用户名: 密码: 验证码:
海下金属矿床开采参数优化与安全预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海下资源绿色开采是采矿工程界中重要的发展方面。目前,有关海底煤炭资源开采已取得了丰硕的成果,然而,我国在海下金属矿床开采方面的研究才刚刚起步。为此,本文作者在国家重点基础研究发展计划、山东黄金集团重点科技攻关项目、国家科技支撑计划课题的资助下,以海下金属矿床开采关键技术为研究课题,在岩石力学基础研究的前提下对合理隔离层厚度、框架式采场结构参数、岩层监测与预警、矿井水系统等问题进行了系统的研究。
     在海下开采岩石力学基础方面,首先查明所采矿床的矿体赋存条件、矿体形态、矿山工程地质条件、地应力规律,然后,通过室内岩石力学试验测试及现场岩体结构面的调查,选取RMR法的6个评价指标作为新立矿区海下岩体质量评价的基础,应用Hoek-Brown准则得出不同质量等级岩体力学参数,为矿山井下工程布置、采场稳定性分析及参数优化等提供基础研究。
     在海下开采合理隔离层厚度方面,着重于隔水保护层的厚度研究,基于Mindlin厚板理论与Winkler地基理论建立了不规则形状的保护层模型,利用微分容积法求解并编制了求解程序DCFMP,以最大拉应力准则作为合理保护层的判据,分别确定了三山岛矿区的18个盘区的合理保护层厚度,最终建议的统一的保护层厚度为22.16m(安全系数1.8)。另外还发现了合理的保护层厚度与盘区面积的显著相关性,并得到了回归方程,为以后合理保护层的确定提供了更为简便的方法。
     在框架式结构参数优化方面,首先计算不同框架式采场结构参数的最大主应力,建立应力约束的体系应变能最大化的目标函数,求响应面函数后采用非线性优化技术对响应面函数进行优化,从而求得点柱的尺寸为4x4m、跨度为12m;然后基于Kirchhoff薄板理论建立中段间不规则顶底柱模型,利用Galerkin法和坐标映射技术求得顶底柱模型的数值解析解,建立综合考虑经济因素、安全因素和充填效果因素的目标函数,对三山岛矿区内的9个盘区的顶底柱分别进行优化设计,最终得到统一的最优厚度为7.16m。最后有限元强度折减法中任意点的应力-应变强度折减过程与莫尔-库仑准则条件下安全系数法接轨对中段内盘区间不同开采顺序的围岩稳定性进行分析,得出“隔二采一"方案最优,安全系数范围为2.5~3.5,未达矿岩失稳的条件。
     在岩层监测与预警方面,采用位于上盘围岩内的三个专用观测硐室A、B、C的监测数据,在使用小波变换对岩层位移监测数据进行趋势项分离及平稳化处理的基础上,以时间序列AR模型对监测数据进行短期预测,对不同的小波分解层数与预测步长得到的预测值与实测值进行误差分析,选定3-6步为最佳预测步长,预测误差可控制在1%以内。同时,通过研究对比各个岩土工程中预警指标的确定方法,选取单次采样时间内的变形速率vt与前20-80d的平均变形速率的比值作为岩层稳定变形阶段判断预警阀值的指标,对监测安全状态进行判别,可分析海底开采岩层的变形规律,指导海下开采的安全作业。
     在海下矿井的水系统研究方面,采集了三山岛矿区内的100个裂隙水样和13个特征水样(包括海水、第四系地下水、地表水和雨水),并分析了各个水样中的13项化学物理指标和2项同位素指标,首先利用主成分分析(PCA)获得了四个主成分(信息贡献率分别为48%、25%、10%和7%),通过深入分析各个主成分的水化学指标的特点,并对照相关的地质报告,确定了这四个主成分分别代表海水的浓缩与稀释过程、绢英岩化与碳酸盐化过程、钾长石化过程和二氧化碳溶解过程。然后在主成分分析的基础上利用模糊C均值聚类(FCM)对矿区的100个裂隙水样进行聚类分析,确定了四个空间上连续变化的聚类,并通过了密实度和分离度函数的有效性验证。利用图形技术直观地展示了四个聚类的空间分布,分析了每个聚类的水化学特点,并与相关的水文地质报告相互印证,确定四个聚类分别为深层咸水、浅层咸水、基岩卤水和混合废水。最后,深入分析PCA和FCM的结果,反演得到了矿区地下水运动和演化系统,包括水来源、迁移路径、混合位置、局部裂隙带以及采矿对地下水系统的影响。通过矿井水系统实时动态观测分析可起到海下开采矿井突水预警作用。
     本文所做的研究工作,不仅立足于学科前沿,而且紧密联系工程实践,着重解决海下金属矿床安全开采中的最关键问题,具有较高的应用价值和前瞻性。
Green technique in undersea mining is an orientation in the development of mining engineering industry. At present, the exploitation of undersea coal resources yielded a rich harvest. However, the research work of metal mine in this field is in its infancy. Financed jointly by the National Basic Research Program of China, the Key Science and Technology Project of Shangdong Gold Group CO.,LTD, and Key Technologies Research and Development Program of China, this article deals with the key technology of undersea mental mining. On the premise of the basic research of rock mechanics, reasonable layers of protection, frame stope structure parameters, strata monitoring and early warning and mine water system are discussed in this article.
     As regards the basic research of rock mechanics of undersea mining, it is important to know the bed of the existence of ore body, morphology of orebody, the geological condition and in-situ rock stress rule. Then, indoor rock mechanics testing and field testing of rock structural plane are carried out, and6evaluation index of RMR evaluation method was selected as a basis for evaluation of rock mass quality in Xinli mining area. Rock mechanics parameters of different quality levels were obtained by the use of Hoek-Brown criterion. All these works provides the research basis for underground engineering layout, stope stability analysis and parameter optimization, etc.
     The research of reasonable layers of protection in undersea mining focuses on the thickness. According to Mindlin plate theory and Winkler foundation theory, irregularly shaped protective layer model was established. And differential cubature method was used for the solving and programming of solving program DCFMP. As the criterion of reasonable protection layer, maximum tensile stress criterion is applied in the determination of reasonable protective layer thickness of the18panel in Sanshandao mine. The final recommendation uniform thickness of the protective layer is22.16m (the safety factor is1.8). It is also found that there was a significant correlation between reasonable protective layer thickness and area. A regression equation was then obtained and it provides a more convenient way for the determination of reasonable layers of protection.
     As far as the frame stope structure parameters is concerned, maximum principal stress of different frame stope structure parameters are first calculated. Then the system strain energy maximization objective function for stress constraint was established. In the cases, where response surface function is to be performed, it is better to use the nonlinear optimization techniques where the response surface functions have been calculated. The size of point column and the span are then known. They are respectively4×4m and12m. Based on Kirchhoff plate theory, irregular roof pillar model between the middle parts are established. The top pillar model and numerical analytical solution are also be found by the Galerkin method and coordinate mapping technology. Based on an overall analysis of factors in economic, safety and filling performance, an objective function is build. And the top pillar of the9panel in Sanshandao mine is optimized. The optimal unified thickness is7.16m. Stability analysis of surrounding rock of different excavation sequence within the panel mining stope of ore block was conducted using Stress-strain strength reduction process of any point in strength reduction FEM and safety factor method under the condition of Mohr-Coulomb criterion. And the mining sequence of the"two stope panels"is applied for the mine. Its safety factor range is2.5to3.5, which does not meet the conditions for instability ore.
     The monitoring data of the three exclusive observations chamber A, B, C in hanging wall rock is used in the research of strata monitoring and early warning. On the basis of the use of wavelet transform, estimation of abnormal tendency and smoothing treatment of the strata displacement monitoring data is carried out. Time series AR model was used for short-term monitoring forecasts. The error between the predicted and measured values of different wavelet decomposition level and forecast step was analyzed. Prediction error can be controlled within1%, and3-6is the best estimate step. At the same time, by comparing each determining method of the warning indicators in geotechnical engineering, the ratio of the deformation rate of vt in a single selected sampling time before and the average strain rate of20-80d, as threshold warning indicator, was used for the monitoring of security status discrimination. Studies show that the early warning system that can analyze the deformation of seabed mining rock, and it also provide guidance for safe operation of undersea mental mine.
     In the research of underground water system, thirteen physico-chemical indicators and two isotopic indicators were surveyed at100fissure water samples and13characteristic water samples in Xinli, a deposit of Sanshandao gold mine (Jiaodong peninsula, PRC). Firstly, principal components analysis (PCA) was used to extract four principal components (the contribution rates of information are48%,25%,10%and7%, respectively). This article has presented an in-depth look at the characteristics of hydrochemistry indicators of each main component. The four principal components are identified as the process of concentration and dilution of seawater, phyllic and carbonate process, the process of potash feldspathization and carbon dioxide dissolution process by comparing relevant geological reports. Then, based on an analysis of the PCA,100water samples were grouped into spatially continuous four water classes using the fuzzy c-means (FCM) clustering method. The article also takes advantage of graphic technology. It visually shows the spatial distribution of the four clusters. And then the characteristics of hydrochemistry of each cluster are analyzed, which verified the related hydrogeological report. The four clusters are deep saline water, shallow saline water, bedrock brine and mixed wastewater. Finally, a searching analysis of the results of PCA and FCM get to the movement and evolution system for groundwaters-in the pit. These factors include sources of water, flow path, mixing zone, local fissure zone and impact of mining.
     This research paper has focuses on the problem of how to carry on safe mining for undersea mental deposits. It not only based on the forefronts but it also closely bound up with engineering practice. Therefore, it is a prospective study with characteristics of great application value.
引文
[1]刘爱华,李夕兵,赵国彦编著.特殊矿产资源开采方法与技术[M].长沙:中南大学出版社,长沙,2009.
    [2]文先保.海洋开采[M].北京:冶金工业出版社,1996.
    [3]http://gongyi.ifeng.com/gundong/detail_2012_07/16/16062557_0.shtml中国“蛟龙号”完成7000米级海试胜利凯旋.
    [4]刘天泉,白矛,鲍海印.澳大利亚海下采煤经验.矿山测量[J].1982,(3):48-51.
    [5]Bath A R. Deep Sea Mining Technology:Recent Developments and Future Projects[R].1991.
    [6]Earney F C E. Technology and Economics of Deep Seabed Minerals[R].1990
    [7]Scott, Craven, John P. Alternatives in Deep Sea Mining[R]. University of Hawaii,1979.
    [8]Miao X, Cui X, Wang J, et al. The height of fractured water-conducting zone in undermined rock strata[J]. Engineering Geology,2011,120(1):32-39.
    [9]李夕兵,刘志祥,彭康,等.金属矿滨海基岩开采岩石力学理论与实践[J].岩石力学与工程学报,2010,29(10):1945-1953.
    [10]Peng S S, Chiang H S. Longwall mining[J]. New York:Wiley; 1984.p.708.
    [11]Yavuz H. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(2):193-205.
    [12]Kratzsch H. Mining subsidence engineering[J]. Environmental Geology and Water Sciences,1986,8(3):133-136.
    [13]Smart B G D, Aziz N I. The influence of caving mechanism on powered support rating[J]. Aust. IMM Bull. Proc,1989,294(4):77-84.
    [14]Reddish D J, Whittaker B N. Subsidence:occurrence, prediction and control[M]. Access Online via Elsevier,1989.
    [15]Singh K B, Dhar B B. Sinkhole subsidence due to mining[J]. Geotechnical & Geological Engineering,1997,15(4):327-341.
    [16]Singh R, Singh T N. Investigation into the behaviour of a support system and roof strata during sublevel caving of a thick coal seam[J]. Geotechnical & Geological Engineering,1999,17(1):21-35.
    [17]Palchik V. Influence of physical characteristics of weak rock mass on height of caved zone over abandoned subsurface coal mines[J]. Environmental Geology,2002, 42(1):92-101.
    [18]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S].北京:煤炭工业出版社,2000.(State Bureau of Coal Industry. Regulations of buildings, water, railway and main well lane leaving coal pillar and press coal mining[S]. Beijing:China Coal Industry Publishing House,2000.(in Chinese))
    [19]Bai M, Kendorski F, Van Roosendaal D. Chinese and North American high-extraction underground coal mining strata behaviour and water protection experience and guidelines[C]//Proceedings of the 14th International Conference on Ground Control in Mining, Morgantown.1995:209-17.
    [20]Palchik V. Formation of fractured zones in overburden due to longwall mining[J]. Environmental Geology,2003,44(1):28-38.
    [21]张慧,郑金龙.福建马坑铁矿主要含水层水化学特征与突水水源的识别[J].有色金属:矿山部分,2010,62(002):20-24.
    [22]李明山,禹云雷,路风光,等.姚桥煤矿矿井突水水源模糊综合评判模型[J].勘察科学技术,2001,2:16-20.
    [23]黄平华,陈建生.焦作矿区地下水水化学特征及涌水水源判别的FDA模型[J].煤田地质与勘探,2011,2:42-51.
    [24]Olsson O, Falk L, Forslund O, et al. Borehole Radar Applied to the Characterization of Hydraulically Conductive Fracture Zones in Crystalline ROCK1[J]. Geophysical Prospecting,1992,40(2):109-142.
    [25]李地元,李夕兵,赵国彦.露天开采下地下采空区顶板安全厚度的确定[J].露天采矿技术,2005,5(17):20
    [26]田志恒,聂永祥.复杂采空区顶板最小安全厚度的确定方法[J].采矿技术,2009,9(5):26-27.
    [27]蔡美峰,何满朝,刘东燕.岩石力学与工程[M].北京:科学出版社,2002.
    [28]孙振洋,刘贯群.中煤平朔三号井工矿水化学特征及对水文地质条件的反映[J].中国煤炭地质,2011,23(4):36-40.
    [29]徐军,郑颖人.响应面重构的若干方法研究及其在可靠度分析中的应用[J].计算力学学报,2002,19(2):217-221.(Xu Jun, Zheng Yingren. Research on response surface restructure method and its application in reliability analysis[J].Chinese Journal of Computational Mechanics,2002,19(2):217-221. (in Chinese))
    [30]刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展,1995,25(1):114-126.(Liu Ning, Lv Tairen. Stochastic FEM and its application in engineering[J]. Advance in Mechanics,1995,25(1):114-126.(in Chinese))
    [31]佟晓利,赵国藩.一种与结构可靠度分析几何法相结合的响面方法[J].土木工程学报,1997,30(4):51-57.(Tong Xiao li, Zhao Guofan. The response surface method in conjunction with geometric method in structural reliability analysis[J].China Civil Engineering Journal,1997,30(4):51-57.(in Chinese))
    [32]张弥,沈永清.用响应面方法分析铁路明洞结构荷载效应[J].土木工程学报,1993,26 (2):58-65.(Zhang mi, Shen yongqing. Analysis of loading effect on railway cut-and-cover tunnel structure by numerical response surface method [J]. China Civil Engineering Journal,1993,26(2):58-65.(in Chinese))
    [33]苏永华,方祖烈,高谦.用响应面方法分析特殊地下岩体空间的可靠性[J].岩石力学与工程学报,2000,19(1):55-58.(Su Yonghua, Fang Zulie, Gao qian. Reliability analysis on special underground rockmass space by response sunface method[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(1):55-58.(in Chin-ese))
    [34]朱殿芳,陈建康,郭志学.结构可靠度分析方法综述[J].中国农村水利水电,2002,(8):47-49.(Zhu Dianfang, Chen Jiankang,Guo Zhixue. Summary of analysis method of structural reliability [J]. China Rural Water and Hydropower,2002,(8):47-49.(in Chinese))
    [35]Ou, Dayi, Cheuk Ming Mak, and P. R. Kong. "Free flexural vibration analysis of stiffened plates with general elastic boundary supports." World Journal of Modelling and Simulation 8.2 (2012):96-102.
    [36]Khov, Henry, Wen L. Li, and Ronald F. Gibson. "An accurate solution method for the static and dynamic deflections of orthotropic plates with general boundary conditions." Composite Structures 90.4 (2009):474-481.
    [37]Quintana, M., and Liz G. Nallim. "A general Ritz formulation for the free vibration analysis of thick trapezoidal and triangular laminated plates resting on elastic supports." International Journal of Mechanical Sciences (2013).
    [38]Saadatpour, M. M., and M. Azhari. "The Galerkin method for static analysis of simply supported plates of general shape." Computers & structures 69.1 (1998):1-9.
    [39]Cheung, Y. K., L. G. Tham, and W. Y. Li. "Free vibration and static analysis of general plate by spline finite strip." Computational mechanics 3.3 (1988):187-197.
    [40]Kang, Sang Wook, and S. N. Atluri. "Free vibration analysis of arbitrarily shaped polygonal plates with simply supported edges using a sub-domain method." Journal of Sound and Vibration 327.3 (2009):271-284.
    [41]Li, W. L., et al. "An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports." Journal of Sound and Vibration 321.1 (2009):254-269.
    [42]Catania, Giuseppe, and Silvio Sorrentino. "Spectral modeling of vibrating plates with general shape and general boundary conditions." Journal of Vibration and Control 18.11 (2012):1607-1623.
    [43]Shi, Jisong, Wen Chen, and Chanyuan Wang. "Free vibration analysis of arbitrary shaped plates by boundary knot method." Acta Mechanica Solida Sinica 22.4 (2009):328-336.
    [44]Liu, F-L., and K. M. Liew. "Differential cubature method for static solutions of arbitrarily shaped thick plates." International Journal of Solids and structures 35.28 (1998):3655-3674.
    [45]Long, Shuyao, and S. N. Atluri. "A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate." Computer Modeling in Engineering and Sciences 3.1 (2002):53-64.
    [46]Civalek, Omer. "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods." Applied mathematical modelling 31.3 (2007):606-624.
    [47]Carter, T. G., and R. I. Miller. "Crown-pillar risk assessment-planning aid for cost-effective mine closure remediation." Transactions of the Institution of Mining and Metallurgy-Section A-Mining Industry 104 (1995):A41.
    [48]Hutchinson, D. Jean, C. Phillips, and G. Cascante. "Risk considerations for crown pillar stability assessment for mine closure planning." Geotechnical & Geological Engineering 20.1 (2002):41-64.
    [49]Bakhtavar, Eezzaddin, Koroush Shahriar, and Kazem Oraee. "A model for determining optimal transition depth over from open-pit to underground mining." Proceedings of the 5th International Conference on Mass Mining.2008.
    [50]Bakhtavar, Ezzeddin, Koroush Shahriar, and Kazem Oraee. "Transition from open-pit to underground as a new optimization challenge in mining engineering." Journal of Mining Science 45.5 (2009):485-494.
    [51]北京有色设计研究总院.新立矿区1500吨/日采矿工程初步设计[M].
    [52]孙祥,杨子荣,赵忠英.主应力方向地质力学分析法的应用[J].岩土工程学报,2006,28(1):81-84. (SUN Xiang, YANGZi-rong, ZHAO Zhong-ying. Application of geomechanical analytic approach of the principal stress orientation [J]. Chinese Journal of Geotechnical Engineering,2006,28(1):81-84. (in Chinese))
    [53]马春德,徐纪成,陈枫.大红山铁矿三维地应力场的测量及分布规律研究[J].金属矿山,2007,8:42-45. (Ma Chunde, Xu Jicheng, Chen Feng. Research on In-Situ Stress Measurement and Its Distribution Law in Dahongshan Iron Mine[J]. METAL MINE,2007,8:42-45. (in Chinese))
    [54]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388. (Zheng Yingren, Zhao Shangyi. Application of strength reduction FEM in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(19):3381-3388. (in Chinese))
    [55]张斌.基于能量原理的有限元强度折减法分析边坡稳定[D].同济大学:土木工程学院,2008年3月.(ZHANG Bin. Strength reduction FEM of slope stability analysis based on Energy Theory[D]. Shanghai Tongji University:Shool of Civil Engineering (in Chinese))
    [56]赵尚毅.有限元强度折减法及其在土坡与岩坡中的应用[博士学位论文][D].重庆:后勤工程学院,2005.(Zhao Shangyi. Strength reduction finite element method and its application to soil and rock slope[Ph. D. Thesis] [D]. Chongqing:Logistical Engineering University,2005.(in Chinese))
    [57]赵尚毅,郑颖人,张玉芳.有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336.(Zhao Shangyi, Zheng Yingren, Zhang Yufang. Study on the slope failure criterion in strength reduction finite element method[J]. Rock and Soil Mechanics,2005,26(2):332-336.(in Chinese))
    [58]栾茂田,武亚军,年廷凯.强度折减有限法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.(Luan Maotian, Wu Vajun, Nian Tingkai.A criterion for evaluating slope stability based on development of plastic zone by shear strength reduction finite element[J] Journal of Disaster Prevention and Mitigation Engineering,2003,23(3):1-8.(in Chinese))
    [59]蒋斌松,韩立军,贺永年.深部岩体变形的混沌预测方法[J].岩石力学与工程学报,2005,24(16):2934-2940.
    [60]王艳辉,宋卫东,蔡嗣经.地下金属矿山崩落采矿法岩层移动规律分析[J]. 金属矿山,2002,309:13-16.
    [61]赵静波,高谦,李莉.地下采动岩层移动预测理论分析与研究[J].矿冶工程,2004,24(3):1-4.
    [62]谭云亮,王泳嘉,朱浮声.矿山岩层运动非线性动力学反演预测方法[J].岩土工程学报,1998,20(4).
    [63]丛爱岩,成枢,刘春,等.时序分析法在岩层与地表移动中的应用[J].中国矿业大学学报,1999,28(2):159-161.
    [64]王连国,宋扬,缪协兴.底板岩层变形破坏过程中混沌性态的Lyapunov指数描述研究[J].岩土工程学报,2002,24(3):356-359.
    [65]Diederichs M S, Kaiser P K. Stability of large excavations in laminated hard rock masses:the voussoir analogue revisited[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(1):97-117.
    [66]陈子荫.时间序列分析——一种预报岩体力学行为的可能途径[J].岩土工程学报,1991,13(4):87-95.
    [67]Yu, Chang-Il Kim, YH Song I K. A novel short-term load forecasting technique using wavelet transform analysis[J]. Electric Machines&Power Systems,2000, 28(6):537-549.
    [68]Renaud O, Starck J L, Murtagh F. Wavelet-based forecasting of short and long memory time series [M]. Universite de Geneve, Faculte des sciences economiques et sociales, Departement d'econometrie,2002.
    [69]白翔宇,叶新铭,蒋海.基于小波变换与自回归模型的网络流量预测[J].计算机科学,2007,34(7):47-54.
    [70]李世烽,宋军.变形速率比值判据与猫山隧道工程验证[J].中国工程科学,2002,4(6):85-91.
    [71]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1.
    [72]沈振中,陈允平,王成,等.大坝安全实时监控和预警系统的研制和开发[J].水利水电科技进展,2010,30(003):68-72.
    [73]Guler C, Kurt M A, Alpaslan M, et al. Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques[J]. Journal of Hydrology,2012,414:435-451.
    [74]Mondal N C, Singh V P, Singh V S, et al. Determining the interaction between ground water and saline water through groundwater major ions chemistry [J]. Journal of Hydrology,2010,388(1):100-111.
    [75]Shrestha S, Kazama F. Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin, Japan[J]. Environmental Modelling & Software,2007,22(4):464-475.
    [76]Salifu A, Petrusevski B, Ghebremichael K, et al. Multivariate statistical analysis for fluoride occurrence in groundwater in the Northern region of Ghana[J]. Journal of contaminant hydrology,2012.
    [77]Cuoco E, Tedesco D, Poreda R.J, et al. Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: implications for essential potable water resources [J]. Journal of hazardous materials, 2012.
    [78]Krishna A K, Satyanarayanan M, Govil P K. Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area:a case study from Patancheru, Medak District, Andhra Pradesh, India[J]. Journal of hazardous materials,2009,167(1):366-373.
    [79]Guler C, Thyne G D. Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c-means clustering[J]. Water Resources Research,2004,40(12):W12503.
    [80]Chen K, Jiao J J, Huang J, et al. Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen, China[J]. Environmental Pollution,2007,147(3):771-780.
    [81]Al-Qudah O, Woocay A, Walton J. Identification of probable groundwater paths in the Amargosa Desert vicinity[J]. Applied Geochemistry,2011,26(4):565-574.
    [82]Forrest M J, Kulongoski J T, Edwards M S, et al. Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California[J]. Applied Geochemistry,2013,33:25-40.
    [83]Favaro L, Tirelli T, Pessani D. The role of water chemistry in the distribution of Austropotamobius pallipes (Crustacea Decapoda Astacidae) in Piedmont (Italy)[J]. Comptes rendus biologies,2010,333(1):68-75.
    [84]Chae G T, Yun S T, Kim K, et al. Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea:water-rock interaction and hydrologic mixing[J]. Journal of Hydrology,2006,321(1):326-343.
    [85]Reghunath R, Murthy T R, Raghavan B R. The utility of multivariate statistical techniques in hydrogeochemical studies:an example from Karnataka, India[J]. Water Research,2002,36(10):2437-2442.
    [86]Sliva L, Dudley Williams D. Buffer zone versus whole catchment approaches to studying land use impact on river water quality[J], Water Research,2001,35(14): 3462-3472.
    [87]Sole M, Fetzer I, Wennrich R, et al. Aquatic hyphomycete communities as potential bioindicators for assessing anthropogenic stress[J]. Science of the Total Environment,2008,389(2):557-565.
    [88]Laaksoharju M, Smellie J, Tullborg E L, et al. Hydrogeochemical evaluation and modelling performed within the Swedish site investigation programme [J]. Applied Geochemistry,2008,23(7):1761-1795.
    [89]Laaksoharju M, Gascoyne M, Gurban I. Understanding groundwater chemistry using mixing models[J]. Applied Geochemistry,2008,23(7):1921-1940.
    [90]Laaksoharju M, Skarman C, Skarman E. Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information[J]. Applied Geochemistry,1999,14(7):861-871.
    [91]Laaksoharju M, Tullborg E L, Wikberg P, et al. Hydrogeochemical conditions and evolution at the Aspo HRL, Sweden[J]. Applied Geochemistry,1999,14(7): 835-859.
    [92]Mahlknecht J, Steinich B, de Leon I N. Groundwater chemistry and mass transfers in the Independence aquifer, central Mexico, by using multivariate statistics and mass-balance models[J]. Environmental Geology,2004,45(6):781-795.
    [93]Lucieer V, Lucieer A. Fuzzy clustering for seafloor classification[J]. Marine Geology,2009,264(3):230-241.
    [94]Hammah R E, Curran J H. Fuzzy cluster algorithm for the automatic identification of joint sets[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):889-905.
    [95]Brady B H G. Rock mechanics:for underground mining[M]. Springer,2004.
    [96]蔡美峰,王鹏,赵奎,等.基于遗传算法的岩体结构面的模糊C均值聚类方法[J].岩石力学与工程学报,2005,24(3):371-376.CAI Mei-feng, WANG Peng, ZHAO Kui, et al. Fuzzy C-means cluster analysis based on genetic algorithm for automatic identifcatin of joint set[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(3):371-376.
    [97]卢波,丁秀丽,邬爱清.岩体随机不连续面产状数据划分方法研究[J].岩石力学与工程学报,2007,26(9):1809-1816.LU Bo, DING Xiu-li, WU Ai-qing. Study on method of orientation data partitioning of randomly distributed discontinuities of rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(9): 1809-1816.
    [98]宋金龙,黄润秋,裴向军.基于粒子群算法的岩体结构面产状模糊C均值聚类分析[J].工程地质学报,2012,20(4):591-598.SONG Jin-long, HUANG Run-qiu, PEI Xiang-jun. Particle swarm optimization algorithm based fuzzy C-means cluster analysis for discontinuities occurrence in rock mass[J]. Journal of Engineering Geology,2012,20(4):591-598.
    [99]姜晓辉,范宏瑞,胡芳芳,等.胶东三山岛金矿中深部成矿流体对比及矿床成因[J].岩石学报,2011,27(5):1327-1340.
    [100]杨清泉,李威,陶晓杰.三山岛海底金矿地质特征及矿床成因探讨[J].黄金科学技术,2010,18(3):5-8.
    [101]李威,郭彬,王振军.三山岛金矿床控矿构造特征及下盘找矿实践[J].黄金科学技术,2008,16(4):38-40.
    [102]邵明明,曲伟勋,陈兵宇.三山岛金矿构造特征及找矿意义[J].华南地质与矿产,2011,9(4):14-15.
    [103]谭红军.三山岛金矿水文地质条件的研究[J].矿业研究与开发,1993,5(2):71-84.
    [104]禹斌,李惠,李德亮,等.山东莱州三山岛金矿床的构造叠加晕模式研究与深部预测[J].地质找矿论丛,2010,9(3):260-263.
    [105]周国发,吕古贤,申玉科.山东三山岛金矿床地质特征及找矿预测[J].黄金科学技术,2011,8(4):1-6.
    [106]周国发,吕古贤,邓军.山东三山岛金矿床流体包裹体特征及其地质意义[J].现代地质,2008,2(1):24-32.
    [107]李兆麟,黄兰英.山东三山岛金矿床形成物理化学条件研究[J].矿床地质,1985,4(4):35-46.
    [108]刘日富,蔡小宁.三山岛—仓上、新城—焦家成矿带深部找矿理论与实践[J].黄金科学技术,2008,16(4):29-32.
    [109]王君亭,孙宗锋,朱兆庆,等.山东省莱州市新立金矿床成矿规律研究及成矿预测[M].北京:地质出版社,2005.
    [110]陈长琦,干蜀毅,朱武.扫描电子显微镜成像信号分析[J].真空,2001(6):42-44.
    [111]施斌,姜洪涛.黏性土微观结构分析技术研究[J].岩石力学与工程学报,20(6):864-870.
    [112]熊承仁,唐辉明,刘宝琛,等.利用SEM照片获取土的孔隙结构参数[J].地球科学,32(3):415-419.
    [113]蔡美峰.地应力测量原理和技术[M].北京:科学技术出版社,2002.
    [114]马春德,徐纪成,陈枫,等.大红山铁矿三维地应力场的测量及分布规律研究[J].金属矿山,2007,8(1):42-46.
    [115]李满洲,余强,郭启良,等.地应力测量在矿床突水防治中的应用——以河南夹沟铝土矿床突水防治工程为例[J].地球学报,2006,27(4):373-378.
    [116]马春德,徐纪成,陈枫,罗一忠.海下矿区三维地应力测量及分布规律研究[J].矿冶工程,2011,31(5):9-12.
    [117]邓继辉,陈柏林,吴小宁,等.岩体结构面产状的自组织聚类分析[J].长江科学院院报,2011,28(3). DENG Ji-hui, CHEN Bo-lin, WU Xiao-ning et al. self-organizing clustering analysis for discontinuities occurrence[J]. Journal of Yangtze River Scientific Research Institude,2011,28(3).
    [118]徐必根,王春米,唐绍辉.大体积采空区岩体结构面聚类分布特征研究[J].工程地质学报,2008,16(5):639-644.XU Bi-gen, WANG Chun-lai, TANG Shao-hui, Distribution charactoristic of rock structural plates at large mine goal in Guangxi province[J]. Journal of Engineering Geology,2008,16(5):639-644.
    [119]李继明.岩体结构面产状改进的K均值聚类分析[J].长江科学院院报,2012,29(9):49-52.LI Ji-ming. The improved k-means clustering analysis for discontinuities occurrence of rock mass[J]. Journal of Yangtze River Scientific Research Institude,2012,29(9):49-52.
    [120]周玉新,周志芳,孙其国.岩体结构面产状的综合模糊聚类分析[J].岩石力学与工程学报,2005,24(13):2283-2287.ZHOU Yu-xin, ZHOU Zhi-fang, SUN Qi-guo. Synthetical fuzzy clustering analysis for joints occurrence of rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(13):2283-2287.
    [121]王鹏,赵学亮,万林海,等.基于GA和FCM的岩体结构面的混合聚类方法[J].北京科技大学学报,2004,26(3):227-232.WANG Peng, ZHAO Xu-liang, WAN Lin-hai, et al.A mixed clustering method based on GA and FCM for discontinuities of rock mass[J]. Journal of University of Science and Technology
    Beijing,2004,26(3):227-232.
    [122]滕继东,徐光黎,申艳军.基于蚁群算法的结构面产状模糊C均值聚类分析[J].安全与环境工程,2010,17(4):114-117.TENG Ji-dong, XU Guang-li, SHEN Yan-jun. Fuzzy C-means cluster analysis based on ant colony algorithm for orientations of joint[J]. safety and environmental engeneering,2010,17(4):114-117.
    [123]Hung M C, Yang D L. An efficient fuzzy c-means clustering algorithm[C]//Data Mining,2001. ICDM 2001, Proceedings IEEE International Conference on. IEEE,2001:225-232.
    [124]Ruspini E H. Numerical methods for fuzzy clustering [J]. Information Sciences,1970,2(3):319-350.
    [125]Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [J].1973.
    [126]Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. Kluwer Academic Publishers,1981.
    [127]Bezdek J C, Ehrlich R, Full W. FCM:The fuzzy c-means clustering algorithm[J]. Computers & Geosciences,1984,10(2):191-203.
    [128]Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. Fuzzy Systems, IEEE Transactions on,1995,3(3):370-379.
    [129]马凤山,刘钦.新立矿区水文地质研究报告[R].山东黄金集团矿业股份有限公司三山岛金矿,2007:37-81
    [130]MA Feng-shan, LIU Qin. hydrogeological research report of Xinli deposit[R].SHANGDONG GOLD MINING CO.,LTD,2007:37-81
    [131]贾明涛,王李管.基于区域化变量及RMR.评价体系的金川Ⅲ矿区矿岩质量评价[J].岩土力学,2010,31(6):1907-1912.
    [132]李强.BP神经网络在工程岩体质量分级中的应用研究[J].西北地震学报,2002,24(3):2-3.
    [133]原国红,陈剑平,马琳.可拓评判方法在岩体质量分类中的应用[J].岩石力学与工程学报,2005,24(9):1539-1544.
    [134]宫凤强,李夕兵.距离判别分析法在岩体质量等级分类中的应用[J];岩石力学与工程学报;2007(01):190-194.
    [135]刘爱华,苏龙,朱旭波,赵国彦.基于距离判别分析与模糊数学的岩体质量评判法[J].采矿与安全工程学报.2011(03):462-467
    [136]王瑞红,李建林,蒋昱州,等.考虑岩体开挖卸荷边坡岩体质量评价[J].岩土力学,2008(29):2471-2746.
    [1 37]胡全舟,吴超,陈沅江.风险评价方法在地下工程围岩稳定性分级中的应用[J].地下空间与工程报,2005,1(6):874-877.
    [138]连建发,慎乃齐,张杰坤.分形理论在岩体质量评价中的应用研究[J].岩石力学与工程学报,2001,220(增刊):1695-1699.
    [139]陈昌彦,王贵荣.各类岩体质量评价方法的相关性探讨[J].岩石力学与工程学报,2002(21):1894-1900.
    [140]李洪建.龙开口水电站坝基岩体质量评价及开挖施工信息反馈研究[D].成都:成都理工大学,2009.
    [141]Hoek & Brown. Practical Rock Engineering[M]. Rocscience:2000.
    [142]陈玉民,李夕兵,等.海底大型金属矿床安全高效开采技术[M].北京:冶金工业出版社,2003.
    [143]栾元重,李静涛,班训海,等.近距煤层开采覆岩导水裂隙带高度观测研究[J].采矿与安全工程学报,2010(1).
    [144]熊晓英,杜广森,李俊斌.注水实验法探测导水裂隙带高度[J].煤炭技术,2004,23(2):77-79.
    [145]汪华君,姜福兴,成云海,等.覆岩导水裂隙带高度的微地震(MS)监测研究[J].煤炭工程,2006,3:74-76.
    [146]王桦,程桦,刘盛东.基于并行电阻率法的导水裂隙带适时探测技术研究[J].煤矿安全,2007,38(7):1-5.
    [147]徐智敏,孙亚军.水库下采煤导水裂隙带高度预测[J].中国矿业,2008,17(3):96-99.
    [148]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S].北京:煤炭工业出版社,2000.(State Bureau of Coal Industry. Regulations of buildings, water, railway and main well lane leaving coal pillar and press coal mining[S]. Beijing:China Coal Industry Publishing House,2000.(in Chinese))
    [149]许家林,王晓振,刘文涛,等.覆岩主关键层位置对导水裂隙带高度的影响[J].岩石力学与工程学报,2009,28(2):380-385.
    [150]Liew K M, Han J B, Xiao Z M, et al. Differential quadrature method for Mindlin plates on Winkler foundations[J]. International Journal of Mechanical Sciences,1996,38(4):405-421.
    [151]Reissner E. The effect of transverse shear deformation on the bending of elastic plates[J]. J. appl. Mech,1945,12(2):69-77.
    [152]Reissner E. On bending of elastic plates[J]. Quart. Appl. Math,1947,5(1): 55-68.
    [153]Mindlin R D. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates[J]. J. of Appl. Mech.,1951,18:31-38.
    [154]Tsai C C, Wu E M Y. Analytical particular solutions of augmented polyharmonic spline associated with Mindlin plate model [J]. Numerical Methods for Partial Differential Equations,2012,28(6):1778-1793.
    [155]Setoodeh A R, Malekzadeh P, Vosoughi A R. Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory [J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2012,226(7):1896-1906.
    [156]Hou G L, Qi G W, Xu Y N, et al. The separable Hamiltonian system and complete biorthogonal expansion method of Mindlin plate bending problems[J]. Science China Physics, Mechanics and Astronomy,2013:1-7.
    [157]Kobayashi H, Sonoda K. Rectangular Mindlin plates on elastic foundations [J]. International journal of mechanical sciences,1989,31(9):679-692.
    [158]Liu F L, Liew K M. Differential cubature method for static solutions of arbitrarily shaped thick plates[J]. International Journal of Solids and structures,1998, 35(28):3655-3674.
    [159]Arnold D N, Falk R S. The boundary layer for the Reissner-Mindlin plate model[J]. SIAM Journal on Mathematical Analysis,1990,21(2):281-312.
    [160]Beirao da Veiga L, Buffa A, Lovadina C, et al. An isogeometric method for the Reissner-Mindlin plate bending problem[J]. Computer Methods in Applied Mechanics and Engineering,2012,209:45-53.
    [161]Calo V M, Collier N O, Niemi A H. Analysis of the discontinuous Petrov-Galerkin method with optimal test functions for the Reissner-Mindlin plate bending model[J]. arXiv preprint arXiv:1301.6149,2013.
    [162]Wang C M, Lim G T, Reddy J N, et al. Relationships between bending solutions of Reissner and Mindlin plate theories[J]. Engineering structures,2001, 23(7):838-849.
    [163]Hencky H. Uber die Beriicksichtigung der Schubverzerrung in ebenen Platten[J]. Ingenieur-Archiv,1947,16(1):72-76.
    [164]Panc V. Theories of elastic plates[M]. Springer,1975.
    [165]Wang W, Shi M X. Thick plate theory based on general solutions of elasticity[J]. Acta mechanica,1997,123(1):27-36.
    [166]Kim S M, McCullough B F. Dynamic response of plate on viscous Winkler foundation to moving loads of varying amplitude[J]. Engineering Structures,2003, 25(9):1179-1188.
    [167]Ghavanloo E, Daneshmand F, Rafiei M. Vibration and instability analysis of carbon nanotubes conveying fluid and resting on a linear viscoelastic Winkler foundation[J]. Physica E:Low-dimensional Systems and Nanostructures,2010,42(9): 2218-2224.
    [168]Harden C W, Hutchinson T C. Beam-on-nonlinear-Winkler-foundation modeling of shallow, rocking-dominated footings[J]. Earthquake Spectra,2009,25(2): 277-300.
    [169]Daloglu A T, Vallabhan C V G. Values of k for Slab on Winkler Foundation[J]. Journal of geotechnical and geoenvironmental engineering,2000, 126(5):463-471.
    [170]Saadatpour M M, Azhari M. The Galerkin method for static analysis of simply supported plates of general shape[J]. Computers & structures,1998,69(1): 1-9.
    [171]Civan F. Solving multivariable mathematical models by the quadrature and cubature methods[J]. Numerical Methods for Partial Differential Equations,1994, 10(5):545-567.
    [172]Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells[M]. New York:McGraw-hill,1959.
    [173]Iyengar KTSR, Chandrashekhara K, Sebastian V K. On the analysis of thick rectangular plates[J]. Ingenieur-Archiv,1974,43(5):317-330.
    [174]Srinivas S, Rao A K, Rao C V. Flexure of simply supported thick homogeneous and laminated rectangular plates[J]. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 1969,49(8):449-458.
    [175]陈建康,朱殿芳,赵文谦等.基于响应面法的地下洞室结构可靠度分析[J].岩石力学与工程学报,2005,24(2):351-356.(CHEN Jian-kang, ZHU Dian-fang,ZHAO Wen-qian,etal. Structure reliability analysis of underground cavern based on response surface of method [J].Chinese Journal of Rock Mechanics and Engineering,2000,19(1):55-58.(in Chinese))
    [176]Box G E P, Wilson K B. On the experimental attainment of optimum condition [J].J. of the Royal Stat. Society. Series B,1951,13(1):1-34.
    [177]Wong F S.Slope reliability and response surface method [J]. Journal of Geotechnical Engineering, ASCE,1985,111:32-53.
    [178]武清玺,卓家寿.结构可靠度分析的变f序列响应面法及其应用[J].河海大学学报,2001,29(2):75-78.(Wu Qing-xi, Zhuo Jia-shou. A sequential response surface method with various f and its application to structural reliability analysis [J]. China Rural Water and Hydropower,2002,(8):47-49.(in Chinese))
    [179]Bucher C G. A fast and efficient response surface approach for structure reliability problem[J]. Structural Safety,1990,7(1):57-66.
    [180]颜立新,康红普,高谦.基于响应面函数的可靠度分析及其应用[J].岩土力学,2001,22(3):327-333.(Yan Li-xin, Kang Hong-pu, Gao Qian. Reliability analysis based on response surface function and it's application in a chamber [J].Rock and Soil Mechanics,2001,22(3):327-333. (in Chinese))
    [181]武清玺,俞晓正,赵魁芝.响应面法及其在混凝土面板堆石坝可靠度分析中的应用[J].岩石力学与工程学报,2005,24(9):1506-1511.(WU Qing-xi, YU Xiao-zheng, ZHAO Kui-zhi. Response surface method and it's application in reliability analysis of concrete-faced rockfill DAM [J]. Chinese Journal of Rock Mechanics and Engineering,,2005,24(9):1506-1511.(in Chinese))
    [182]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.22-35.(Zhao Guofan, Jin Weiliang, Gong Jinxin. The Theory of Structural Reliability[M]. Beijing:China Architecture and Building Press,2000.22-35.(in Chinese))
    [183]Grice, Tony. "Underground mining with backfill." Proceedings of the 2nd Annual Summit-Mine Tailings Disposal Systems (1998):234-239.
    [184]Barrett, J. R., M. A. Coulthard, and P. M. Dight. "Determination of fill stability." Mining with Backfill—12th Canadian Rock Mechanics Symposium.1978.
    [185]PENG, Kang, et al. "Safe mining technology of undersea metal mine." Transactions of Nonferrous Metals Society of China 22.3 (2012):740-746.
    [186]Bandler, John W. "Optimization methods for computer-aided design."Microwave Theory and Techniques, IEEE Transactions on 17.8 (1969): 533-552.
    [187]Nelder, John A., and Roger Mead. "A simplex method for function minimization." The computer journal 7.4 (1965):308-313.
    [188]Daloglu, Ayse T., and CV Girija Vallabhan. "Values of k for Slab on Winkler Foundation." Journal of geotechnical and geoenvironmental engineering126.5 (2000):463-471.
    [189]Winkler, E. "Die Lehre von der Elastizitat und Festigkeit, S.271." (1867).
    [190]Kim, Seong-Min, and B. Frank McCullough. "Dynamic response of plate on viscous Winkler foundation to moving loads of varying amplitude. "Engineering Structures 25.9 (2003):1179-1188.
    [191]Huang, M-H., and D. P. Thambiratnam. "Deflection response of plate on Winkler foundation to moving accelerated loads." Engineering structures 23.9 (2001): 1134-1141.
    [192]HOEK, EVERT. "When is a design in rock engineering acceptable?." 7th ISRM Congress.1991.
    [193]赵尚毅,郑颖人,刘明维,钱开东.基于Drucker-Prager准则的边坡安全系数定义及其转换[J].岩石力学与工程学报,2006,25(增1)2730-2734. (ZHAO Shangyi, ZHENG Yingren, LIU Mingwei, QIAN Kaidong. Definition and transformation of slope safety factor based on drucker-prager criterion[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Supp.1):2730-2734. (in Chinese))
    [194]郑宏,李春光,李焯芬,等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):323-328.(Zheng Hong, Li Chunguang, Lee CF, eta 1. Finite element method for solving the factor of safety[J].Chinese Journal of Geotechnical Engineering,2002,24(5):323-328.(in Chinese))
    [195]舒谷生,彭文祥,何忠明,等.岩体稳定性评价的单元安全系数法及其影响因素分析[J].科技导报,2009,27(16):66-68.(SHU Gusheng, PENG Wenxiang, HE Zhongming, etal. Element Safety Factor in Rock Stability Estimation and Its Influence Factors[J]. Science & Technology Review,2009,27(16):66-68. (in Chinese))
    [196]李树忱,李术才,徐帮树.隧道围岩稳定分析的最小安全系数法[J].岩土力学,2007,28(3):549-554.(LI Shu-chen, LI Shu-cai, XU Bang-shu. Minimum safety factor method for stability analysis of surrounding rockmass of tunnel [J]. Rock and Soil Mechanics,2007,28(3):549-554.
    [197]梁庆国,李德武.对岩土工程有限元强度折减法的几点思考[J].岩土力学,2008,29(11):3053-3058.(LIANG Qing-guo, LI De-wu. Discussion on strength reduction FEM in geotechnical engineering [J]. Rock and Soil Mechanics,2008, 29(11):3053-3058.
    [198]熊敬,张建海.Druker-Prager型屈服准则与强度储备安全系数的相关分析[J].岩土力学,2008,29(7):1905-1910.(XIONG Jing, ZHANG Jian-hai. Correlation analysis of relationship between Druker-Prager yield criteria and strength margin safety factor [J]. Rock and Soil Mechanics,2008,29(7):1905-1910.
    [199]杨官涛,李夕兵,刘希灵.竖井围岩-支护系统稳定性分析的最小安全系数法[J].煤炭学报,2009,34(2):175-179.(YANG Guan-tao, LI Xi-bing, LIU Xi-ling.Minimum safety factor method for stability analysis of vertical shaft surrounding rockmass and supporting system[J]. JOURNAL OF CHINA COAL SOCIETY,2009,34(2):175-179.
    [200]古德生,李夕兵.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006.(GU Desheng, LI Xibing. Modern mining science and technology for metal mineral resources[M]. Beijing:China Metallurgical Industry Press,2006.(in Chinese))
    [201]Matsui T, San K C. Finite Element Slope Stability Analysis by Sheer Strength Reduction Technique[J]. Soils and Foundations, JSSMFM,1992,32(1): 59-70.
    [202]姜耀东,刘文岗,赵毅鑫,等.开滦矿区深部开采中巷道矿岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1862 (Jiang Yaodong, Liu wengang, Zhao yixin, etal. Study on surrounding rock stability of deep mining in Kailuan mining group[J]. Chinese Journal of Rock Mechanics and Engineering,2005, 24(11):1857-1862. (in Chinese)).
    [203]郑颖人,邱陈瑜,张红,王谦源.关于土体隧洞围岩稳定性分析方法的探索[J].岩石力学与工程学报,2008,27(10):1968-1980.(ZHENG Yingren, QIU Chenyu, ZHANG Hong, WANG Qianyuan. Exploration of stability analysis methods for surrounding rocks of soil tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(10):1968-1980. (in Chinese)).
    [204]王景春,侯卫红,莫勋涛.海底隧道施工安全评价的初步研究[J].岩石力学与工程学报,2007,26(增2):3756-3762.(WANG Jingchun, HOU Weihong, MO Xuntao. Preliminary research on safety evaluation for subsea tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(增 2):3756-3762. (in Chinese)).
    [205]张黎明,郑颖人,王在泉,王建新.有限元强度折减法在公路隧道中的应用探讨[J].岩土力学,2007,28(1):97-106.(ZHANG Li-ming, ZHENG Ying-ren, WANG Zai-quan, WANG Jian-xin. Application of strength reduction finite element method to road tunnels[J]. Rock and Soil Mechanics,2007,28(1):97-106.
    [206]姚金蕊,李夕兵,周子龙.“三下”矿体开采研究[J].地下空间与工程学报,2005,1(z1):71-75.
    [207]Yang F S. Wavelet transform in engineering analysis and application[J]. 1999.
    [208]张树京,齐立心.时间序列分析简明教程[M].清华大学出版社,2003.
    [209]尤春安,白云.围岩内部多点位移量测的新方法[J].岩土力学,2000,21(2):138-139.
    [210]宋军.变形速率比值判别法的概念及在猫山隧道施工中的应用[J].公路,2007(7):223-228.
    [211]Zhai M, Yang J, Liu W. Large clusters of gold deposits and large-scale metallogenesis in the Jiaodong Peninsula, Eastern China[J]. Science in China Series D:Earth Sciences,2001,44(8):758-768.
    [212]邓军,陈玉民,刘钦,杨立强.胶东三山岛断裂带金成矿系统与资源勘查[M].北京:地质出版社,2010
    [213]马凤山,刘钦等.新立矿区水文地质研究报告[R],2007
    [214]Melloul A, Collin M. The'principal components'statistical method as a complementary approach to geochemical methods in water quality factor identification; application to the Coastal Plain aquifer of Israel[J]. Journal of Hydrology,1992,140(1):49-73.
    [215]Stauffer D F, Garton E O, Steinhorst R K. A comparison of principal components from real and random data[J]. Ecology,1985:1693-1698.
    [216]Valder J F, Long A J, Davis A D, et al. Multivariate statistical approach to estimate mixing proportions for unknown end members[J]. Journal of Hydrology, 2012.
    [217]Shrestha S, Kazama F. Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin, Japan[J]. Environmental Modelling & Software,2007,22(4):464-475.
    [218]邓军,陈玉民,刘钦,杨立强.胶东三山岛断裂带金成矿系统与资源勘查[M].北京:地质出版社,2010
    [219]黄平华,陈建生.焦作矿区地下水水化学特征及涌水水源判别的FDA模型[J].煤田地质与勘探,2011,2:42-51.
    [220]Streit J E, Cox S F. Asperity interactions during creep of simulated faults at hydrothermal conditions[J]. Geology,2000,28(3):231-234.
    [221]De Bresser J, Ter Heege J, Spiers C. Grain size reduction by dynamic recrystallization:can it result in major rheological weakening?[J]. International Journal of Earth Sciences,2001,90(1):28-45.
    [222]Wibberley C. Are feldspar-to-mica reactions necessarily reaction-softening processes in fault zones?[J]. Journal of Structural Geology,1999,21(8):1219-1227.
    [223]Stunitz H, Tullis J. Weakening and strain localization produced by syn-deformational reaction of plagioclase[J]. International Journal of Earth Sciences, 2001,90(1):136-148.
    [224]Guler C. Site characterization and monitoring of natural attenuation indicator parameters in a fuel contaminated coastal aquifer:Karaduvar (Mersin, SE Turkey)[J]. Environmental Earth Sciences,2009,59(3):631-643.
    [225]Guler C, Alpaslan M, Kurt M A, et al. Deciphering factors controlling trace element distribution in the soils of Karaduvar industrial-agricultural area (Mersin, SE Turkey)[J]. Environmental Earth Sciences,2010,60(1):203-218.
    [226]Guler C, Thyne G D. Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c-means clustering [J]. Water Resources Research,2004,40(12):W12503.
    [227]Guler C, Thyne G D, McCray J E, et al. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data[J]. Hydrogeology journal,2002,10(4):455-474.
    [228]Bezdek J C. Cluster validity with fuzzy sets[J]. J. Cybernet,1973, 3(3):58-72.
    [229]Bezdek J C. Mathematical models for systematics and taxonomy[C]//Proceedings of eighth international conference on numerical taxonomy. 1975,3:143-166.
    [230]Fukuyama Y, Sugeno M. A new method of choosing the number of clusters for the fuzzy c-means method[C]//Proc.5th Fuzzy Syst. Symp.1989,247.
    [231]Ramze Rezaee M, Lelieveldt B P F, Reiber J H C. A new cluster validity index for the fuzzy C-mean[J]. Pattern recognition letters,1998,19(3):237-246.
    [232]Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. Fuzzy Systems, IEEE Transactions on,1995,3(3):370-379.
    [233]Xie X L, Beni G. A validity measure for fuzzy clustering[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1991,13(8):841-847.
    [234]Maulik U, Bandyopadhyay S. Performance evaluation of some clustering algorithms and validity indices[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2002,24(12):1650-1654.
    [235]Zhao H, Ma F, Li G, et al. Study of the hydrogeological characteristics and permeability of the Xinli seabed gold mine in Laizhou Bay, Jiaodong Peninsula, China[J]. Environmental Earth Sciences,2012,65(7):2003-2014.
    [236]Ma F, Yang Y S, Yuan R, et al. Study of shallow groundwater quality evolution under saline intrusion with environmental isotopes and geochemistry [J]. Environmental Geology,2007,51(6):1009-1017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700