用户名: 密码: 验证码:
基于分子滤波器和Fe玻尔兹曼方法的高低空测风测温激光雷达系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多普勒激光雷达作为一种主动式光学遥感设备,具有实时性好、探测灵敏度高等优点,可以连续进行高时空分辨率的大气风场、温度等的垂直剖面探测,为中层、中高层大气探测提供了有效手段。本文研究内容包括基于分子滤波器的高低空多普勒测风、测温激光雷达系统软件开发和探测方法研究,以及中高层(30-115 km)Fe玻尔兹曼测温激光雷达改进系统研制。
     本文从车载多普勒测风激光雷达业务化运行的需求出发,采用模块化的程序设计思想,设计并完成了界面友好、功能强大的激光雷达业务化软件----数据采集、处理及控制软件(DAAS)。结合雷达系统的具体性能参数,制定了各种数据产品的测量流程及数据存储格式等,实现了风廓线、径向风速PPI、径向风速RHI及海面风场等多种数据产品的业务化测量,为我国第一台车载测风激光雷达的研制和业务化应用作出了重要科学贡献。
     为提高测风激光雷达的风场测量精度,本文对径向风速测量的三大前提假设(大气水平均匀、垂直风为零及各个方向灵敏度相同)进行了详细分析和理论计算,计算出了每个前提假设对径向风速测量精度的影响,指出了目前的径向风速反演方法的局限性和适用范围。
     为了同时获取中高层大气的风场和温度,本文采用基于Na-DEMOF双边缘鉴频技术的多普勒测风、测温激光雷达,同时测量了10-50 km的大气风场和温度。本文对Na-DEMOF的测量原理及结构进行了详细的论述,并编写完成了基于LabVIEW的数据采集软件,同时反演得到了大气风场和温度。
     为了研究全球热力系统、大气动力学、重力波等大气现象,Chu et al.于1999年研制完成了一台Fe玻尔兹曼测温激光雷达系统,并于1999-2001和2002-2005分别在南极洲的Amundsen-Scott(90?S)科考站和Rothera科考站(67.5?S)进行了长期观测。本文在原有系统的基础上对发射系统和接收系统进行了升级和改进,结合系统的具体光学结构和性能参数,采用更改Pinhole大小来匹配发射角和视场角,以及Fabry-Perot标准具与窄带干涉滤光片相结合的方法,有效的滤除了白天背景光,实现了白天探测。
     为了提高脉冲激光器的稳定性和光束质量,更换了种子激光器,设计完成了种子注入及种子激光器稳频系统。采用高精度的波长计、PID控制方法以及Flipper Mirror相结合,实现了利用一台波长计和扫描Fabry-Perot干涉仪交替控制和监测两台种子激光器,同时编写完成了基于LabVIEW的数据采集软件。升级后的Fe玻尔兹曼测温激光雷达系统在美国Boulder进行了前期测试,实现了全天候24小时30-115 km温度和75-115 km Fe原子数密度测量。该系统已于2010年10月运往南极McMurdo科考站(78?S,167?E)进行为期3年的科学观测。
Doppler lidar, as an active optical remote sensing equipment, can continuously measure the wind and temperature from ground to 120 km with real-time, high-sensitivity, and high spatial and temporal resolution. There are two parts in this dissertation: Mobile lower altitude Doppler wind and temperature lidar based on molecular filter and upper altitude Fe Boltzmann temperature lidar.
     According to the requirements of the mobile Doppler wind lidar, this dissertation adopts the modularization programming method to develop a user-friendly data acquisition and analysis software (DAAS). With its sophisticated and user-friendly DAAS this lidar has made a variety of line-of-sight (LOS) wind measurements in different operation modes. Through carefully developed data retrieval procedures, various wind products are provided by the lidar including wind profile, LOS wind velocities in Plan Position Indicator (PPI) and Range Height Indicator (RHI) modes, and sea surface wind.
     The precision and accuracy of wind measurements are estimated through analyzing the random errors associated with photon noise and the systematic errors introduced by the assumptions made in the data retrieval. The three assumptions of horizontal homogeneity of atmosphere, close-to-zero vertical wind, and uniform sensitivity are approximation of actual atmosphere in order to experimentally determine the zero wind ratio and the measurement sensitivity that are important factors in the LOS wind retrieval. Deviations may occur under certain meteorological conditions, leading to bias in these situations. Based on the error analyses and measurement results, we point out the application ranges of this Doppler lidar.
     Simultaneous measurement of wind and temperature from the lower to the upper atmosphere is very important for whole-atmosphere research. We proposed to incorporate a Na-DEMOF into the receiver of a three-frequency Na Doppler lidar to measure the wind and temperature from the troposphere to the stratosphere. In this dissertation we introduce the principal of Na-DEMOF, the architecture of the lidar and the data retrieval methods for wind and temperature measurement in aerosol free region. A user-friendly data acquisition program was developed.
     Aiming to study atmospheric gravity waves, thermal structure, chemistry and composition, Fe Boltzmann temperature lidar developed by Chu et al. at the University of Illinois was deployed to the Amundsen-Scott South Pole (90?S) in 1999-2001, and to Rothera Station, Antarctica in 2002-2005. Now it is being refurbished and upgraded to restore and enhance its specifications and we plan to deploy an Fe Boltzmann temperature lidar to McMurdo (78?S, 167?E), Antarctica to make year-round measurements of atmospheric temperature and mesospheric Fe density with full-diurnal coverage for 3 years starting from Nov. 2010. These include the refurbishment of two linear pulsed alexandrite lasers and two receiver channels. The original seed lasers were replaced with two new External Cavity Diode Lasers (ECDLs) from Toptica to improve the stability and spectral purity of the alexandrite lasers. The wavelength control of the seeder lasers are accomplished by a Bristol wavelength meter. Each seeder laser wavelength is sequentially monitored with a computer-controlled flip mirror and adjusted via a wavelength control program. Newly developed DAQ and seed laser locking program based on LabVIEW makes the temperature lidar much user friendly. This lidar can measure atmospheric temperature profiles (30-110 km) and mesospheric Fe layers (75-115 km) coverage for both day and night. Initial results from the Table Mountain Lidar Observatory in Boulder will be presented.
引文
1. R. G. Roble, R. E. Dickinson,“How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?”. GEOPHYSICAL RESEARCH LETTERS, VOL. 16, NO. 12, 1441-1444, 1989.
    2. X. Z. Chu and G. C.Papen,“Resonance fluorescence lidar for measurements of the middle and upper atmosphere,”Laser Remote Sensing. T. Fujii and T. Fukuchi ed., CRC Press, ISBN: 0-8247-4256-7. 179-432, 2005.
    3. X. Z. Chu, Weilin Pan, George C. Papen, Chester S. Gardner, and Jerry A. Gelbawachs,“Fe Boltzmann temperature lidar: design, error analysis, and initial results at the North and South poles.”Applied Optics, 41 (21), 4400-4410, 2002.
    4. R. M. Huffaker,‘‘Laser Doppler detection systems for gas velocity measurements,’’Appl. Opt., 9 (5), 1026, 1970.
    5. R. M. Huffaker, A. V. Jelalian, and J. A. Thomson,‘‘Laser-Doppler system for detection of aircraft trailing vortices,’’Proc. IEEE, 58, 322–326, 1970.
    6. J. W. Bilbro and W. W. Vaughan, Wind field measurement in the nonprecipitous regions surrounding severe stroms by an airborne pulsed Doppler lidar system, Bulletin American Meteorological Society, 1095-1110, 1978.
    7. M. J. Post, R. E. Cupp,“Optimizing a pulsed Doppler lidar,”Appl. Opt. 29, 4145-4158, 1990.
    8. R. M. Banta, L. S. Daray, J. D. Fast, J. O. Pinto, C. D. Whiteman, and W. J. Shaw,“Nocturnal Low-level Jet in a Mountain Basin complex part I: evolution and effects on local flows,”J. Appl. Meteor. 43, 1348-1365, 2004.
    9. L. S. Darby, M. J. Post, R. M. Banta, J. M. Intrieri, W. Alan. Brewer, W. Eberhard, R. M. Hardesty, R. Marchbanks, R. Richter, S. Sanderg, and A. Weickmann. NOAA’s TEACO Doppler lidar-A short history, 223-226, 24th International Laser Radar Conference, 2008.
    10. L. S. Darby and G. S. Poulos, The evolution of Lee-Wave-Rotor activity in the Lee of Pike’s Peak under the influence of a cold frontal passage: implications for aircraft safety, Monthly Weather Review, 134, 2857-2876, 2006.
    11. T. L. Clark, W. D. Hall, and R. M. Banta, Two- and Three-Dimensional Simulations of the 9 January 1989 Severe Boulder Windstorm: Comparison with Observations, Journal of the atmospheric sciences, 51, 16, 2317-2343, 1994.
    12. G. D. Emmitt, C. O’Handley, S. A. Wood, R. Bluth, and H. Jonsson, TODWL: An airborne Doppler wind lidar for atmospheric research, Annual Amer. Met. Soc. Conference, 2nd Symposium on lidar atmospheric applicatons, San Diego, CA, 2005.
    13. J. K. Grady, P. Mulugeta, W. B. Bruce, et al. Validar: a testbed for advanced 2-micron Doppler lidar. SPIE, 5412:87-98, 2004.
    14. N. S. Upendra, Grady Koch, Jirong Yu, Mulugeta Petros, Jeffrey Beyon, Michael J. Kavaya, Bo Trieu, Songsheng Chen, Yingxin Bai, Paul Petzar, Edward A. Modlin, Bruce W. Barnes, and Belay B. Demoz. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space. 25th International Laser Radar Conference. 273-276, 2010.
    15. S. W. Henderson, S. M. Hannon. Advanced coherent lidar system for wind measurements. SPIE, 5887: 108-117, 2005.
    16. M. L. Chanin, A. Garnier, A. Hauchecorne, and J.Porteneuve,“A Doppler lidar for measuring winds in the middle atmosphere,”Geophys. Res. Lett. 16, 1273-1276, 1989.
    17. C. L. Korb, B. M. Gentry, and S. X. Li. Edge technique Doppler lidar wind measurements with high vertical resolution. Appl. Opt., 36: 5976~5983, 1997.
    18. B. M. Gentry, H. Chen,“Tropospheric wind measurements obtained with the Goddard Lidar Observatory for Winds (GLOW): Validation and Performance,”Proceedings of the International Symposium on Optical Science and Technology, San Diego, CA, July 30-31, 4484: 74-81, 2001.
    19. B. M. Gentry, H. Chen, and S. X. Li,“Wind measurements with 355-nm molecular Doppler lidar,”Opt. Lett. 25, 1231-1233, 2000.
    20. M. J. McGill, W. R. Skinner, and T. D. Irgang,‘‘Validation of wind profiles measured using incoherent Doppler lidar,’’Appl. Opt., 36, 1928–1939, 1997.
    21. Y. Durand, A. Culoma, R. Meynart, D. Morancais, and F. Fabre,“Pre-development of a direct detection Doppler wind lidar for ADM/AELOUS mission,”Proc. SPIE. 5234, 354-363, 2004.
    22. J. S. Friedman, C. A. Tepley, P. A. Castleberg, and H. Roe,“Middle-atmospheric Doppler lidar using an iodine-vapor edge filter,”Opt. Lett. 22, 1648-1650, 1997.
    23. Z. S. Liu, W. B. Chen, T. L. Zhang, J. W. Hair, and C. Y. She,“An incoherent Doppler Lidar for ground-based atmospheric wind profiling,”Appl. Phys. B 64, 561-566, 1997.
    24. Z. S. Liu, D. Wu, J. T. Liu, K. L. Zhang, W. B. Chen, and X. Q. Song,“Low-Altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,”Appl. Opt. 41, 7079-7086, 2002.
    25. Z. S. Liu, B. Y. Liu, Z. G. Li, Z. A. Yan, S. H. Wu, and Z. B. Sun,“Wind measurements with incoherent Doppler lidar based on iodine filters at night and day,”Appl. Phys. B. 88, 327-335, 2007.
    26. Z. S. Liu, B. Y. Liu, S. H. Wu, Z. G. Li and Z. J. Wang,“A high spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements,”Opt. Lett. 33, 1485-1487, 2008.
    27. X. Z. Chu, ASEN-6519: Lidar Remote Sensing, http://cires.colorado.edu/science/groups/chu/classes/lidar2008/
    28. H. Shimizu, S. A. Lee, and C. Y. She, High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,Applied Optics, Vol. 22, Issue 9, pp. 1373-1381, 1983.
    29. C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, High-spectral-resolution Rayleigh—Mie lidar measurement of aerosol and atmospheric profiles, Optics Letters, Vol. 17, Issue 7, pp. 541-543, 1992.
    30. C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, High-Spectral-Resolution Rayleigh-Mie lidar measurement of vertical aerosol and atmospheric profiles, Applied Physics B, B 55, 154-158, 1992.
    31. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles, APPLIED OPTICS, Vol. 40, No. 30, 5280-5294, 2001.
    32. Z. S. Liu, D. C. Bi, X. Q. Song, J. B. Xia, R. Z. Li, Z. J. Wang, and C. Y. She,Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements. Optics Letters, Vol. 34, Issue 18, 2712-2714, 2009.
    33. I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, H. Van Den Bergh, Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coeffiecients by a combined vibrational-pure-rotational Raman lidar, Applied Physics B, 79, 775-782, 2004.
    34. D. X. Hua, Masaru Uchida, and Takao Kobayashi, Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere, Applied Optics, Vol. 44, Issue 7, pp. 1305-1314, 2005.
    35. K. H. Fricke, and U. von Zahn, Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar, J. Atmos. Terr. Phys., 47, 499–512, 1985.
    36. C. Y. She, H. Latifi, J. R. Yu, R. J. Alvarez II, R. E. Bills, and C. S. Gardner, two-frequency lidar technique for mesospheric Na temperature measurements, Geophys. Res. Lett., 17, 929–932, 1990.
    37. R. E. Bills, and C. S. Gardner, Lidar observations of mesospheric Fe and sporadic Fe layers at Urbana, Illinois, Geophys. Res. Lett., 17, 143–146, 1990.
    38. H. Chen, M. A. White, D. A. Krueger, and C. Y. She, Daytime mesopause temperature measurements using a sodium-vapor dispersive Faraday filter in lidar receiver, Opt. Lett., 21, 1093–1095, 1996.
    39. C. Y. She, J. D Vance, B. P. Williams, D. A. Krueger, H. Moosmuller, D. Gibson-Wilde, and D. Fritts, Lidar studies of atmospheric dynamics near polar mesopause, EOS, 83 (27), 289–293, 2002.
    40.刘小勤,胡顺星,李琛,胡欢陵,张寅超,窦贤康。一台监测高空钠层的激光雷达系统。光电工程,33(9),2006。
    41.徐丽,胡雄,闫召爱,程永强,郭商勇,钠多普勒激光雷达大气参数反演方法,红外与激光工程,38,1,140-145,2009。
    42. Shikha Raizada and Craig A. Tepley. Iron Boltzmann lidar temperature and density observations from Aercibo– An initial comparison with other techniques. Geophysical Research Letters, 29, 12, 2002.
    43. B. Liu, J. Zhou and F. Yi. Detection of the Middle and the upper atmosphere over Wuhan with a Fe Fluorescence/Boltzmann temperature lidar. Journal of the Korean Physical Society. 49, 1, 2006.
    44. R. Miles, W. Lempert, and J. Forkey. Laser Rayleigh scattering. Meas. Sci. Technol., 12: 33~51, 2001.
    45.刘玉丽,岳古明,周军, D2受激拉曼散射产生的紫外激光用于O3差分吸收激光雷达的研究,光散射学报,20,4,314-319,2008。
    46.吴永华,胡欢陵,胡顺星,周军,岳古明,戚福弟,李琛,瑞利-拉曼散射激光雷达探测大气温度分布,中国激光,31,7,851-856,2004。
    47.谢晨波,周军,岳古明,戚福弟,范爱媛,新型车载式拉曼激光雷达测量对流层水汽,26,9,1281-1286,2006。
    48. J. P. Thayer, N. B. Nielsen, R. E. Warren, C. J. Heinselman, and J. Sohn, Rayleigh lidar system for middle atmosphere research in the arctic, Opt. Eng., 36, 7, 1997.
    49. C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, Direct-detection Doppler wind measurements with a Cabannes-Mie Lidar: A. Comparison between iodine vapor filter and Fabry-Perot interferometer methods, Applied Optics, 46, 20, 4434-4443, 2007.
    50. C. Y. She, J. Yue, Z. A. Yan, J. W. Hair, J. J. Guo, S. H. Wu, and Z. S. Liu, Direct-detection Doppler wind measurements with a Cabannes-Mie Lidar: B. Impact of aerosol variation on iodine vapor filter methods, Applied Optics, 46, 20, 4444-4454, 2007.
    51. C. Fricke-Begemann, J. Ho¨ffner, and U. von Zahn,“The potassium density and temperature structure in the mesopause region (80–105 km) at low latitude (28°N),”Geophys. Res.Lett. 29, 2067–2071, 2002.
    52. X. Z. Chu, W.T. Huang, J. P. Thayer, Z. J. Wang and J. A. Smith, Progress in MRI Fe-Resonance/Rayliegh/Mie Doppler Lidar, 25th International Laser Radar Conference, St.–Petersburg, 2010.
    53.刘秉义.车载测风激光雷达性能优化和风场反演:[博士学位论文].青岛:中国海洋大学,2008。
    54. Z. S. Liu, Z. J. Wang, S. H. Wu, B. Y. Liu, Z. G. Li, X. Zhang, D. C. Bi, Y. B. Chen, R. Z. Li and Y. Q. Yang,“Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar,”Opt. Eng. 48, 2009.
    55. J. A. Gelbwachs, Iron Boltzmann factor lidar: Proposed new remote-sensing technique for mesospheric temperatures, Appl. Opt., 33, 7151-7156, 1994.
    56. S. H. Wu, Z. S. Liu, and B. Y. Liu,“Dual-wavelength laser frequency locking for the direct-detect wind lidar,”J. Modern. Opt. 53, 333-341, 2006.
    57. Licel GmbH, Licel Ethernet Controller Installation and Reference Manual, December 8, 2005.
    58. Z. J. Wang, Z. S. Liu, L. P. Liu, S. H. Wu, B. Y. Liu, Z. G. Li, and X. Z. Chu, Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis, Applied Optics, 49, 36, 6960-6978, 2010.
    59. Z. J. Wang, Z. S. Liu, S. H. Wu, B. Y. Liu and Z. G. Li, Automated and full-azimuth-scanned wind measurements in PPI and RHI modes with a mobile Doppler wind lidar based on iodine filters, 25th International Laser Radar Conference, St.–Petersburg, 2010.
    60. C. Werner,“Doppler wind lidar”, Lidar: Range-resolved optical remote sensing of the atmosphere, C. Weitkamp ed., Springer, ISBN 0-387-40075-3, 325-354, 2005.
    61.陈楠,徐芬,顾松山,宋娟,夏文海。多普勒天气雷达径向速度产品在预报中的应用。气象科学。29,3,2009。
    62. K. A. Browning, R. Wexler,“The determination of kinematic properties of a wind field using Doppler radar,”J. Appl. Meteor. 7, 105-113, 1968.
    63. Z. Y. Tao,“The VAP method to retrieve the wind vectors field based on single-Doppler velocity field,”ACTA Meteor. Sin. (In Chinese). 50, 81-90, 2002.
    64. C. Paulson,“The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer,”J. Appl. Meteor. 9, 857-861, 1970.
    65. J. S. Zhu, Y. B. Chen, Z. A. Yan, S. H. Wu, and Z. S. Liu,“Relationship between the aerosol scattering ratio and temperature of atmosphere and the sensitivity of a Doppler wind lidar with iodine filter,”Chinese Opt. Lett. 6, 449-453, 2008.
    66. Z. G. Li, Z. S. Liu, Z. A. Yan, and J. J. Guo,“Research on characters of the marine atmospheric boundary layer structure and aerosol profiles by high spectral resolution lidar,”Opt. Eng. 47, 086001, 2008.
    67. S. C. Tucker, W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. C. Law, A. N. Weickmann, and R. M. Hardesty,“Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles,”J. Atmos. Ocean. Tech. 26, 673-688, 2009.
    68. W. T. Huang, X. Z. Chu, B.P. Williams, S.D. Harrell, J. Wiig, and C.Y. She,“Na double-edge magneto-optic filter for Na lidar profiling of wind and temperature in the lower atmosphere,”Opt. Lett. 34, 199-201, 2009.
    69. W. T. Huang, X. Z. Chu, J. Wiig, B. Tan, C. Yamashita, T.Yuan, J. Yue, S.D. Harrell, C.Y. She, B.P. Williams, J.S. Friedman, and R.M. Hardesty,“Field demonstration of simultaneous wind and temperature measurements from 5 to 50 Km with a Na double-edgemagneto-optic filter in a multi-frequency Doppler lidar,”Opt. Lett. 34, 1552-1554, 2009.
    70. W. T. Huang, X. Z. Chu, B.P. Williams, S.D. Harrell, J. Wiig,“CRRL/CTC: Na double-edge magneto-optic filter (Na-DEMOF) for wind and temperature profiling in lower atmosphere.”24th International Laser Radar Conference. 805-808, 2008.
    71. T. W. H?nsch, I. S. Shahin, and A. L. Schawlow,“High-resolution saturation spectroscopy of the sodium D lines with a pulsed tunable dye laser.”Physical Review Letters. 27 (11), 707-710, 1971.
    72.董晶晶,岳斌,孙东松,沈法华。直接测风激光雷达中可编程门控的实现。红外与激光工程,37,125-128,2008。
    73. K. Fischer, V. Abreu, W. Skinner, J. Barnes, M. McGill, T. Irgang. Visible wavelength Doppler lidar for measurement of wind and aerosol profiles during day and night. Opt. Eng., 34: 499, 1995.
    74. J. A. McKay, "Single and Tandem Fabry-Perot Etalons as Solar Background Filters for Lidar," Appl. Opt. 38, 5851-5858, 1999.
    75. Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, "Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer," Appl. Opt. 44, 3593-3603, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700