用户名: 密码: 验证码:
计及风电场容量可信度的电力系统可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电具有随机性和波动性等特点,当风电穿透功率超过一定值之后,会严重影响电能质量和电网稳定性、可靠性,甚至引起大面积停电事故,这迫切需要对风电场接入电力系统的可靠性进行正确评估。本文应用两参数威布尔分布(Two-Parameter Weibull Distribution)模拟风速,首先建立了风电场可靠性模型,其中应用Jensen模型和Lissaman模型模拟风电场内不同地形的尾流效应,并结合风电机组停运模型给出风电场每小时输出有功功率的计算方法。该模型还考虑了风向、气温的影响。其次,建立了基于序贯蒙特卡罗仿真的含大规模风电场的发输电系统充裕度评估模型。通过对充裕度算法的研究,建立了主要元件基于两状态Markov过程的故障模型,并且应用深度优先算法进行系统网络拓扑结构分析,寻找因输电线路故障引起电网解列而产生的子系统。应用直流潮流算法计算潮流分布,判断输电线路传输容量是否越限并进行相应处理。采用Matlab 7编制相应程序,以IEEE-RBTS和IEEE-RTS 79测试系统为例计算可靠性指标,并设计不同的并网方案,充分评估大规模风电场接入对发输电系统可靠性的影响。
     在含大规模风电场的发输电系统充裕度评估模型的基础上,进行了风电场容量价值计算,从容量角度评估风电场价值。应用有效负荷承载能力(Effective Load Carrying Capability)作为本文评估电力系统新增电源容量价值的标准。介绍了电源有效负荷承载能力的概念,提出一种基于非序贯蒙特卡罗仿真法的新增风电场有效负荷承载能力的算法。以IEEE-IBTS测试系统为例进行了风电场有效负荷承载能力计算,并分析了有效负荷承载能力的影响因素。
     风电场容量可信度的计算是确定风电场替代火电厂后可节约的成本以及确定风电上网电价,进而提高风电场经济价值的重要基础。在有效负荷承载能力概念的基础上提出了风电场容量可信度定义,并提出了一种基于非序贯蒙特卡罗仿真,采用弦截法计算风电场容量可信度的算法。该方法不但考虑了输电线路故障,同时考虑了采用理想常规发电机组和采用多状态发电机组衡量容量可信度的方法。详细分析了传统潮流算法下输电线路故障对线路传输容量越限以及风电场容量可信度的影响。编写了相应程序,应用改进的潮流算法,结合算例详细分析了风电机组参数、不同并网方案对风电场容量可信度的影响。
Wind power generation has some characteristics such as randomicity and volatility, if the penetration level of wind power exceeds certain value, the electric energy quality as well as stability and reliability of power systems will be seriously influenced, even large area is caused blackout. In this paper, first two-parameter Weibull distribution is used to simulate wind speed, then the reliability model of wind farms is established, which includs the wake effects of different terrain modeling by Jensen model and Lissaman model, and combining with outage model of wind turbine generator, active power generation of wind farms is calculated. Random variation of wind direction and wind speed influence is also included. Second, an adequacy assessment model of generation and transmission systems integrated with wind farms based on the sequential Monte-Carlo simulation approach is presented. In this model, the failure model based on two-states Markov process of main system units is discussed according to the research of adequacy evaluation algorithm. Depth priority algorithm is used to analyze the topology of network and search the subsystems after power system islanding caused by fault of transmission lines. Power flow distribution is calculated by DC power flow method, and then whether the transmission capacity is overload is judged and treated. The reliability indices of IEEE-RBTS and IEEE-RTS 79 are calculated by corresponding software, and the reliability of generation and transmission systems integrated with large scale wind farms is evaluated by comparison of different integration solutions.
     The wind farms capacity value is calculated based on the adequacy assessment model of generation and transmission systems integrated with wind farms, and the value of wind farms is evaluated in the view of capacity. Effective load carrying capability (ELCC) is considered to be the most appropriate standard to evaluate new added power unit capacity value of power system. The concept of ELCC is introduced; an algorithm about ELCC of new added power unit based on non-sequential Monte-Carlo simulation is presented. The calculations on the IEEE-IBTS test system added wind farm model is carried out, and the influencing factors of ELCC are analyzed.
     The calculation of capacity credit of wind farms is an important basis which decides the saving cost after wind farms replaced by traditional generators and the pool purchase price of wind power generation, and also improves economic value of wind farms. This paper presents a detailed definition of wind farms capacity credit, and a calculation method of capacity credit of wind farms based on non-sequential Monte-Carlo simulation is proposed, in which secant method will be used at calculation process. This method does not only consider the fault of transmission line, but also two different measures of capacity credit which have ideal reliable traditional generator and multi-states generator. The transmission line fault has effect on transmission capacity limitation and capacity credit of wind farms under conditions of the usage of traditional power flow calculation method. Corresponding software is programmed, and detailed analysis of the influence by wind turbine generator parameters and different integration solutions to capacity credit of wind farms is carried out based on case studies.
引文
[1]靳晓凌,张义斌.新能源大规模发展需建设坚强智能电网.中国电力报,2010年1月25日,第4版.
    [2]姜谦.2010-2015年中国风力发电行业投资分析及前景预测报告.中国投资咨询网,2010.04, http://www.ocn.com.cn/reports/2006005fenglifadian.htm
    [3]尹明,韩丰,张义斌,等.我国大规模风电外送问题研究.电网技术,2009,33(Supplement 1):1-5.
    [4]然浩,赵卓.我国风电产业发展——建设大基地 融入大电网.经济日报,2009年6月25日,第007版.
    [5]风能——我国风能资源的储量及其分布.中国生物能源网.2008. 9.20. http://www.bionergy.cn/uploadfile/cyclopedia/UploadFiles_172 3/200809/20080925015920504.pdf
    [6]李锋,陆一川.大规模风力发电对电力系统的影响.中国电力,2006,39(11):80-84.
    [7]刘吉辉,左倜.大型陆上风力发电技术综述.清洁能源与可再生能源,2006,6:53-55.
    [8]陈雷,邢作霞,潘建,等.大型风力发电机组技术发展趋势.可再生能源,2003,1(107):27-29.
    [9]孙建锋.风电场建模和仿真研究:[硕士学位论文].北京:清华大学电机系,2004.
    [10]Palsson M P, Toftevaag T, Uhlen K, et al. Large-scale wind power integration and voltage stability limits in regional networks. IEEE Power Engineering Society Summer Meeting, Chicago, USA,2005:762-769.
    [11]Amora M A B, Bezerra U H. Assessment of the effects of wind farms connected in a power system. Power Tech Proceedings,2001 IEEE Porto,2001.
    [12]Wiik J, Gjerde J O, Gjengedal T, et al. Steady state power system issues when planning large wind farms. IEEE Power Engineering Society Winter Meeting, 2002,1:199-204.
    [13]雷亚洲.与风电并网相关的研究课题.电力系统自动化,2003,27(8):84-89.
    [14]Tande J O G, Uhlen K. Wind turbines in weak grids-constraints and solutions. 16th International Conference & Exhibition on Electricity Distribution Part I: Contributions and Summaries,2001:261.
    [15]吴学光,王伟胜,戴慧珠.风电系统电压波动特性研究.风力发电,1998,4.
    [16]Siegfried Heier. Grid Integration of Wind Energy Conversion Systems. John Wiley & Sons,1998.
    [17]迟永宁.大型风电场接入电网的稳定性问题研究:[博士学位论文].北京:中国电力科学研究院,2006.
    [18]新疆电力公司.达坂城风电对乌鲁木齐电网运行的影响初步分析.风力发电,1998,(3):23-25.
    [19]刘洪.乌鲁木齐电网允许风电比例的初步探讨.风力发电,1999,(15):28-29.
    [20]张义斌,王伟胜,戴慧珠.基于P-V曲线的风电场接入系统稳态分析.电网技术,2004,28(23):61-65.
    [21]陈树勇,申洪,张洋,等.基于遗传算法的风电场无功补偿及控制方法的研究.中国电机工程学报,2005,25(8):1-6.
    [22]雷亚洲,王伟胜,印永华,等.含风电场电力系统的有功优化潮流.电网技术,2002,26(6):18-21.
    [23]吴学光,张学成,印永华,等.异步风力发电系统动态稳定性分析的数学模型及其应用.电网技术,1998,22(6):68-72.
    [24]申洪,梁军,戴慧珠.基于电力系统暂态稳定分析的风电场穿透功率极限计算.电网技术,2002,26(8):8-11.23
    [25]吴晓朝,吴捷,杨金明,等.基于满意度原理的风电场电能质量分析.低压电器,2006,8:12-14.
    [26]李庆.风电机组和风电场的功率特性及电能质量测试研究:[硕士学位论文].北京:中国电力科学研究院,2006.
    [27]宋伟,李昌禧.大型风力发电机组并网运行的探讨.河北电力技术,2002,6(5):13-18.
    [28]向大为,杨顺昌,冉力.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究.中国电机工程学报,2006,26(10):130-135.
    [29]Johan M, Sjoerd W H, Wil L K, Ferreira J A. Wind turbines emulating inertia and supporting primary frequency control. IEEE Trans on Power Systems,2006, 12(1):433-434.
    [30]Anaya-Lara O, Hughes F M, Jenkins N, Strbac G. Contribution of DFIG-based wing farms to power system short-term frequency regulation. IEE Proceeding Generation Transmission and Distribution.2006,153(2):164-170.
    [31]Lalor G, Mullane A, O'Malley M. Frequency control and wind turbine technologies. IEEE Trans on Power Systems,2005,20(4):1905-1913.
    [32]Fujita G, Ezaki K, Nakano T, et al. Dynamic characteristic of frequency control by rotary frequency converter to link wind farm and power system. IEEE PowerTech Conference. Bologna, Italy,2003.
    [33]Koch F W, Erlich I, Shewarega F. Dynamic simulation of large wind farms integrated in a MultiMachine network. Power Engineering Society General Meeting, Toronto, Canada,2003.
    [34]林霞.大型风电场并网对系统影响分析及其应用研究:[硕士学位论文].太原:太原理工大学,2006.
    [35]宫靖远等.风电场工程技术手册.北京:机械工业出版社,2004.
    [36]张系良.风能开发利用.北京:化学工业出版社,2005.
    [37]王承煦,张源.风力发电.北京:中国电力出版社,2003.
    [38][法]勒古里雷斯(LeGourieres D)著,施鹏飞等译.风力机的理论与设计.北京:机械工业出版社,1987.
    [39]吴俊玲,周双喜,孙建锋,等.并网风力发电最大注入功率分析.电网技术,2004,28(20):28-32.
    [40]迟永宁,刘燕华,王伟胜,等.风电接入对电力系统的影响.电网技术,2007,31(3):77-81.
    [41]吴义纯.含风电场的电力系统可靠性与规划问题的研究:[博士学位论文].合肥:合肥工业大学,2006.
    [42]丁明,吴义纯.风力发电系统运行和规划问题综述.国际电力,2003,7(3):36-40.
    [43]Blanchard M, Desrochers G. Generation of auto-correlated wind speeds for wind energy conversion system studies. Solar Energy,1984,33(6):571-579.
    [44]温鹏,沈炯,李益国,等.基于自回归法的风电场脉动风速模拟.电网技术,2009,33(5):75-79.
    [45]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究.中国电机工程学报,2005,25(11):1-5.
    [46]Wang P, Billinton R. Time-sequential simulation technique for rural distribution system reliability cost/worth evaluation including wind generation as alternative supply. IEE Proceedings:Generation, Transmission and Distribution,2001, 148(4):355-360.
    [47]Alexiadis M, Dokopoulos P, Sahsamanoglou H, et al. Short term forecasting of wind speed and related electrical power. Solar Energy,1998,63(1):61-68.
    [48]孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度.中国电机工程学报,2009,29(4):41-47.
    [49]马静波,杨洪耕.自适应卡尔曼滤波在电力系统短期负荷预测中的应用.电网技术,2005,29(1):75-79.
    [50]Bossanyie A. Short-term wind prediction using Kalman. Wind Engineering,1985, 9(1):1-8.
    [51]Shuhui L, Wunsch D C, O'hair E A, et al. Using neural networks to estimate wind turbine power generation. IEEE Trans on Energy Conversion,2001,16(3):977.
    [52]金群,李欣然.遗传算法参数设置及其在负荷建模中的应用.电力自动化设备,2006,26(5):23-27.
    [53]邰能灵,候志俭,李涛,等.基于小波分析的电力系统短期负荷预测方法.中国电机工程学报,2003,23(1):45-50.
    [54]张伏生,汪鸿,韩悌,等.基于偏最小二乘回归分析的短期负荷预测.电网技术,2003,27(3):37-40.
    [55]张昊,吴捷,郁滨.电力负荷的模糊预测方法.北京:电力系统自动化,1997,22(7):14-17.
    [56]姚国平,余岳峰,王志征.如东沿海地区风速数据分析及风力发电量计算,电力自动化设备,2004,24(4):12-14.
    [57]Suresh H J, Guruprasada R V. Optimum siting of wind turbine generators. IEEE Trans on Energy Conservation,2001,16(1):8-13.
    [58]Freris L L. Wind energy conversion systems. Prentice Hall,1994.
    [59]Justus C G, Hargraves W R, Mikhail A, et al. Methods for estimating wind speed frequency distributions. Journal of Applied Meteorology,1978,17(3):350-353.
    [60]Feijoo A E, Cidras J, Dornelas J L G. Wind speed simulation in wind farms for steady-state security assessment of electrical power systems. IEEE Trans on Energy Conservation,1999,14(4):1582-1588.
    [61]陈树勇,戴慧珠,白晓民,等.风电场的发电可靠性模型及其应用.中国电机 工程学报,2000,20(3):26-28
    [62]陈树勇.大型并网风力发电场规划方法研究[博士学位论文].北京:中国电力科学研究院,1998.
    [63]Elliott(?)D L, Barnard(?). Observations of wind turbine wakes and surface roughness effects on wind flow variability. Solar energy,1990, 45(5):265-283.
    [64]Kaminskya F C, Kirchhoffb R H, Sheua L J. Optimal spacing of wind turbines in a wind energy power plant. Solar energy,1987,39(6):467-471.
    [65]Billintbn R, Aboreshaid S, Mahnud F F. Conceptual Framework for Composite Power System Health Analysis. Canadian Conference on Electrical and Computer Engineering, 1996, (1):396-399.
    [66]Billinton R, Zhang W. Cost related reliability evaluation of bulk power systems. International Journal of Electrical Power and Energy Systems, 2001, 23(2):99-112.
    [67]Ding Y, Wang P. 'Reliability and price risk assessment of a restructured power system with hybrid market structure. IEEE Transactions on Power Systems,2006, 21(2):108-116.
    [68]Billinton R, Cui L, Pan Z. Quantitative reliability considerations in the determination of performance-based rates and customer service disruption payments. IEE Proceedings-Generation, Transmission and Distribution, 2002, 149(6):640-644.
    [69]赵渊,周家启,周念成,等.大电力系统可靠性评估的解析计算模型.中国电机工程学报,2006,26(5):19-25.
    [70]柳亦刚,易仕敏,杨华.发电厂可靠性评估的解析方法.云南电力技术,2005,33(5):50-54,56.
    [71]杨莳百,戴景宸,孙启宏.电力系统可靠性分析基础及应用.北京:水利电力出版社,1986.
    [72]CarMen L T Borges. Composite reliability evaluation by sequential, Monte Carlo simulation on parallel and distributed processing environments(?) IEEE Trans on Power Systems,2001,16(2):203-209.
    [73]Gubbala N, Singh C. Models and considerations for parallel implementation of Monte Carlo simulation methods:for power system reliability evaluation. IEEE Trans on Power Systems,1995,10(2):779-787.
    [74]Nader Samaan, Chanan Singh. A new method for composite system annualized reliability indices based on genetic algorithms. IEEE Power Engineering Society Summer Meeting, Chicago, IL USA.2002,2:850-855.
    [75]G.Melo A C, Pereira M V F. Sensitivity analysis of reliability indices with respect to equipment failure and repair rates. IEEE Trans on Power Systems,1995,10(2): 1014-1019.
    [76]丁明,张瑞华.发输电组合系统可靠性评估的蒙特卡罗模拟.电网技术,2000,24(3):9-12.
    [77]宋云亭,郭永基,程林.大规模发输电系统充裕度评估的蒙特卡罗仿真.电网技术,2003,27(8):24-28.
    [78]丁明,张瑞华.发输电组合系统可靠性评估的蒙特卡罗模拟.电网技术,2000,24(3):10-12.
    [79]吴义纯,丁明.基于蒙特卡罗仿真的风力发电系统可靠性评价.电力自动化设备,2004,24(12):70-73.
    [80]丁明,张静,李生虎.基于序贯蒙特卡罗仿真的配电网可靠性评估模型.电网技术,2004,28(3):38-42.
    [81]丁明,李生虎.可靠性计算中加快蒙特卡罗仿真收敛速度的方法.电力系统自动化,2000,(25):16-19,35.
    [82]别朝红,王锡凡.蒙特卡罗法在评估电力系统可靠性中的应用.电力系统自动化,1997,21(6):68-75.
    [83]曹成军,别朝红,王锡凡.蒙特卡罗法全周期抽样的研究.西安交通大学学报.2002,36(4):345-347,352.
    [84]刘洋,周家启,谢开贵,等.基于Beowulf集群的大电力系统可靠性评估蒙特卡罗并行仿真.中国电机工程学报,2006,26(20):9-14.
    [85]吴开贵,王韶,张安邦,等.基于RBF神经网络的电网可靠性评估模型研究.中国电机工程学报,2000,20(6):9-12.
    [86]Zhao Q, Bao Z. Target recognition based on radial function network. Proceeding of International Joint Conference on Neural Network, Nagoya, Japan,1993,3: 2735-2738.
    [87]申卫华,李学鹏,胡明,等.直流输电系统可靠性指标和提高可靠性的措施.电力建设,2007,28(2):5-10.
    [88]刘洋,周家启.计及气候因素的大电力系统可靠性评估.电力自动化设备,2003,23(91):60-62.
    [89]丁明,戴仁昶,洪梅,等。影响电网可靠性的气候模拟.电力系统自动化,1997,21(1):18-20.
    [90]陈云峰,张焰.计及变电站主接线影响的输电网供电可靠性分析.继电器,2007,35(2):60-63.
    [91]张保会,王立永,谭伦农,等.计及风险的市场环境下电力系统安全可靠性研究.电网技术,2005,29(3):44-49.
    [92]David A K, Liu Xujun. Dynamic security enhancement in power market system. IEEE Trans Power Systems,2002,17(2):431-438.
    [93]Flynn M, Sheridan W P, Dillon J D et al. Reliability and reserve in competitive electricity market scheduling. IEEE Trans on Power Systems,2001,16(1):78-87.
    [94]王超,徐政,高鹏,等.大电网可靠性评估的指标体系探讨.电力系统及其自动化学报,2007,19(1):42-48.
    [95]Chowdhury A, Koval O. Appllcation of customer interruption costs in transmission network reliability planning. IEEE Trans on Industry Applications,2001,37(6): 1590-1596.
    [96]Chowdhury A, Koval O. Customer responsive bulk transmission system reliability performance standards for use in a competitive electricity market. Proceedings of IEEE Power Engineering Society Summer Meeting. Seattle, USA,2000: 2057-2062.
    [97]Wang P, Billinton R. Implementation of non-uniform reliability in a deregulated power market. Proceedings of Canadian Conference on Electrical and Computer Engineering. Toronto, Canada,2001:857-861.
    [98]张焰.电网规划中的可靠性成本效益分析研究.电力系统自动化,1999,23(15):33-36.
    [99]Niioka S, Okada N, Yokoyama R. Evaluation and allocation of supply reliability cost in electricity market. Proceedings of International Conference on Power System technology, Perth, Australia,2000:703-707.
    [100]赵儆,康重庆,夏清,等.电力市场中可靠性问题的研究现状与发展前景.电力系统自动化,2004,28(5):6-10.
    [101]Maruejouls N, Sermanson V, Lee S. A practical probabilistic reliability assessment using contingency simulation. Proceedings of IEEE Power Systems Conference and Exposition, New York, USA,2004:1312-1318.
    [102]Fotuhi F, Gharagozloo H, Haghifam M. Impacts of power wheeling on composite system adequacy enhancement. Proceedings of IEEE Power Engineering Society Transmission and Distribution Conference and Exhibition Asia and Pacific, Dalian, China,2005:1-5.
    [103]Rudnick H, Palma R, Silva E. Transmission network expansion planning under an improved genetic algorithm. IEEE Trans on Power Systems,2001,16(4):930-931.
    [104]王海超,鲁宗相,周双喜.风电场发电容量可信度研究.中国电机工程学报,2005,25(10):103-106.
    [105]陈树勇,戴慧珠,白晓民,等.风电场的容量可信度和可避免费用计算.太阳能学报,1999,20(4):432-438.
    [106]Lingfeng W, Chanan S. A new method for capacity credit estimation of wind power. Fifteenth National Power Systems Conference (NPSC), Indian Institute of Technology Bombay, Mumbai,India, 2008:570-573.
    [107]Martin B, Diesendorf M, Calculating the capacity credit of wind power. Proceedings of the Fourth Biennial Conference, Simulation Society of Australia, Queesland, Australia,1980:36-42.
    [108]Milligan M R. Modeling utility-scale wind power plants, part 2:capacity credit. Wind Energy,2000,3(4):167-201.
    [109]Kris R, William D. An analytical formula for the capacity credit of wind power. Renewable Energy 31,2006:45-54.
    [110]Castro R M G, Ferreira A F M. A Comparison between chronological and probabilistic methods to estimate wind power capacity credit. IEEE Trans on Power Systems,2001,16(4):904-909.
    [111]Van Wijk A J M, Halberg N, Turkenburg W C. Capacity credit of wind power in the Netherlands. Electric Power Systems Research,1992,23:189-200.
    [112]Garver L L. Effective load carrying capability of generating units. IEEE Trans on Power Apparatus and Systems,1996,85(8):910-919.
    [113]Claudine D A, Surya Santoso. Non-iterative method to approximate the effective load carrying capability of a wind plant. IEEE Trans on Energy Conversion,2008, 23(2):544-550.
    [114]D'Annunzio C, Santos S. Analysis of a wind farm's capacity value using a non-iterative method. In:2008 IEEE Power and Energy Society General Meeting Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, Pennsylvania. USA,2008.
    [115]Milligan M. Measuring wind plant capacity value. National Wind Technology Centre NWTC, internet library:http://www.nrel.gov/wind/library.html
    [116]Rajat K. Effective load carrying capability of Interties. IEEE Trans on Power Apparatus and Systems,1984, PAS-103(12):3480-3487.
    [117]吴义纯,丁明,李生虎.风电场对发输电系统可靠性影响的评估.电工技术学报,2004,19(11):72-76.
    [118]倪受元.风力发电讲座—第一讲风力机的类型与结构.太阳能,2000,(2):6-10.
    [119]倪受元.风力发电讲座—第二讲风力机的工作原理和气动力特性.太阳能,2000,(3):12-16.
    [120]倪受元.风力发电讲座—第三讲风力发电用的发电机及风力发电系统.太阳能,2000,(4):12-17.
    [121]倪受元.风力发电讲座—第四讲风力发电机组的并网运行.太阳能,2001,(1):17-20.
    [122]倪受元.风力发电讲座—第五讲风力发电机组的独立运行和互补运行.太阳能,2001,(2):12-16.
    [123]吴运东.世界并网型风电机技术发展趋势.风力发电,2001(1).
    [124]Slootweg J G, Polinder H, Kling W L. Dynamic modeling of a wind turbine with doubly fed induction generator, IEEE Power Engineering Society Summer Meeting,2001, 1:644-649.
    [125]Ross B C, Arden B S, Joel K. Probability models of wind velocity magnitude and persistence. Solar Energy,1978,20(6):483-493.
    [126]Garcia A, Torres J L, Prieto E, Francisco A. Fitting wind speed distributions:A case study. Solar Energy,1998,62(2):139-144.
    [127]IEC 614001. Wind turbine generator systems. Part 1:Safety requirements.1994.
    [128]Daniel A R, Chen A A. Stochastic simulation and forecasting of hourly average wind speed sequences in Jamaica. Solar Energy,1991,46(1):1-11.
    [129]Lalarukh K, Yasmin Z J. Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan. Solar Energy,1997,61(1):23-32.
    [130]韩力群.人工神经网络理论、设计及应用.北京:化学工业出版社,2002.
    [131]董安正,赵国藩.人工神经网络在短期资料风速估计方面的应用.工程力学, 2003,20(5):10-13.
    [132]张颖,高中文.基于时间序列和神经网络的电力系统负荷预测.哈尔滨理工大学学报,2003,8(1):30-36.
    [133]Sanderhoff P. PARK2-User's Guide. Riso National Laboratory. Roskilde, Denmark,1993.
    [134]David A S. Wind turbine technology fundamental concepts of wind turbine engineering. New York:ASME,1994:313 ~ 315.
    [135]丁明,吴义纯,张力军.风电场风速概率分布参数计算方法的研究.中国电机工程学报,2005,25(10):107-110.
    [136]吴培华.风电场宏观和微观选址技术分析.科技情报开发与经济,2006,16(15):154-155.
    [137]Bertoldi O, Salvaderi L, Scalaino S. Monte Carlo approach in planning studies: an application to IEEE-RTS. IEEE Trans on Power Systems, 1988, 3(3): 1146-1150.
    [138]Billinton R, Li W Y. Hybrid approach for reliability evaluation of composite generation and transmission systems using Monte Carlo simulation and enumeration technique. IEE Proceedings-C,1991,138(3):233-241.
    [139]Billinton R, Jonnavithula A. Application of sequential Monte Carlo simulation to evaluation of distributions of composite system indices. IEE Proc.-Gener.Transm. Distrib.,1997,144(2):87-90.
    [140]郭永基.电力系统可靠性原理和应用.北京:清华大学出版社,1983.
    [141]张静.基于序贯蒙特卡罗仿真的配电网可靠性评估模型的研究:[硕士学位论文].合肥工业大学,2004.
    [142]李文沅.电力系统风险评估.北京:科学出版社,2006,71-73.
    [143]彭鹄.含风力发电的发输配电系统可靠性综合评估:[硕士学位论文].重庆大学,2007.
    [144]Wang P, Billinton R. Reliability benefit analysis of adding WTG to a distribution systems. IEEE Trans on Energy Conversion,2001,16(2):134-139.
    [145]Billinton R, Kumar S, Chowdhury N, et al. A reliability test system for educational purposes-Basic data. IEEE Trans on Power Systems,1989,4(3):1238-1244.
    [146]A report prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee. IEEE reliability test system. IEEE Trans on Power Apparatus and Systems,1979,98(6):2047-2054.
    [147]Milligan M, Parsons B. A comparison and case study of capacity credit algorithms for wind power plants. Wind Engineering,1999,23(2):159-166.
    [148]吴义纯,丁明,张立军.含风电场的电力系统潮流计算.中国电机工程学报,2005,25(4):36-39.
    [149]雷亚洲,王伟胜,印永华,等.基于机会约束规划的风电场穿透功率极限计算.中国电机工程学报,2002,22(5):32-35.
    [150]郑国强,鲍海,陈树勇.基于近似线性规划的风电场穿透功率极限的优化算法.中国电机工程学报,2004,24(10):68-71.
    [151]栗文义,张保会,巴根.风能大规模利用对电力系统可靠性的影响.中国电机工程学报,2008,28(1):100-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700