用户名: 密码: 验证码:
油茶低磷适应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶是我国特有的重要木本食用油料树种,主要分布在我国南方酸性红壤地区,土壤有效磷低是限制油茶产量提升的主导生态因素之一。本研究以油茶‘华硕’等主栽品种苗木为试材,综合运用分子生物学、植物生理学和根系生物学等学科的相关理论和技术,分别从油茶低磷诱导基因克隆与表达、根系有机酸分泌、光合生理响应以及难溶磷利用等方面,探讨油茶对红壤低磷环境的适应机理,为发掘油茶自身磷高效利用能力、筛选高磷效品种和提高磷肥利用效率提供科学依据和技术基础。主要结果如下:
     (1)采用Rr-PCR、RACE等技术,从油茶中克隆出高亲和力磷转运蛋白Pht1家族中2个基因,获得1个基因的cDNA片段,命名为CoPhtl:3;获得1个基因的全长cDNA序列,长度为1629bp,编码543个氨基酸,命名为CoPhtl:4;2个成员与其他物种的Phtl所编码的氨基酸同源性均在70%以上;预测显示COPhtl:4有11个确定跨膜域,1个疑似跨膜域,保守选择特征序列GGDYPLSATIMSE位于第4个跨膜域,蛋白由α-螺旋(所占比例为66.97%)、β-折叠和不规则卷曲构成,属于全α型蛋白质,具有高效磷转运蛋白的主要特征。实时定量PCR表明:CoPhtl:3和CoPhtl:4在根系中的表达显著受低磷诱导,而随磷浓度的增加,CoPhtl:3在叶片中的表达显著增加,CoPhtl:4则显著降低。
     (2)采用砂培法培养油茶幼苗,溶液法收集根系分泌物,气质联用法和液相色谱法测定根系分泌物和有机酸组分。结果表明:油茶在低磷情况下,树体养分缺乏,树高、地径和干重降低,侧根数量和总长增加,根冠比上升;根系分泌物的主要组分为酯类,主要有机酸为乙酸和琥珀酸;低磷显著诱导APase.柠檬酸、草酸、苹果酸以及甲酸的分泌。磷活化模拟试验表明:油茶根系分泌物对红壤磷、A1-P和Fe-P具有显著的活化能力;柠檬酸对红壤磷的活化作用最强,草酸对Fe-P活化能力最大,柠檬酸、草酸和苹果酸均能有效活化A1-P。
     (3)测定并分析不同磷浓度处理下油茶叶片光合色素含量、光合相关酶活性和生理参数。结果表明:低磷抑制了油茶叶绿素的合成,并通过非气孔因素限制净光合速率;随着磷浓度的下降,叶绿素荧光参数Fv/Fm和Yield值明显降低;合适浓度的磷供应对Rubisco活性具有促进作用,而低浓度磷供给促进了PEPC酶活性,缓解了Rubisco活性降低带来的光合能力下降;不同油茶品种光合生理参数受低磷影响具有差异性,油茶‘华硕’表现出更耐低磷的趋势。
     (4)通过盆栽试验研究无机难溶磷(Ca-P、Al-P和Fe-P)和有机磷(O-P)对酸性红壤养分、油茶幼苗形态、树体营养水平以及光合生理参数的影响。结果表明:O-P和Ca-P显著提高土壤pH值;Fe-P显著提高土壤全磷含量,而Ca-P和A1-P则显著提高土壤有效磷含量;油茶根际与非根际土壤中的养分含量具有明显差异;Ca-P和A1-P明显提高了苗高、地径和干鲜重,降低根冠比;外源磷显著提高油茶树体的磷含量,并显著影响氮和钾含量;除Fe-P外,其他磷源处理显著提高叶片SPAD值;外源磷的施用明显提高幼苗的净光合速率;Ca-P, Al-P和Fe-P处理提高油茶幼苗Fv/Fm, Fv'/Fm', Yield和qP。
     综上所述,油茶在低磷条件下通过启动油茶高亲和力转运系统,促进小分子有机酸等根系分泌物的过量分泌,以及拓展根系等方式来增加磷获取能力,同时启动光合保护系统和减缓地上部生长,从而满足自身的生长发育需要;Pht1基因表达量、荧光参数、有机酸分泌量等是油茶磷胁迫水平的特征量,可以作为高磷效油茶品种选育及磷营养水平诊断指标。
Oiltea(Camellia oleifera Abel.) is mainly distributed in South China where acidic red soils are predominant, and available phosphorus (P) is one of main ecological factor limiting the increase of oiltea's yield. Camellia oleifera 'Huashuo'and some common cultivars were selected as research materials and theories and technologies of molecular biology, plant physiology and root biology was applied in the study. The adaptive mechanism of oiltea to low phosphorus was discussed in terms of the expression of genes induced by low phosphorus, secretion of organic acids by roots, photosynthesis physiology and utilization of sparing soluble phosphates. The information obtained is valuable to further understand P utilization of oiltea in acidic red soil, cultivate varieties of P effective and increase efficiency of P fertilizer application in oiltea production. The results are as follows:
     (1) Phosphate transporter named CoPhtl;3and CoPhtl;4were isolated from oiltea with the method of RT-PCR and RACE. The CDS of CoPhtl;4is1629bp in length and it codes a predicted protein of543amino acids. The amino acid identity compared with other phosphate transporters is highly conserved and the similarities were all above70%. Eleven transmembrane domains and one suspect were predicated in CoPhtl;4and feature sequence(GGDYPLSATIMSE) located at the4th domain. Putative secondary and tertiary structure shows the protein is rich in alpha helix (66.97%) and possesses the main feature of transmembrane protein. The real-time RT-PCR results showed that expression of CoPhtl;3and CoPhtl;4in root, CoPhtl;3in leave of oiltea camellia were induced by P-deficiency and the expression of CoPhtl;3increased as the contenctration of phosphorus supplied.
     (2) Sand culture, solution collection, GC-MS and HPLC were employed to cultivate oiltea seedlings, collect and determine the kinds and concentration of root exudates. The results showed that oiltea's seedling height, stem diameter, dried weight and P contents decreased, while the numbers and total length of lateral roots and root/shoot ratios increased when treated by low phosphorus. Root exudates enhanced the mobilization of plant-unavailable phosphorus in red soil, Al-P and Fe-P. The main ingredients of root exudates were esters. Acetic acid was the main acid secreted by oiltea root followed by succinic acid, and APase, oxalic, formic, malic and citric acids increased significantly in response to phosphorus deficiencies. It was confirmed that the greatest extraction capability of P from red soil was obtained by citric acids and there were significant difference in mobilization of Ca-P, Al-P and Fe-P by organic acids and no difference of activation P value of Al-P by oxalic, malic and citric acids were found.
     (3) Photosynthetic pigments, activities of RUBP and PEPC and photosynthesis was measured by spectrophotometry, portable photosynthesis system and chlorophyll fiuorometer. Content of chlorophyll and photosynthesis was increased by suitable P concentration, and photosynthesis was restricted by low or high P concentration though non-stomatal factors. The highest net photosynthetic rate (Pn) of C. oleifera 'Huashuo' was observed in0.1mmolL-1P treatment and that of C. oleifera'XCL15' was observed in1.0mmol-L-1. Fv/Fm and Yield first increased and then decreased as increase of P in culture solution. RUBP activates was highest in proper P concentration while PEPC activities rose in other P concentration, which made up for the decrease of RUBP. C. oleifera'Huashuo'is more resistant to low P than C. oleifera 'XCL15'.
     (4) The effect of sparing soluble phosphates (Ca-P, Al-P, Fe-P) and organic phosphate (O-P) on nutrients content of acid soil, seedlings growth, nutrients content and photosynthesis of oiltea was studied by pot experiment. Nutrients content of acidic soil was distinct affected by application of sparingly soluble and organic phosphates. Fe-P accumulated the total phosphorus while Ca-P and Al-P increased the content of available phosphorus significantly. Meanwhile, the content of nutrients between rhizosphere and non-rhizosphere soil had significant differences. The seedling height, ground diameter and weight of oiltea increased and root/shoot ration decreased significantly by Ca-P and Al-P treatment, and P content of plant was improved and the contents of N and K affected by exogenous phosphates. Pn was increased for all P treated seedlings, and P treatments except for Fe-P increased SPAD values. Ca-P, Al-P and Fe-P treatment increased Fv/Fm, Fv'/Fm', Yield and qP.
     In conclusion, under P deficience, oiltea camellia satisfy their requirements for growth by starting high affinity inorganic phosphate transport system, promoting the excessive secretion of organic acids by root and expanding the roots to the increased phosphorus acquisition capability. At the same time, the photosynthetic protection system is started and the growth of shoots slowed. Characteristers such as expression of Phtl, parameters of fluorescence chlorophyll and secretion of organic acids can be used as the index of breeding P efficiency varities and level of P supplied.
引文
[1]陈隆升,陈永忠,彭绍峰,等.油茶对低磷胁迫的生理生化效应研究[J].林业科学研究,2010,23(5):782-786
    [2]陈永亮,李修岭,周晓燕.低磷胁迫对落叶松幼苗生长及根系酸性磷酸酶活性的影响[J].北京林业大学学报,2006,28(6):47-50
    [3]陈永忠.油茶优良种质资源[M].北京:中国林业出版社,2008
    [4]陈钰,郭爱花.不同磷胁迫对韭菜光合色素的影响[J].天津农业科学,2008,14(6):25-27
    [5]程智慧,徐鹏.百合根系分泌物的GC-MS鉴定.西北农林科技大学学报(自然科学版),2012,49(9):202-208
    [6]丁锐,邓小梅,奚如春,等.广东省油茶林地不同母岩红壤养分限制因子研究[J].经济林研究,2012,30(2):61-67
    [7]丁晓纲,刘喻娟,张应中,等.氮素营养对广宁红花油茶幼苗生长及光合特性的影响[J].中国农学通报,2012,28(34):22-26
    [8]杜育梅,刘国道.植物利用磷素的有效性研究进展[J].华南热带农业大学学报,2007,13(2):41-46
    [9]段海燕,王运华,徐芳森.植物高效吸收和利用磷营养的遗传学研究进展[J].植物学通报,2002,19(4):432-438
    [10]方红,王震洪,陈谋会,等.岩溶地区常绿阔叶林树种根际与非根际土壤的养分特征[J].贵州农业科学,2012,40(5):95-100
    [11]樊明寿,徐冰,王艳.缺磷条件下玉米根系酸性磷酸酶活性的变化[J].中国农业科技导报,2001,3(3):33-36
    [12]樊卫国,王立新.纽荷尔脐橙幼树对不同供磷水平的光合响应[J].果树学报,2012,29(2):166-170
    [13]冯丽贞,黄勇,马祥庆.磷胁迫对不同桉树品种酸性磷酸酶活性的影响[J].热带作物学报,2008,29(2):131-135
    [14]郭传州,陈建华,周强,等.油茶林地和树体内营养元素变化研究[J].经济林研究,1994,21(6):13-18
    [15]郭春爱,刘芳,许晓明.叶绿素b缺失和植物的光合作用[J].植物生理学通讯,2006,42(5):967-973
    [16]郭强.水稻OsPT2和OsPT2在异源表达系统中的功能鉴定[D].南京:南京农业大学,2008
    [17]郭晓敏.毛竹林平衡施肥及营养管理研究[D].南京:南京林业大学,2003
    [18]国家林业局.全国油茶发展规划(2009-2020)[M].北京:.中国林业出版社,2009
    [19]何方,何钢,田再荣,等.油茶低产林改造效应的研究:Ⅱ低产林改造相关分析[J].经济林研究,1997,15(3):12-17
    [20]何方,毛献策,王义强,等.中国油茶林地土壤类型的研究[J].经济林研究,1993,11(2):1-14
    [21]何方,何柏.油茶栽培分布与立地分类的研究[J].林业科学,2002,38(5):64-72
    [22]贺根和,刘强,彭水娥,等.铝胁迫对野生油茶光合特性的影响[J].湖北农业科学,2010,49(7):1593-1595
    [23]贺梦醒,高毅,胡正雪,等.解磷菌株B52的筛选鉴定及其解磷能力[J].应用生态学报,2012,23(1):235-239
    [24]洪常青,聂艳丽.根系分泌物及其在植物营养中的作用[J].生态环境,2003,12(4):508-511
    [25]黄宇,张海伟,徐芳森.植物酸性磷酸酶的研究进展[J].华中农业大学学报,2008,27(1):148-153
    [26]江伍雅.不同桉树品系对异质磷胁迫的适应机制研究[D].福州:福建农林大学,2010
    [27]兰忠明,林新坚,张伟光,等.缺磷对紫云英根系分泌物产生及难溶性磷活化的影响[J].中国农业科学,2012,45(8):1521-1531
    [28]李杰,石元亮,陈智文.我国南方红壤磷素研究概况[J].土壤通报,2011,42(3):763-768
    [29]黎章矩,曾燕如,戴文圣.油茶低产低效的内外影响因子调查[J].林业科技开发,2009,23(5):26-31
    [30]李春俭.高级植物营养学[M].北京:中国农业大学出版社,2008
    [31]李立芹.农作物Pht1家族磷转运体蛋白的生物信息学分析[J].作物杂志,2011(3):21-23
    [32]李绍长.玉米不同基因型磷效率差异及其机理研究[D].济南:山东农业大学,2003
    [33]李永夫.水稻适应低磷胁迫的营养生理机理研究[D].浙江:浙江大学,2006
    [34]李志刚.不同磷效率基因型大豆的筛选及其对磷素水平的反应机理研究[D].沈阳:沈阳农业大学,2004
    [35]梁宏玲,石磊,徐芳森,等.甘蓝型油菜不同磷效率基因型对土壤难溶性磷吸收利用的差异[J].中国油料作物学报,2007,29(3):297-301
    [36]梁霞,刘爱琴,马祥庆,等.磷胁迫对不同杉木无性系酸性磷酸酶活性的影响[J].植物生态学报,2005,29(1):54-59
    [37]林少韩,李桂梅.油茶低产林改造工程的技术策略与实施方法[J].林业科学研究,1991,4(4):353-359
    [38]刘建福.磷胁迫对澳洲坚果幼苗叶片光合作用的影响[J].西南师范大学学报(自然科学版),2007,32(2):45-48
    [39]龙洪旭.油桐油体蛋白等基因的克隆及生物信息学分析[D].长沙:中南林业科技大学,2010
    [40]卢鑫,张丽静,王瑞,等.玛曲高寒沙化草地3种灌木根际土壤磷素含量特征[J].草业科学,2012,29(2):167-173
    [41]陆文龙,王敬国,曹一平,等.低分子量有机酸对土壤磷释放动力学的影响[J].土壤学报,1998,35(4):493-500
    [42]马琼.马尾松菌根化育苗技术研究[D].重庆:西南农业大学,2004
    [43]马冬云,郭天财,宋晓,等.施氮对冬小麦旗叶RuBP羧化酶活性及叶绿素荧光参数的影响[J].西北植物学报,2010,30(1]):2197-2202
    [44]毛达如.植物营养研究方法[第2版][M].北京:中国农业大学出版社,2005
    [45]潘捷.湖南省现有油茶林低产原因分析[J].湖南林业科技,2010,37(3):46-47
    [46]沈宏,菊井森士,严小龙,等.大豆根分泌物活化难溶性铝磷的研究[J].水土保持学报,2005,19(1):68-70
    [47]沈宏,杨存义,范小威,等.大豆根系分泌物和根细胞壁对难溶性磷的活化[J].生态环境,2004,13(4):633-635
    [48]施教耐,吴敏贤,查静娟.植物磷酸烯醇式丙酮酸羧化酶的研究—I.PEP羧化酶同功酶的分离和变构特性的比较[J].植物生理学报,1979(5):225-235
    [49]唐明,任嘉红,薛蓬.苹果树VA菌根真菌接种效应[J].西北林学院学报,2002,17(4):49-51
    [50]汤银辉,何鹏.巴西橡胶树磷转运蛋白基因的克隆及生物信息学分析[J].热带作物学报, 2010,31(5):758-766
    [51]田朝光.普通油茶重要经济性状及脂肪酸组成遗传变异研究[D].富阳:中国林业科学研究院,2000
    [52]王策,秦静静,甘红豪,等.毛果杨全基因组磷酸根转运蛋白家族成员序列分析[J].浙江农林大学学报,2012,29(4):516-526
    [53]王菲,曹翠玲.磷水平对不同磷效率小麦叶绿素荧光参数的影响[J].植物营养与肥料学报,2010,16(3):758-762
    [54]王晶,韩晓日,战秀梅,等.低磷胁迫对番茄叶片膜脂过氧化及保护酶活性的影响[J].植物营养与肥料学报,2005,11(6):851-854
    [55]王兰珍.冬小麦高磷效种质鉴定及其生理遗传分析[D].北京:中国农业大学,2003
    [56]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2005
    [57]汪涛,杨元合,马文红.中国土壤磷库的大小、分布及其影响因素.北京大学学报(自然科学版),2008,44(6):945-952
    [58]吴鹏飞.P高效利用杉木无性系适应环境磷胁迫的机制研究[D].福州:福建农林大学,2009
    [59]武维华.植物生理学[M].北京:科学出版社,2003
    [60]谢钰容.马尾松对低磷胁迫的适应机制和磷效率研究[D].临安:中国林业科学研究院,2003
    [61]谢钰容,周志春,金国庆,等.低P胁迫对马尾松不同种源根系形态和干物质分配的影响[J].林业科学研究,2004,17(3):272-278
    [62]谢钰容,周志春,廖国华,等.低磷胁迫下马尾松种源酸性磷酸酶活性差异[J].林业科学,2005,41(3):58-62
    [63]熊庆娥.植物生理学实验教程[M].成都:四川科学技术出版社,2003
    [64]杨存义,刘灵,沈宏,等.植物Phtl家族磷转运子的分子生物学研究进展[J].分子植物育种,2006,4(2):153-159
    [65]杨瑞吉,牛俊义.磷胁迫对油菜根系分泌物的影响[J].西南农业大学学报(自然科学版),2006,28(6):896-899
    [66]易时来,温明霞,李学平,等.菌根改善植物磷素营养的研究进展[J].中国农学通报,2004,20(5):164-166
    [67]尹艾萍,付玉嫔,祁荣频,等.磷胁迫和不同栽植方式下云南松幼苗生物量及其分配的变化[J].西北林学院学报,2011,26(5):53-58
    [68]印莉萍,黄勤妮,吴平.植物营养分子生物学及信号转导[M],2版.北京:科学出版社,2006
    [69]俞元春,余健,房莉,等.缺磷胁迫下马尾松和杉木苗根系有机酸的分泌[J].南京林业大学学报(自然科学版),2007,31(2):9-12
    [70]袁军.普通油茶营养诊断及施肥研究[D].长沙:中南林业科技大学,2010
    [71]袁军,谭晓风,姜志娜,等.3个油茶新品种的光合特性[J].浙江农林大学学报,2012,29(4):527-532
    [72]袁军,谭晓风,袁德义,等.油茶根系分布规律调查研究[J].浙江林业科技,2009,29(4):30-32
    [73]袁军,谭晓风,袁德义,等.缺素对普通油茶幼苗根系形态及活力的影响[J].湖北农业科学,2010,49(2):314-316
    [74]张大鹏.叶幕PAR光能截留和分配对葡萄群体光合同化物源库关系的调控[J].植物生态学报,1995,19(4):302-310
    [75]张焕朝.杨树无性系磷营养效率的差异及其机理[D].南京:南京林业大学,1999
    [76]张雪洁,谭晓风,袁军,等.低磷胁迫对油茶叶绿素荧光参数的影响[J].经济林研究,2012,30(2):48-51
    [77]张振海,陈琰,韩胜芳,等.低磷胁迫对大豆根系生长特性及分泌H+和有机酸的影响[J].中国油料学报,2011,33(2):135-140
    [78]赵静,刘嘉儿,严小龙,等.磷有效性对大豆根冠中碳分配的影响[J].植物生理学通讯,2010,46(1):51-54
    [79]赵明,沈宏,严小龙.不同菜豆基因型根系对难溶性磷的活化吸收[J].植物营养与肥料学报,2002,8(4):435-440
    [80]郑金凤,董少鸣,严小龙,等.低磷胁迫对小麦代换系保护酶活性和丙二醛含量的影响及染色体效应[J].植物营养与肥料学报,2010,16(6):1366-1372
    [81]周崇莲,李襄乔.油茶内生菌根对32p吸收的研究[J].林业科技通讯,1983(11):8-11
    [82]周牮君.植物根系分泌物对难溶磷钾及土壤硒的活化作用研究[D].重庆:西南大学,2001
    [83]周牮君,王校常,吴文彬,等.根系分泌物对几种难溶磷活化作用的研究[J].西南农业大学学报,2001,23(5):401-403
    [84]周国英,陈小艳,李倩茹,等.油茶林土壤微生物生态分布及土壤酶活性的研究[J].经济林研究,2001,19(1):9-12
    [85]周志春,陈连庆,黄秀凤.马褂木菌根真菌筛选和菌根化育苗效果研究[J].林业科学研究2009,22(2):196-199
    [86]庄瑞林.中国油茶[M],2版.北京:中国林业出版社,2008
    [87]Ae N, Joji A, Kensuke O, et al. Phosphorus uptake by pigeon pea and its role in cropping systems of the indian subcontinent [J]. Science,1990,248(4954): 477-480
    [88]Aferousheh M, Hokmabadi H, Hosseini H M, et al. Effect of nitrogen, iron, magnesium, manganese and molybdenum deficiencies on biochemical and ecophysiological characteristics of pistachio seedling (Pistacia vera) [M], Options Mediterraneennes, A no.94,2010-XIV GREMPA Meeting on Pistachios and Almonds: 53-63
    [89]Ai P H, Sun S B, Zhao J N, et al. Two rice phosphate transporters, OsPhtl;2 and OsPhtl;6, have different functions and kinetic properties in uptake and translocation[J]. The Plant Journal, 2009, 57: 798-809
    [90]Babana A H, Antoun H. Effect of tilemsi phosphate rock-solubilizing microorganism on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali [J]. Plant and Soil,2006,287: 51-58.
    [91]Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review Plant Biology, 2006, 233-266
    [92]Ballard R. Fertilization of plantations in"Nutrition of Plantation Forests"[M]. London, Academic press,1984
    [93]Black C H. Interaction of phosphorus fertilizer form and soil medium on Douglas-fir seedling phosphorus content, growth and photosynthesis [J]. Plant and Soil,1988 (106):191-199
    [94]Boutraa T. Growth and carbon partitioning of two genotypes of bean (Phaseolus vulgaris) grown with low phosphorus availability [J]. EurAsian Journal of BioSciences,2009 (3):17-24
    [95]Bray R and Kurtz L. Determination of total organic and available forms of phosphorus in soils [J]. Soil Science,1945 (59):39-45
    [96]Bruulsema T. Recommendation development under 4R nutrient strwardship [C]//North Central Extension-Industry Soil Fertility Conference, 2009:25
    [97]Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces [J]. New Phytologist,2007 (173):11-26
    [98]Carvalhais L C, Dennis P G, Fedoseyenko D, et al. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency[J]. Journal of Plant Nutrition and Soil Science,2011 (174):3-11
    [99]Chapin L J. and Jones M L. Ethylene regulates phosphorus remobilization and expression of a phosphate transporter (PhPTl) during petunia corolla senescence[J]. Journal of Experimental Botany,2009,60(7):2179-2190.
    [100]Chen R and Jia P. Transformation and bioavailability of phosphorus in neutral and acidic soils [J]. Tropic and Sub-tropic Soil Science,1998 (7):6-10
    [101]Ciereszko I, Zebrowska E, Ruminowicz M. et al. Acid phosphatases and growth of barley (Hordeum vulgare L.) cultivars under diverse phosphorus nutrition [J]. Acta Physiologiae Plantarum,2011,33(6):2355-2368
    [102]Davies T G E, Ying J, Xu Q. et al. Expression analysis of putative high-affinity phosphate transporters in Chinese winter wheats [J]. Plant Cell and Environment, 2002(25):1325-1339
    [103]Derek P, Julie D W, David J S. et al. European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal Infection [J]. New Phytologist,2005 (167): 881-896
    [104]Desnos T. Root branching responses to phosphate and nitrate [J]. Current Opinion in Plant Biology,2008(11):82-87
    [105]Du Y M, Tian J, Liao Hong, et al. Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils [J]. Annals of Botany, 2009 (103):1239-1247
    [106]Fredeen A L, Rao I M, Terry N, et al. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max [J]. Plant Physiology, 1989 (89):225-230
    [107]Havilin J L, Beaton J D, Tisdale S L. et al. Soil fertility and fertilizers-an introduction to nutrient management [M],7th ed. Pearson education, inc, 2005
    [108]He G H, Zhang J F, Hu X H, et al. Effect of aluminum toxicity and phosphorus deficiency on the growth and photosynthesis of oil tea(Camellia oleifera Abel.) seedlings in acidic red soils [J]. Acta Physiologiae Plantarum, 2010, 33(4):1285-1292
    [109]Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes:a review [J]. Plant and Soil,2001 (237):173-195
    [110]Hoffland E. Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape [J]. Plant and Soil,1992, 140(2): 279-289
    [111]Hu H Q, Tan C N, Cai C F, et al. Availability and residual effects of phosphate rocks and inorganic P fractionation in a red soil of Central China [J]. Nutrient Cycling in Agroecosystems, 2001 (59):251-258
    [112]Huang Z A, Jiang D A, Yang Y, et al. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants [J]. Photosynthetica,2004,42 (3): 357-364
    [113]Ishikawa S, Adu-Gyamfi J J, Nakamura T, et al. Genotypic variability in phosphorus solubilizing activity of root exudates by pigeonpea grown in low-nutrient environments [J]. Plant and Soil, 2002,245:71-81
    [114]Karandashov V and Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas [J]. Trends in Plant Science,2005,10(1):22-29
    [115]Khorassani R, Hettwer U, Ratzinger A, et al. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus [J]. BMC Plant Biology,2011 (11):1-8
    [116]Kochian L, Hoekenga O, Pincros MA, et al. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and Phosphorous efficiency [J]. Annual Review of Plant Biology,2004 (55):459-493
    [117]Kouas S, Debez A, Slatni T, et al. Root proliferation, proton efflux, and acid phosphatase activity in common bean (Phaseolus vulgaris) under phosphorus shortage [J]. Journal of Plant Biology, 2009,52:395-402
    [118]Kouas S, Louche J, Debez A, et al. Effect of phosphorus deficiency on acid phosphatase and phytase activities in common bean(Phaseolus vulgaris L.) under symbiotic nitrogen fixation [J]. Symbiosis,2009,47:141-149
    [119]Liao H, Wan H Y, Shaff J, et al. Phosphorus and aluminum interactions in soybean in relation to Al tolerance:exudation of specific organic acids from different regions of the intact root system [J]. Plant Physiology, 2006, 141(2):674-684
    [120]Lipton D S, Blanchar R W, Blevins D G, et al. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings [J]. Plant and Soil,1987 (85):315-317
    [121]Loth-Pereda V, Orsini E, Courty P, et al. Structure and expression profile of the phosphate Phtl transporter gene family in mycorrhizal Populus trichocarpa [J]. Plant Physiolgy, 2011,156: 2141-2154
    [122]Ma Z, Bielenberg D G, Brown K M, et al. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana [J]. Plant, Cell and Environment,2001 (24):459-467
    [123]Marschner, H. Mineral nutrition of higher plant [D],2ed. London, Academic press,1995
    [124]Marschner H, Romheld V, Kissel M, et al. Different strategies in higher plants in mobilization and uptake of iron [J]. Journal of Plant Nutrition,1986 (9):695-713
    [125]Mendoza R E. Phosphorus effectiveness in fertilized soils evaluated by chemical solutions and residual value for wheat growth [J]. Fertilizer Research,1992 (32):185-194
    [126]Muchhal U S, Pardo J M and Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana [J]. Proceedings of the National Academy of Sciences,1996(93): 10519-105231
    [127]Neumann G and Romheld V. Root excretion of carboxylic acids and protons in phosphorus-deficient plants [J]. Plant and Soil,1999 (211):121-130
    [128]Neumann G and V Romheld. The release of root exudates as affected by plant's physiological status [C]. In:The rhizosphere-biochemistry and organic substances at the soil-plant interface. Pinton R, Varanini Z and Nannipieri P, eds. New York:Marcel Decker, Inc,2001:41-93
    [129]Noriharu A and Takashi O. The role of cell wall componens from groundnut roots in solubilizing sparingly soluble phosphorus in low fertility soils [J]. Plant and Soil,1997 (196):265-270
    [130]Park M R, Baek o-H, Reyes B G, et al. Overexpression of a high-affinity phosphate transporter gene from tobacco (NtPT1) enhances phosphate uptake and accumulation in transgenic rice plants[J]. Plant and Soil,2007,292:259-269
    [131]Peek C S, Robson A D and Kuo J. The formation, morphology and anatomy of cluster root of Lupinus albus L. as dependent on soil type and phosphorus supply [J]. Plant and Soil,2003(248): 237-246
    [132]Racker E. Ribulose diphosphate carboxylase from spinach leaves [C]. Tn:Method sin Enzymology. Colowick S P, Kaplan N O, eds. New York, Academic Press,1962:266-278
    [133]Rausch C, Daram P, Brunner S, et al. Phosphorus transport mechanisms in vascular plants:supply meets complementarity [J]. Developments in Plant and Soil Sciences, 2001,92:18-19
    [134]Richardson A, Barea J M, Mcneill A M, et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganism [J]. Plant and Soil,2009(321):305-339
    [135]Richardson A, Hadobas P A, Hayes J E, et al. Utilization of P by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms [J]. Plant and Soil,2001 (229):47-56
    [136]Ryan P and Delhaize E. Function and mechanism of organic anion exudation from plant roots [J]. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:527-560
    [137]Seo H M, Jung Y H, Song S Y, et al. Increased expression of OsPTl, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnology Letter, 2008(30): 1833-1838.
    [138]Shen J B, Yuan L X, Zhang J L, et al. Phosphorus Dynamics:From Soil to Plant [J]. Plant Physiology,2011,156(3):997-1005
    [139]Shin H, Shin H S, Dewbre G R, et al. Phosphate transport in Arabidopsis:Phtl;1 and Phtl; 4 play a major role in phosphate acquisition from both low-and high-phosphate environments [J]. Plant Journal,2004,39:629-642
    [140]Sujkowska, M, Borucki W, Golinowski W, et al. Localization of acid phosphatase activity in the apoplast of pea (Pisum sativum L.) root nodules grown under phosphorus deficiency [J]. Acta Physiologiae Plantarum,2006,28(3):263-271
    [141]Sun C X, Qi H, Hao J J, et al. Single leaves photosynthetic characteristics of two insectresistant transgenic cotton (Gossypium hirsutum L.) varieties in response to light [J]. Photosynthetica, 2009 (47):399-408
    [142]Ting J P and Osmond I B. Photosynthetic phosphoenolpyrurate carboxylases [J]. Plant Physiology, 1973 (51):439-447
    [143]Von Uexkull H and Mutert E. Global extent, development and economic impact of acid soils [J]. Plant and Soil,1995(171):1-15
    [144]Warren C R and Adams M A. Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster [J]. Tree Physiology,2002 (22):11-19
    [145]Werther F and Havranek W M. Effects of nutrient-deficient soil on gas-exchange, chlorophyll fluorescence and C-AUocation in Young Picea abies (L.) Karst [J]. Phyton (Austria) Special issue:"Root-soil interactions",2000,40(4):179-184
    [146]Wissuwa M. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects [J]. Plant Physiology,2003,133(4):1947-1958
    [147]Wu Z, Zhao J, Gao R, et al. Molecular cloning, characterization and expression analysis of two members of the Phtl family of phosphate transporters in Glycine max[J]. PLoS ONE,2011,6(6): e19752. doi.10.1371/journal.pone.0019752
    [148]Xu H, Weng X and Yang Y, et al. Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants [J]. Russian Journal of Plant Physiology,2007,54(6):741
    [149]Yang G Z, Ding G D, Lei S, et al. Characterization of phosphorus starvation-induced gene BnSPX3 in Brassica napus. Plant and Soil,2012(350):339-351
    [150]Zeng Q L, Chen R F, Zhao X Q, et al. Aluminium uptake and accumulation in the hyperaccumulator Camellia Oleifera Abel [J]. Pedosphere,2011,21 (3):358-364
    [151]Zhang F J, Shen J B, Zhang J L, et al. Rhizosphere processes and management for improving nutrient use efficiency and crop productivity:implications for China [J]. Burlington:Academic Press, 2010
    [152]Zhang F S, Ma J, Cao Y P, et al. Phosphrous deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish(Raghanus satiuvs L.) and rape(Brassica napus L.) plants [J]. Plant and Soil,1997 (196): 261-264
    [153]Zhang H W, Huang Y, Ye X S, et al. Analysis of the contribution of acid phosphatase to P efficiency in Brassica napus under low phosphorus conditions [J]. Science China (Life Sciences), 2010,53(6):709-717
    [154]Zheng S. Crop production on acidic soils:overcoming aluminium toxicity and phosphorus deficiency [J]. Annals of Botany, 2010 (106):183-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700