱围岩条件下修建隧道,由于软岩本身自稳能力差、塑性变形大,且具有明显的流变性,如对围岩变形、应力变化规律不了解或支护结构不合理,往往会发生过量变形而使隧道坍塌。因此,对于地质条件差、地应力为高和极高的软弱围岩,其结构受力大小与受力特征对隧道结构安全尤为重要。
     国内外许多专家学者已对高地应力和软弱围岩等问题做了大量研究工作,但在地下工程围岩压力研究中仍然存在不少问题。比如,现有本构关系对高地应力软岩尚不具有广泛代表性,开挖应力释放率很难在高地应力软岩隧道中应用等。针对目前研究中存在的问题,结合工程中出现的问题和实际需求,本文以高地应力软弱围岩条件下的关角隧道、木寨岭隧道等工程为背景,通过地应力现场实测、理论研究与数值分析,对高地应力软岩隧道围岩压力和围岩与支护结构相互作用机理进行了研究与应用。主要进行了以下几方面的研究工作:
     (1)地应力是隧道围岩压力产生的根本来源。为获得高地应力分布规律,本文在中国地应力场分布规律统计分析基础上,统计得到我国青藏地区平均水平地应力与垂直地应力的比值随深度变化的分布曲线。从而,总结出了青藏地区地应力分布规律与特点,为判别该区域地应力测试结果的合理性提供了依据。该规律在兰渝线天池坪隧道和两水隧道地应力现场实测中得到了应用。
     (2)在构造应力复杂的地区,只能通过实地量测获得原始地应力。本文采用水压致裂法进行了兰渝线天池坪隧道和两水隧道地应力现场实测。在此基础上,分析了隧道所处的原始高地应力水平及隧道开挖后的地应力分布规律;采用改进的BP神经网络进行了木寨岭、天池坪等隧道的宏观地应力场拓展分析,获得了地应力的宏观分布形态与特点。
     (3)针对现有本构关系对高地应力软岩尚不具有广泛代表性和卡斯特耐尔公式无法直接计算出在塑性区范围不同发展过程对应的塑性形变压力的问题,以原岩应力和隧道容许位移(或支护后实际量测位移)为出发点,采用岩体软化“直-曲-直”模型,推导了隧道形变压力计算公式。本文称为“卡斯特耐尔扩展公式”。通过经典实例分析和在木寨岭隧道高地应力V级软岩段成功应用,验证了该公式的正确性和实用性。
     (4)由于高地应力软岩隧道中存在的开挖面通过之前的监测位移很难获得和实测位移存在缺失等问题,基于原岩应力和实测位移曲线的开挖应力释放率模型无法应用于高地应力软岩隧道。本文利用台阶法开挖中存在的空间效应和改进的BP人工神经网络模型预测位移以及多项式拟合预测方法,提出了两类在高地应力软弱围岩条件下使用开挖应力释放率模型的方法。通过在关角隧道和木寨岭隧道大战沟斜井高地应力软岩地段的应用,探讨了其结构荷载与应力释放规律,其结果得到三维数值分析的验证。
     (5)为验证卡斯特耐尔扩展公式合理性,基于参数全过程变化的应变软化FLAC3D三维数值模型,模拟了木寨岭隧道正洞高地应力软岩地段隧道开挖支护过程。三维数值结果与卡斯特耐尔扩展公式计算结果吻合,进一步证明了该公式在高地应力软弱围岩条件下应用的可靠性、适用性。
     本文在统计青藏地区地应力分布规律基础上,结合现场实测和拓展分析,准确获得高地应力软岩隧道位置原始地应力,为研究围岩压力和围岩与支护结构相互作用机理提供依据。在原始地应力基础上,结合理论分析和数值仿真,获得了高地应力软岩隧道的围岩压力计算方法和围岩与支护结构相互作用机理。本文主要创新点体现以下四个方面。
     (1)首次统计分析得到了我国青藏地区平均水平地应力与垂直地应力的比值随深度变化的分布曲线,总结了青藏地区地应力分布规律与特点,为判别该区域地应力测试结果的合理性提供了依据,也可为该地区的深埋地下工程勘察、设计和施工提供参考。
     (2)针对高地应力条件下软岩隧道大变形问题,引入岩体软化“直-曲-直”模型,推导出适用于高地应力软岩隧道基于原岩应力和隧道位移的隧道形变压力计算公式。
     (3)针对高地应力软岩隧道中存在的开挖面通过之前的监测位移很难获得和实测位移存在缺失等问题,提出了两类在高地应力软弱围岩条件下使用开挖应力释放率模型的方法。
     (4)在三维数值分析中,为反映软弱围岩参数随坑道变形而不断变化的特点,引入参数全过程变化的应变软化模型,利用FLAC3D软件验证了卡斯特耐尔扩展公式应用于高地应力软岩隧道的可靠性和适用性。
     本文在高地应力软岩隧道围岩压力和围岩与支护结构相互作用机理方面获得的这些新的认识与规律,可为高地应力软岩隧道的设计与施工提供重要的理论依据,更期望能够为高地应力软岩隧道的研究起到一定的推动作用。
The supporting structure load is a very important basis for the design and construction of tunnels. The stress redistribution process is very complicated due to the rock mass excavation, and it would be more complicated in bad geological environment. The large extrusional deformation problems were met in many domestic and overseas tunnels, such as Tanern tunnel, Arlberg tunnel in Austria, Enason tunnel in Japan, Jiazhujing tunnel, Wushaoling tunnel, new Guanjiao tunnel and Muzhailing tunnel in China. There are many common characters existed in these tunnels such as weaknesses, higher geostress, large deformation and long duration, etc. If the rules of surrounding rock deformation and stress redistribution are not understood or the supporting structure is unreasonable, excessive deformation and even collapse would be happened in the weak rock tunnels with high geostress because of poor self-stability, large plastic deformation and the obvious rheological properties for the tunnels in weak rock. Therefore, the structural loads and characteristics are especially important for the tunnels in the weak rock tunnels with high geostress.
     There are still problems existed in underground engineering calculation theory, even though much worch has been done for the weak rock tunnels with high geostress. For example, the existing constitutive relationships can't be applied in all conditions, especially for the weak rock with high geostress. Kastner formula can't calculate the plastic deformation pressures corresponding to the different deformation process. The study of this paper was done based on the problems existed in the current research, the practical engineering problems and the actual demand. Based on the weak rock tunnels with high geostress such as Guanjiao tunnel and Muzhailing tunnel, the surrounding rock pressure and interaction mechanism between surrounding rock and supporting structure in the weak rock tunnels with high geostress were researched and applied through the geostress in-situ measurement, theoretical research and numerical analysis. The main works of this paper can be described as the following items.
     (1) The surrounding rock pressure is based on the geostress. The geostress rules of qinghai-tibet areas were summarized through the statistical analysis of in-situ measurement results. These rules can be applied to judge the rationality of the in-situ geostress field measurement of qinghai-tibet areas. The geostress in-situ measurement results of Tianchiping tunnel and Liangshui tunnel were judged by the geostress distribution rules of qinghai-tibet areas.
     (2) If the tectonic geostress is very complex, the only method to get original geostress is the in-situ measurement. In this paper, the geostress data of Tianchiping tunnel and Liangshui tunnel in LanYu railway line were in-situ measured using the hydraulic fracturing method. Based on the in-situ measurement data, the high geostress level and stress distribution rules around tunnel after excavation were analyzed. The macro distributions of Muzhailing tunnel and Tianchiping tunnel were analyzed by the improved BP network.
     (3) Based on the problems existed in the current research, the tunnel deformation pressure formula were derived adopting the rock mass softening "straight-curve-straight" model and considering the original geostress and tunnel allow displacement (or the actual measurement displacement) as a starting point. In this paper, this formula is called "Kastner extension formula". The correctness and practicability of the formula were validated by a classic example analysis and the successfully applicaion in Muzhailing tunnel.
     (4) The algorithmic model of the excavation stress release ratio is based on the original geostress and the measured deformantion curve, but it can't be used in the weak rock tunnels with high geostress because of the two existing problems in the excavation. Based on the space effect existing in the excavation of tunnel and forecast methods of improved BP artificial neural network and polynomials, two kinds of methods were put forward for the model to be applied in the weak rock tunnels with high geostress. The two kinds of methods were used in actual tunnels. The rules of structure load and stress release in the weak rock section of GuanJiao tunnel and Muzhailing tunnel were discussed, and their results were also validated by3D numerical analysis.
     (5) In order to validate the rationality of "Kastner extension formula", the construction process in the weak rock section of Muzhailing tunnel was simulated by3D numerical analysis based on the strain soften model, in which the parameters of surrounding rock changes with strain. The3D numerical results were consistent with the results of "Kastner extension formula". The reliability and applicability of "Kastner extension formula" were proved that it can be used to calculate the deformation pressure of weak rock tunnels with high geostress.
     Based on the geostress statistical rule of the qinghai-tibet areas, the geostress distribution in the weak rock tunnels with high geostress can be got by the geostress in-situ measurement and continuation analysis. The original geostress is the basis of the study of surrounding rock pressure and interaction mechanism between surrounding rock and supporting structure. Based on the original geostress, the calculation methods and interaction mechanism between surrounding rock and supporting structure in the weak rock tunnels with high geostress were put forward combined with the theory analysis and numerical simulation. In this paper, four main research results were achieved as followings.
     (1) The geostress rules of qinghai-tibet areas were summarized for the first time. These rules can be applied to judge the rationality of the in-situ geostress field measurement of qinghai-tibet areas. These rules can also be refereced by the reconnaissance, the design and the construction of deep buried underground engineerings in qinghai-tibet areas.
     (2) According to the large deformation problems of the weak rock with high geostress, the tunnel deformation pressure formula, which can be used in weak rock tunnels with high geostress, were derived adopting the rock mass softening "straight-curve-straight" model.
     (3) Based on the two existing problems in the excavation, two kinds of methods were put forward for the algorithmic model of the excavation stress release ratio to be applied in the weak rock tunnels with high geostress.
     (3) To show the characteristic that the weak rock parameters would be changed during the rock deformation process, the strain soften model, in which the parameters of surrounding rock changes with strain, was adopted in the3D numerical analysis. The reliability and applicability of "Kastner extension formula" were proved that it can be used to calculate the deformation pressure for the weak rock tunnels with high geostress.
     Some new understanding and rules of the surrounding rock pressure and interaction mechanism between surrounding rock and supporting structure in the weak rock tunnels with high geostress were obtained in this paper. These results would become important theory basis for the design and construction of the weak rock tunnels with high geostress. These fruits can also be hoped to play a promotion role for the research of this area.
引文
[1]安全管理网.隧道施工安全技术管理http://www.safehoo.com/Essay/Build/201107/194105.shtml, 2011-07-29.
    [2]何满潮,景海河,孙晓明.软岩工程力学.北京:科学出版社,2002.
    [3]郭进京,韩文峰,梁收运.青藏高原东北缘岷县-武都地区构造地貌演化与高原隆升.中国地质,2006,32(2):383-392.
    [4]张志强,郑鸿泰.高地应力条件下隧道大变形的数值模拟分析.岩石力学与工程学报,2000,19(增):957-960.
    [5]赵德安,陈志敏,蔡小林等.中国地应力场分布规律统计分析.岩石力学与工程学报,2007,26(6):1265-1271.
    [6]李铁汉.高地应力梯度与岩体物理场.中国岩石力学与工程学会第四次学术大会论文集.北京:中国科学技术出版社,1996:657-663.
    [7]陶振宇.试论高地应力区的岩体特性.地下工程,1985,5-9.
    [8]郭志.高地应力地区岩体的变形特性.全国第三次工程地质大会论文选集.成都:成都科技大学出版杜,1988.
    [9]薛玺成,郭怀志,马启超.岩体高地应力及其分析.水利学报,1987,(3):52-58.
    [10]李协生.渔子溪一级水电站压力引水隧洞中岩爆问题的分析探讨.地下工程,1983,(10):1-4.
    [11]白世伟,朱维申,王可钧.在高地应力区与一个大型地下电站有关的若干岩石力学问题.岩石力学与工程学报,1983,2(1):33-39.
    [12]刘克远.二滩水电站枢纽区主要工程地质问题的研究.工程地质学报,1999,7(supp):64-77.
    [13]P. K. Kaiser, S. Maloney, N.R.Moegenstern. The Time-dependent Properties of Tunnel in Highly Stressed Roeks. In:Proc.5th cong. ISRM. A.A.Balkema,1983:329-335.
    [14]H.Wanger. Design and support of underground exeavation in high stressed rock, Keynotepaer. In: Proec.6th ISRM congress, Montreal,1987(3).
    [15]W. D. Ortepp, N.C. Gay. Performance of an experimental tunnel subjected to stresses ranging from 50 MPa to 230 MPa. In:Proc.4th symp. ISRM. A.A.Balkema,1984:337-346.
    [16]赵运臣,刘强.高地应力区挤压破碎围岩隧道施工技术探讨.隧道建设,2005,25(6):20-24.
    [17]靳晓光,李晓红.高地应力区深埋隧道软弱围岩支护结构力学特性研究.公路交通科技,2008,25(12):101-105.
    [18]苏国韶,冯夏庭,江权等.高地应力下地下工程稳定性分析与优化的局部能量释放率新指标研究.岩石力学与工程学报,2006,25(12):2453-2460.
    [19]中华人民共和国水利部.工程岩体分级标准(GB 50218-94).北京:中国计划出版社,1995.
    [20]Diering D H. Ultra-deep level mining:future requirements. Journal of the South African Institute of Mining and Metallurgy,1997,97(6):249-255.
    [21]Gurtunca R G, Keynote L. Mining below 3000 m and challenges for the South African gold mining industry. In:Proceedings of Mechanics of Jointed and Fractured Rock. Rotterdam:A.A.Balkema,1998, 3-10.
    [22]Diering D H. Tunnels under pressure in an ultra-deep Wifwatersr and goldmine. Journal of the South African Institute of Mining and Metallurgy,2000,100:319-324.
    [23]Vogel M, Andrast H P. Alp transit-safety in construction as a challenge, health and safety aspects in very deep tunnel construction. Tunneling and Underground Space Technology,2000,15(4):481-484.
    [24]Hagan, T N. Design and Performance of Underground Excavation. ISRM Symposium Sponsored by: Int Soc for Rock Mechanics, Lisbon, Port British Geotechnical Soc,1984,255-262.
    [25]何满潮,谢和平,彭苏萍.深部开采岩体力学研究.岩石力学与工程学报,2005,24(16):2803-2813.
    [26]BROWN E T, HOEK E. Technical note trends in relationships between measured in-situ stress and depth. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.,1978,15(4):211-215.
    [27]朱焕春,陶振宇.不同岩石中地应力分布.地震学报,1999,16(1):49-63.
    [28]FUCHS K, MULLER B. World stress map of the earth:a key to tectonic processes and technological applications. Naturwissenschaften,2001, (88):357-371.
    [29]石家庄铁道大学.软岩隧道施工变形控制与管理技术研究.石家庄:石家庄铁道大学,2011.
    [30]Aydam O, Akgi T, Kawamoto T. The squeezing potential of rock around tunnel, theory and prediction. Rock Mechanics and Rock Engineering,1993(26):21-23.
    [31]Fox P P, Mehuron E C. Engineering geology of boysen tunnel, Wyoming. Bulletin of Association of Engineering Geologists,1984(1):23-27.
    [32]Tazawa Y. Effects of rock bolts and thin linings as tunnel supports in soft rock. Balkema A. Proceeding of the International Symposium on Rock, Vol. Ⅱ A. Nethelands:Rotterdam,1981, Ⅱ: 1234-1241.
    [33]Malvern L.E. Introduction to the Mechanics of a Continuous Medium, Parentiee Hall, Englewood Cliffs, NJ, USA.1969.
    [34]Terzaghi K., Riehart F.E. Stresses in rock about cavities. Gdotechnique,1952,3,57-90.
    [35]Obert L., Duvall W.I., Merrill R.H. Design of underground openings in competent rock. USBureau of Mines Bulletin,1960,587.
    [36]Jaeger J.C., Cook N.G.W. Fundamentals ofRockMechanics.2nd edn, Chapman & Hall, London, UK. 1976.
    [37]Kirsch G. Die Theorie der Elastizit/it und die Bediirfnisse der Festigkeitslehre. Zeit. Ver. Deut. Ing. d., 1898,42,797-807.
    [38]Inglis C.E. Stresses in a plate due to the presence of cracks and sharp comers. Trans. Inst. Naval Arch., 1913,55,219-230.
    [39]Greenspan M. Effect of a small hole on the stresses in a uniformly loaded plate. Q. d. Appl. Math., 1944,2,60-71.
    [40]Muskhelishvili N.I. Some Basic Problems of the Mathematical Theory of Elasticity, J.R.M. Radok(trans.), Noordhoff, Groningen, The Netherlands.1953.
    [41]England A.H. Complex Variable Methods in Elastici-Wiley, London, UK.1971.
    [42]Bjorkman G.S.Jr., Richards R.Jr. Harmonic holes for nonconstant fields, ASME d. AppI. Mech.,1979, 46,573-576.
    [43]Kantorovieh L.V., Krylov V.I. Approximate Methods of Higher Analysis, Noordhoff, Groningen, The Netherlands.1958.
    [44]Hasan Gercek. An elastic solution for stresses around tunnels with conventional shapes. Int. J. RockMech.&Min. Sci.1997,34:3-4.
    [45]Brown E T, Bray J W, Ladanyi B, Hoek E. Ground Response Curves for Rock Tunnels. Journal of Geotechnical Engineering,1983,109:15-39.
    [46]Panet M. Time Dependent Deformations in Underground Works. Proc 4th Conf ISRM, Montrux,1979, 3:279-290.
    [47]Sakurai S. Approximate Time Dependent Analysis of Tunnel Face. Int J Numer Analyt Mech Geomech,1978(2):159-178.
    [48]Bray J W. A Study of Jointed and Fractured Rock, II.Theory of Limiting Equilibrium. Rock Mechanics and Engineering Geology,1967 (5):197-216.
    [49]Ladanyi B. Use of the Long Term Strength Concept in the Determination of Ground Pressure on Tunnel Linings. Advances in Rock Mechanics, Proc 3rd Congr ISRM Denver:1974.1150-1156.
    [50]Ogawa T, Lo K O. Effects of Dilatancy and Yield Criteria on Displacements around Tunnels. Can Geotech J,1984,24:100-113.
    [51]Sulem J, Panet M, Guenot A. An Analytical Solution for Time Dependent Displacements in a Circular Tunnel. Int J Rock Mech Min Sci & Geomech Abstr,1987,24 (3):155-164.
    [52]Stille H, Holmoery M, Mord G. Support of Weak Rock with Grouted Bolts and Shotcrete. Int J Rock Mech Min Sci & Geomech Abstr,1989,26 (1):99-103.
    [53]Jiang Y, Yoneda H, Tanabashi Y. Theoretical estimation of loosing pressure on tunnels in soft rocks. Tunnelling and Underground Space Technology,2001,16.
    [54]Kalman Kovari. History of the sprayed concrete lining method part I:Milestones up to the 1960s. Tunnelling and Underground Space Technology,2003 (18).
    [55]P. Roussev. Calculation of the Displacements and Pacher's Rock Pressure Curve by the Associative Law for the Fluidity Plastic Flow. Tunnelling and Underground Space Technology,1998,13 (4).
    [56]Hak Joon Kim. Estimation for Tunnel Lining Loads. Canada:University of Alberta,1997.
    [57]Dougill J. W., Lau J. C. and Burt N. J. Toward A Theoretical Model for Progressive Failure and Softening in Rock, Concrete and Similar Materials. Mech. in Engng., ASCE-EMD.1976:335-355.
    [58]Kyoya T. et al. A Damage Mechanics Analysis for Underground Excavation in Jointed Rock Mass. Proc. Int. Symp. on Engng. In Complex Rock Formations. Beijing.1985:506-513.
    [59]Kawamoto T. et al. Deformation and Fracturing of Discontinuous Rock Mass and Damage Mechanics Theory. Int. J. Numer. Anal. Methods Geomech.1988,12:1-30.
    [60]Zhang Wohua and Valliappan S. Analysis of Random AnisotropicDamage Mechanics Problems of Rock Mass, Part I-Probabilistic Simulation, Part II-Statistical Estimation. Rock Mech. Rock Engng, 1990,23:241-259.
    [61]Chiles J. P. Fractal and Geostatistical Methods for Modeling of A Fracture Network. Math. Geol., 1988,20(6):631-654.
    [62]陶振宇.试论岩石力学的最新发展.力学进展,1992,22(2):161-172.
    [63]李文秀.岩石力学研究的模糊数学理论.力学进展,1991,21(3):342-349.
    [64]李造鼎等.岩土动态开挖的灰色突变建模.岩石力学与工程学报,1997,16(3):252-257.
    [65]张志强,郑鸿泰.高地应力条件下隧道大变形的数值模拟分析.岩石力学与工程学报,2000,19(增):957-960.
    [66]王科.家竹箐隧道地质条件及地应力特征.世界隧道,1998,(1):11-16.
    [67]徐林生,王兰生.二郎山公路隧道岩爆发生规律与岩爆预测研究.岩土工程学报,1999,21(5):569-572.
    [68]王兰生,李天斌,徐进等.二郎山公路隧道岩爆及岩爆烈度分级.西南公路,1998,(4):22-26.
    [69]徐林生,王兰生.二郎山公路隧道岩爆特征与防治措施研究.中国公路学报,2003,16(1):74-76.
    [70]徐林生.川藏公路二郎山隧道高地应力与岩爆问题研究.岩石力学与工程学报,18(5):577.
    [71]姜德义,任松,蒋再文等.华蓥山隧道地应力场分析.矿业安全与环保,2002,29(1):4-6.
    [72]俞文生,彭蓉蓉.九岭山高地应力板岩隧道坍塌处理技术.公路隧道,2008,(3):21-24.
    [73]高连成.秦岭终南山隧道岩爆施工方法.公路隧道,2006,(3):29-31.
    [74]摘自《人民铁道报》.宜万铁路堡镇隧道右线穿过极高地应力地段.铁道建筑,2008,(6):101.
    [75]韩金锋.宜万铁路齐岳山隧道高地应力测试方案.科技情报开发与经济,2006,16(6):278-279.
    [76]李国良,朱永全.乌鞘岭隧道高地应力软弱围岩大变形控制技术.铁道工程学报,2008,(3):54-59.
    [77]谢和平.矿山岩体力学及工程的研究进展与展望.中国工程学报,2003,5(3):31-38.
    [78]黄润秋.中国西部岩石高边坡应力场特征及其卸荷破裂机理.工程地质学报,2004,12(S1):7-15.
    [79]陈士林,钱七虎,王明洋.深部坑道围岩的变形与承载能力问题.岩石力学与工程学报,2005,24(13):2203-2212.
    [80]王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题.岩石力学与工程学报,2006,25(3):448-455.
    [81]戚承志,钱七虎,王明洋.岩体的构造层次及其成因.岩石力学与工程学报,2006,24(16):2838-2846.
    [82]谭以安.岩爆岩石断口扫描电镜分析及岩爆渐进破坏过程.电子显微学报,1989,2:41-48.
    [83]徐林生,王兰生,李天斌.国内外岩爆研究现状综述.长江科学院报,1999,16(4):24-27.
    [84]徐林生,王兰生.岩爆形成机理研究.重庆大学学报(自然科学版),2001,24(2):115-117.
    [85]徐林生,王兰生,李永林.岩爆形成机制与判据研究.岩土力学,2002,23(3):300-302.
    [86]王元汉,李卧东,李启光等.岩爆预测的模糊数学综合评判方法.岩石力学与工程学报,1998,17(5):493-501.
    [87]王元汉,徐钺,谭国焕等.岩爆的剪切滑移机理分析.华中理工大学学报,1998,26(3):94-96.
    [88]李庶林,冯夏庭,王泳嘉等.深井硬岩岩爆倾向性评价.东北大学学报(自然科学版),2001,22(1):60-63.
    [89]李永林.二郎山隧道在高地应力条件下大变形破坏机理的研究及治理原则.公路,2000,12:2-5.
    [90]卿三惠,黄润秋.乌鞘岭隧道软岩大变形防治技术问题探讨.路基工程,2005,121(4):93-96.
    [91]王江,苑郁林.乌鞘岭特长隧道穿越F7断层隧道变形机理分析及其支护措施的研究.科技交流,2006,150(2):11-16.
    [92]钱七虎.深部大型地下工程围岩破坏特点及其施工设计对策.武汉:中科院武汉岩体力学研究所,2006,12.
    [93]朱维申,李建华.考虑岩体扩容、软化、流变效应的围岩应力状态.见:第三届全国岩土力学数值分析与解析方法讨论会论文集,珠海:1988.
    [94]蒋明镜,沈珠江.关于考虑剪胀的线性软化柱形孔扩张问题.岩石力学与工程学报,1997,16(6):550-557.
    [95]任青文,邱颖.关于芬纳公式的修正.河海大学学报,2001,29(6):109-111.
    [96]张良辉,熊厚金,张清.隧道围岩位移的弹塑粘性解析解.岩土工程学报,1997,19(4):66-72.
    [97]宋俐,张永强,俞茂宏.压力隧洞弹塑性分析的统一解.工程力学,1998,15(4):57-61.
    [98]范文,俞茂宏,孙萍等.硐室形变压力弹塑性分析的统一解.长安大学学报,2003,23(3):1-4.
    [99]李同录.考虑材料软化的洞室围岩弹塑性分析的统一解.长安大学学报,2004,24(3):48-51.
    [100]潘岳,王志强.应变非线性软化的圆形硐室围岩荷载-位移关系研究.岩土力学,2004,25(10):1515-1521.
    [101]齐明山,蔡晓鸿,冯翠霞.隧道围岩压力的弹塑性新解.土工基础,2006,20(4):73-76.
    [102]张黎明,王在泉,尹莹等.衬砌压力隧洞的弹塑性分析.重庆建筑大学学报,2006,28(2):59-62.
    [103]于学馥,郑颖人,刘怀恒等.地下工程围岩稳定分析.北京:煤炭工业出版社,1983.
    [104]肖树芳,杨淑碧.岩体力学.北京:地质出版社,1987.
    [105]杨延毅.节理裂隙岩体损伤-断裂力学模型及其在岩体工程中的应用(博士学位论文),北京:清华大学,1990.
    [106]吴刚等.复杂应力状态下完整岩体卸荷破坏的损伤力学分析.河海大学学报,1997,25(3):44-49.
    [107]吴刚.基于损伤面的岩体破坏准则.南京大学学报(自然科学版),1997,33:289-291.
    [108]谢和平,陈至达.分形几何与岩石断裂.力学学报,1988,20(3):264-271.
    [109]牛志仁,施行觉.岩石分形断裂的统计理论.地球物理学报,1992,35(5):594-603.
    [110]徐光黎.岩石结构面几何特征的分形与分维.水文地质工程地质,1993,(2):20-22.
    [111]陈乃明.节理化岩体的计算机模拟试验及分形特性研究(博士学位论文).长沙:中南工业大学,1994.
    [112]唐春安,徐小荷.岩石破裂过程失稳的尖点灾变模型.岩石力学与工程学报,1990,9(2):100-107.
    [113]潘岳.巷道“封闭式”冲击的尖点灾变模型.岩土力学,1994,15(1):34-41.
    [114]张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1994.
    [115]焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1995.
    [116]张清,宋家蓉.利用神经网络预测岩石或岩石工程的力学性态.岩石力学与工程学报,1992,11(1):35-431.
    [117]张玉祥,王玉浚,陆士良等.神经网络在采面顶板聚类及辨识中应用.山东矿业学院学报,1995,14(1):78-82.
    [118]梁艳春,周春光,王在申.人工神经网络应用于地下硐室围岩参数识别的研究.模式识别与人工智能,1996,9(1):71-77.
    [119]冯夏庭.智能岩石力学导论.北京:科学出版社,2000.
    [120]曹庆林.用神经网络方法预测围岩类别.冶金矿山没计与建设,1994,(5):12-14.
    [121]来兴平,刘占魁.基于神经网络的地下工程围岩支护决策专家系统的研究.包头钢铁学院学报,1996,15(3):25-31.
    [122]张玉祥,陆士良,王玉浚等.巷道围岩稳定性模糊神经元网络模式识别模型.中国矿业大学学报,1997,26(1):9-11.
    [123]王海超,郭嗣宗,邓利民.神经网络理论在预测巷道围岩变形中的应用.建井技术,1997,18(4):38-40.
    [124]王德润.神经网络在煤巷围岩分类中的应用.矿山压力与顶板管理,1997,3(4):105-107.
    [125]吴洪词.回采巷道围岩稳定性的神经网络控制.煤炭工程师,1998,(1):3-6.
    [126]霍润科,刘汉东.神经网络法在地下洞室围岩分类中的应用.华北水利水电学院学报,1998,19(2):62-66.
    [127]李文平,赵向军,杨海滨.煤矿延深巷道人工神经网络工程地质分类方法. 中国矿业大学学报,1999,28(1):70-73.
    [128]杨朝晖,刘浩吾.地下工程围岩稳定性分类的人工神经网络模型.四川联合大学学报(工程科学版),1999,3(4):67-72.
    [129]周保生,林江,于海学等.人工神经网络在煤矿巷道围岩移近量预测中的应用.系统工程理论与实践,2000,(1):137-140.
    [130]饶运章,侯运炳.神经网络方法在围岩稳定性分级评价中的应用.黄金,2001,22(10):15-16.
    [131]胡建华,王福寿,张世雄等.地下工程围岩稳定性的MBP神经网络识别.岩土工程界,2001,4(12):63-64.
    [132]王穗辉,潘国荣.人工神经网络在隧道地表变形预测中的应用.同济大学学报,2001,29(10):1147-1151.
    [133]孙钧,袁金荣.盾构施工扰动与地层移动及其智能神经网络预测.岩土工程学报,2001,23(3):261-267.
    [134]王志亮,李昕.带偏差单元的递归神经网络应用于围岩参数预测.电力勘测,2002,(4):37-39.
    [135]周保生,朱维申.巷道围岩参数的人工神经网络预测.岩土力学,1999,20(1):22-26.
    [136]马万权.神经网络技术在阳宗隧道围岩变形预测中的应用.公路交通技术,2003,(2):56-73.
    [137]徐林生,王新平.通渝隧道围岩变形的神经网络预测.公路,2004,(3):145-147.
    [138]孙锋先,郑磊.基于人工神经网络的围岩损伤识别方法.大众科技,2005,(4):64-65.
    [139]陈华兴,吕则欣,黄大勇等.BP神经网络在围岩变形预测中的应用.盐城工学院学报(自然科学版),2005,18(2):32-34.
    [140]涂敏,张孟喜.基于神经网络的双连拱隧道拱顶下沉和周边水平位移的滚动预测.上海大学学报(自然科学版),2005,11(2):187-191.
    [141]董武斌,胡建华,张文平.基于BP神经网络的巷道围岩稳定性分级识别.矿业工程,2006,4(6):14-15.
    [142]郭得令,李新平,张成良.RBF神经网络在围岩位移预测中的应用.土工基础,2007,21(2):64-66.
    [143]盛建龙.基于BP神经网络模型的巷道变形预测系统开发.矿业工程,2007,5(6):60-63.
    [144]秦胜伍,陈剑平.隧道围岩压力的神经网络时间序列分析.吉林大学学报(地球科学版),2008,38(6):1005-1009.
    [145]马莎,肖明,王继伟.基于混沌RBF网络的地下厂房围岩变形预报.武汉大学学报(工学版),2009,42(2):205-208.
    [146]于少春,陈蕾.BP神经网络在五爱隧道地表变形预测中的应用.山西建筑,2009,35(9):307-308.
    [147]袁文伯,陈进.软化岩层中坑道得塑性区与破碎区.煤炭学报,1986,11(3):77-85.
    [148]冯卫星.铁路隧道设计.成都:西南交通大学出版社,1998.
    [149]陈宗基.应力释放对开挖工程稳定性的重要影响.岩石力学与工程学报,1992,11(1):1-10.
    [150]周顺华,高渠清,崔之鉴.开挖应力释放率计算模型.上海力学,1997,18(1):91-98.
    [151]赵德安,陈志敏,蔡小林等.中国地应力场分布规律统计分析.岩石力学与工程学报,2007,26(6):1265-1271.
    [152]陈志敏.我国地应力分析与乌鞘岭隧道地应力场形态及特点研究:(硕士学位论文).兰州:兰州交通大学,2005.
    [153]张春山,吴满路,廖椿庭等.西藏羊八井-康马地区现今地应力测量结果与应力状态分析.地球物理学报,2007,50(2):517-522.
    [154]徐彦举.嘎隆拉隧道初始地应力场的研究:(硕士学位论文).重庆:重庆交通大学,2008.
    [155]焦国锋.拉日线峡谷区地应力分布特征的分析.山西建筑,2008,34(5):169-170.
    [156]张文忠.关角隧道越岭区区域地应力特征分析及应用.铁道勘察,2008,(2):52-56.
    [157]长江水利委员会长江科学院.兰渝线铁路天池坪隧道地应力测试报告.武汉:长江水利委员会长江科学院,2011.
    [158]长江水利委员会长江科学院.兰渝线铁路两水隧道地应力测试报告.武汉:长江水利委员会长江科学院,2011.
    [159]赵德安,李国良,陈志敏等.乌鞘岭隧道三维地应力场多元有限元回归拓展分析.岩石力学与工程学报,2009,28(增1):2687-2694.
    [160]陈志敏,赵德安.一种用于地应力分析的改进型BP神经网络方法.甘肃科学学报,2010,22(3):133-138.
    [161]中铁第一勘察设计院集团有限公司.兰渝铁路天池坪隧道工程地质勘察报告.西安:中铁第一勘察设计院集团有限公司,2009.
    [162]中华人民共和国铁道部.铁路隧道设计规范(TB10003-2005).北京:中国铁道出版社,2005.
    [163]沈明荣.岩体力学.北京:同济大学出版社,1999.
    [164]范文,俞茂宏,陈立伟等.考虑剪胀及软化的洞室围岩弹塑性分析的统一解.岩石力学与工程学报,2004,23(19):3213-3220.
    [165]中铁西南科学研究院有限公司.隧道围岩稳定性及其控制技术研究(课题四2010年度阶段研究工作汇报).成都:中铁西南科学研究院有限公司,2011.
    [166]中铁西南科学研究院有限公司.木寨岭隧道(单线)炭质板岩段支护结构及施工方法研究.成都:中铁西南科学研究院有限公司,2011.
    [167]陈志敏,赵德安,李国良,余云燕.高地应力软弱围岩铁路隧道的衬砌压力.中国铁道科学201 1,32(6):55-62.
    [168]兰州交通大学.关角隧道宏观地应力场特征及对衬砌结构影响研究报告.兰州:兰州交通大学,2011.
    [169]尹建军.隧道开挖的空间效应规律及其应用:(硕士学位论文).长沙:湖南大学,2009.
    [170]何国华,王先义,张颖.神经网络技术在隧道围岩变形预测中的应用.山西建筑,2008,34(4):364-365.
    [171]铁道第一勘察设计院.青藏线西格段增建二线关角隧道地应力测试分析报告.西安:铁道第一勘察设计院,2005.
    [172]李志业,曾艳华.地下结构设计原理与方法.成都:西南交通大学出版社,2003.
    [173]薛守义.论连续介质概念与岩体的连续介质模型.岩石力学与工程学报,1999,18(2):230-232.
    [174]何满潮.论工程岩体的连续性.中国岩土力学与工程学会地下岩石工程专业委员会第二届委员会成立大会,武汉,1990:33-40.
    [175]刘波,韩彦辉FLAC原理实例与应用指南.北京:人民交通出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700