用户名: 密码: 验证码:
河西走廊及其邻区活动构造图像及构造变形模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印度板块与欧亚板块的碰撞后,形成了世界最大最高的高原—青藏高原,高原的大幅度隆升造就和改变了整个亚欧大陆的构造格局,同时对亚洲地区的气候和环境也产生了巨大的影响。河西走廊及其邻区是青藏高原北部高原向北扩展的最前缘,也是对高原变形响应最为敏感的地区之一。该地区发育有大量的晚第四纪活动断裂,是通过断裂构造活动习性及构造转换研究高原变形过程的理想区域,同时这一地区也是在青藏高原北部两大主控边界断裂—阿尔金断裂和海原—祁连山断裂带所夹持下的构造转换和构造变形的关键位置。高原边缘主控边界走滑断裂的变形是怎样分布的和如何消失的?变形是如何被吸收转换成不同走向、不同性质构造的?变形是如何迁移到与其平行构造上而不发生衰减的?这些和其他许多有关断裂滑动速率的问题及高原北部断裂的相关问题,对于研究青藏高原北部的构造变形和构造转换具有十分重要的意义。
     本论文通过对位于青藏高原北部的河西走廊及其邻区主要断裂滑动速率的精细研究,同时总结前人在该地区的研究成果特别是主控边界断裂上滑动速率的研究成果,获得较为完整的青藏高原北部活动构造几何图像和运动学特征。并以断裂带上滑动速率(位移分布)及构造转换为研究的主要内容,结合现今GPS观测数据,归纳总结了该地区晚新生代以来的构造变形模式,探讨了构造变形的动力学机制以及高原北部地区构造变形与构造隆升的关系。本论文主要取得的认识如下:
     合黎山南缘断裂是位于河西走廊盆地北侧的控盆断裂,断裂以挤压逆冲为主要活动方式,合黎山的地貌隆升伴随着断裂的活动。断裂分段与地貌分段有完全的一致性,说明合黎山隆升的主要构造作用方式是断层作用。断裂依据几何结构分为三段,各段断错位移的分布具有明显的弧形分布特征,整个断层的断错位移则显示不对称的东高西低的弧形分布,断层的平均逆冲滑动速率东段(猴儿头段)为(0.34±0.10)mm/a,东段北侧分支(梧桐井段)为(0.14±0.10)mm/a,中段(0.24±0.06)mm/a,西段为(0.18±0.07)mm/a,断裂仅在两端存在局部的左旋位移特征。
     沿合黎山南缘断裂探槽开挖、地表破裂带遗迹的考察及历史地震考证结果证实,合黎山南缘断裂上至少发生过三次强地震事件,最早一次是距今约5000年左右的一次强地震事件,形成了全断裂破裂,另外两次该地区有历史记载的地震事件,公元180年表氏71/2级地震形成不少于60公里的地表破裂,而公元756年的高台北7级地震仅在断裂东段发生了地表破裂,破裂长度20~30公里。地震不具备准周期复发的特征,与断裂活动模式相统一的是地震活动均是自东向西发生断裂破裂的和断裂扩展的。
     横跨合黎山不同段落的DEM剖面显示了不同地貌单元段的断层作用方式是有差异的,但总体是断层活动促使合黎山地区向河西走廊盆地内掀斜为主要特征。平行于山脉走向的DEM剖面和断裂带上位移(滑动速率)的分布有相同的模式,均为自东向西倾斜,地貌单元的特征也反映了合黎山自东向西逐渐隆起的构造活动特征。断裂位移的分布特征与断裂带上强地震分布与规模确定了断层带上的位移分布是一种特征地震模式与位移变化模式的结合。断裂的构造变形模式和运动特征是以挤压隆升为主,伴随着合黎山及两侧向河西走廊盆地内整体掀斜,其动力来源主要是南侧的青藏高原的挤压和北部阿拉善板块南缘一带的上地壳的缩短弯曲挤出。
     河西走廊北侧及内部的一些断层研究结果表明:嘉峪关黑山断裂是晚更新世活动的高角度逆冲断层,其晚更新世以来的逆冲滑动速率为(0.26±0.06)mm/a;金塔南山断裂全新世有活动,断层性质也以逆冲为主,其晚更新世以来的逆冲滑动速率为(0.22±0.05)mm/a;嘉峪关—文殊山断裂是河西走廊盆地内部的一条分隔酒西盆地和酒东盆地的断层,断裂全新世活动具有明显的分段性,现代地貌及构造变形显示了“反向翘起”的构造模式,断裂带上晚第四纪的逆冲滑动速率为(0.30±0.05)mm/a;对于河西走廊北部向东扩展的慕少梁断裂和大车场—阿右旗断裂,其地貌调查和遥感解译结果认为断裂活动主要以自北向南的高角度逆冲为主要运动方式,断裂晚第四纪活动性较弱。
     祁连山北缘断裂的断层运动学特征的调查结果显示,佛洞庙—红崖子断裂西段以逆冲为主,东段转变为逆冲兼具左旋走滑的特征,断裂全新世活动明显,局部保留有地震破裂带的遗迹,断裂晚第四纪逆冲滑动速率为(0.41±0.09)mm/a,其东段的左旋走滑速率为(1.20±0.15)mm/a;榆木山北缘断裂断错了全新世早期的地貌面,其断裂西段的晚第四纪逆冲滑动速率为(0.55±0.15)mm/a,左旋走滑速率为(0.95±0.11)mm/a,而对“骆驼城陡坎”的调查结果认为,该地貌特征不是断层陡坎,而是古代水利工程的遗迹,榆木山的构造变形是祁连山向北的扩展过程,其隆升变形为近对称形态的发育和发展过程;古浪断裂的滑动速率补充研究的结果为皇城—双塔断裂全新世逆冲滑动速率为(0.39±0.04)mm/a,而天桥沟—黄羊川断裂全新世以来的左旋走滑速率为(2.66±0.38)mm/a;祁连山西端昌马断裂西段滑动速率的补充测量和估算结果是晚第四纪逆冲滑动速率为(0.14±0.02)mm/a,左旋走滑速率为(1.17±0.04)mm/a,远比前人研究结果的3.3-4.3 mm/a的左旋滑动速率要小的多。
     青藏高原北部断裂晚第四纪滑动速率及现今GPS观测揭示了青藏高原向北扩展与高原边缘隆升的运动特征。主要断裂晚第四纪滑动速率及跨断裂GPS应变速率的结果表明,青藏高原北部边缘的断裂以低滑动速率(<10 mm/a)为主,特别是两条边界断裂阿尔金断裂和海原—祁连山断裂。两条主要控边界断裂上的滑动速率沿断裂的分布变化特征显示了断裂间滑动速率转换及调整。阿尔金断裂自95°E以西的8-12 mm/a稳定滑动速率,向东逐渐降低到最东端约为1-2 mm/a,而海原断裂自哈拉湖一带开始发育后滑动速率为1-2 mm/a,到祁连一带(101°E以东)增大到相对稳定的4-5 mm/a,直到过海原后转向六盘山一带,滑动速率降低到1-3 mm/a,甚至更低。滑动速率的变化及分布特征显示,阿尔金断裂的左旋滑动主要是通过祁连山内部隆起及两侧新生代盆地变形引起的缩短来吸收的,海原—祁连山断裂的低滑动速率及沿断裂运动学特征表明断裂尾端的陇西盆地变形及六盘山的隆起是断裂左旋走滑速率的主要吸收方式。
     青藏高原北部地区是由北东东向的阿尔金断裂、北西西向的海原—祁连山断裂带及隆起的祁连山区及其北部的河西走廊及阿拉善板块的边缘所组成,主边界断裂的左旋走滑,祁连山北部及边缘断裂的挤压逆冲、河西走廊内部隆起及北部断裂的调节作用是高原边缘活动构造图像的主要特征,这三部分共同构成了高原北部边缘完整的活动构造图像。阿尔金断裂和海原—祁连山断裂之间的转换是通过高原北部边缘隆起山区的逆冲断层来完成的,高原变形的吸收主要是通过控边断层上的走滑速率、过渡转换区逆冲断层的逆冲滑动速率和高原边缘的高海拔来完成,另外是不同块体内部和边缘的主要新生代盆地的褶皱变形也吸收了少部分地壳变形。祁连山内部及边缘的逆冲断层提供了高原边缘近60%的地壳缩短,阿尔金断裂及海原—祁连山断裂控制下的青藏高原北部边缘的构造变形机制,是在三个刚性块体所阻挡下的通过内部旋转或构造性质转换来完成的。河西走廊不同位置构造形态和地貌特征的变化,是青藏高原北部两大块体相互作用过程中,运动方向和动力变化的结果。河西走廊北部山脉地貌形态、断裂构造活动及构造隆升的特征显示了走廊北部的各主要断裂的发育发展可能是相互独立,其形态和扩展方向说明了其构造形成和扩展的趋势和动力方向,各断层有明显的不一致,不是以往所说的自西向东的发育发展过程,河西走廊北部的断裂(特别是中段)是青藏高原挤压作用下地壳缩短作用的结果。
     青藏高原北部变形模式及变形机制讨论表明,青藏高原北部边缘的变形是一种分布式的连续变形,变形发生自高原内部,边界断裂的走滑被高原内部变形所吸收。同时,祁连山北缘和内部断裂及河西走廊北部的断裂所表现的逆冲为主的活动性质,对地壳增厚模式所强调的由逆冲断层和地壳增厚及局部高海拔来分解吸收地壳变形的说法是支持的。
Collision between Indian and Eurasian plates not only created Tibetan Plateau, "the roof of the world", but also posed significant impacts on climate and environments of western China and central Asia. Hexi Corridor consists of a series of western northwest-trending Cenozoic basins along range front of the Qilian Shan. Tectonic setting of the Hexi Corridor marks the northern margin of Tibetan Plateau where abundant active faults and historical earthquakes attests significant on-going tectonic deformation due to outward growth of the Tibetan Plateau. Tectonic deformation of the region is dominated by two major strike-slip faults bounding different deforming units, the Altyn Tagh fault and the Haiyuan fault. Other structures with different styles and senses of motion form complex pattern of active tectonic deformation. It is thus an ideal place to study active tectonic deformation to gain understandings of the processes of Tibetan Plateau's northward growth. Key scientific questions regarding tectonic processes associated with outward growth of Tibetan Plateau includes: what is major process governing tectonic deformation of the northern margin of the Tibetan Plateau; what are relationships between strike-slip faulting and crustal shortening; how the slips on strike-slip fault are transferred into crustal shortening in other structures; what are slip rates along major faults in the region. Answers to these and other similar questions bear important implications for understanding tectonic processes associated with the outward growth of the Tibetan Plateau.
     Based on systematic studies on the late Quaternary slip rates along major active faults in Hexi Corridor and adjacent regions in northern Tibet, this paper provides an integrated information to show geometric pattern and kinematics features of active tectonic deformation in northern margin of the Tibetan Plateau. In combining active faulting studies with GPS measurements, we also discuss models of the late Cenozoic deformation and its dynamic mechanism of the northern margin of Tibetan Plateau especially the Qilian Shan and Hexi Corridor. Main conclusions are drawn as follows:
     The South Heli Shan Fault is the north boundary of the Hexi Corridor basin, and it is typical of transpression feature with predominant reverse faulting and minor left-slip near its ends. The topographic features of the Heli Shan correlate to slips on the fault suggesting active fault controls on mountainous geomorphology. The South Heli Shan Fault can be divided into three segments based on its geometry. Slip of the individual segment is of arch shape distribution, and the slip distribution of the whole fault zone depicts an asymmetric arch shape as eastern side with higher rates and west side with lower rates. Average slip rates are (0.34±0.10)mm/a for the Houertou segment, (0.14±0.10)mm/a for the Wutongjing region, (0.24±0.06)mm/a for central segment, and (0.18±0.07)mm/a for western segment. Left-lateral movements are only observed at local sites near two terminals of the South Heli Shan Fault.
     Trenching and field survey along the surface ruptures, together historic earthquake investigation indicate that there might be three strong earthquakes occurred along the South Heli Shan Fault. The first event ruptured along the whole fault about 5000a ago, and the other two occurred during the documented history, in 180 A.D and 756 A.D. respectively. More than 60km long surface ruptures was associated with the M71/2 event in 180 A.D. and 20-30km ruptures might have formed during the M 7 event in 756 A.D. The behavior of paleoearthquake activity does not show quasi-periodic pattern.
     Tectonic deformation and kinematics pattern in the northern Hexi Corridor is characterized by thrust fault related uplift with southward movement and westward tilting, that resulted from the outward growth of the Tibet Plateau toward the relative tectonic stable Alashan block. Topographic profiles constructed from DEM perpendicular to the Heli Shan show that different fault segments are associated with different geomorphology. The primary geomorphic feature is the tilting towards Hexi Corridor basin along the fault. Along the strike of Heli Shan mountain, topographic profile shows westward tilting of geomorphology. This kind of east to west tilting corroborates larger displacements in eastern part of the fault and less offset in western part of the fault. Thus, the topographic expression is representative of the activity of the Heli Shan fault. Slip distribution along the fault and strong earthquake activity suggest the recurrent pattern of strong earthquake may be a combination of characteristic and temporal clustering.
     Active fault studies in the northern and interior of the Hexi Corridor basin indicate that the Jiayuguan-Heishan fault is a high angle reverse fault with late Pleistocene activity. The slip rate is (0.26±0.06) mm/a since late Pleistocene. The Jinta Nan Shan fault is a Holocene active fault is with a slip rate of (0.22±0.05) mm/a since late Pleistocene. The Jiayuguan-Wenshu Shan fault, a transverse fault obliquely cuts the Hexi Corridor to separate the Jiuquan basin in the east and the Yumen basin in the west. The fault appears to be high-angle reverse fault with hangingwall tilting to the west, and observed slip rate is (0.30±0.05)mm/a. As for the Mushaoliang fault and Dachechang-Ayouqi fault along the north Hexi Corridor, geomorphological pattern and remote sensing interpretation suggest that these faults are of high-angle reverse slipping from north to south.
     Kinematics of tectonic deformation along the northern Qilian Shan fault shows that the western segment of the Fodongmiao-Hongaizi fault is a premary reverse fault, and its eastern segment is associated with left-lateral components. This fault presents obvious evidence of Holocene activity, and remnant of surface rupture of historical earthquake can still be found in many places. The slip rate of reverse faulting is (0.41±0.09) mm/a and left lateral slip rate is (1.20±0.15) mm/a. Early Holocene geomorphic surface is offset by the northern Yumu Shan fault with slip rate (0.55±0.15) mm/a of reverse faulting and the left lateral slip rate (0.95±0.11) mm/a. Out investigation show that the so called "Luotuocheng fault scarp " is in fact remnants of ancient irrigation canal rather than an active fault. Tectonic deformation of the Yumu Shan is a consequence of the northward growth of the Qilian Shan, and the symmetric topographic shape of Yumu Shan suggests that slip distribution along the Yumu Shan fault is also symmetric. Additional study on slip rate of the Gulang fault shows that Holocene dip-slip rate of the Huangcheng-Shuangta fault is (0.39±0.04) mm/a and left-slip rate of the Tianqiaogou-Huangyangchuan fault is (2.66±0.38) mm/a. Survey on west segment of the Changma fault near west Qilian Shan indicates that late Quaternary throw rate is (0.14±0.02) mm/a and left lateral slip rate is (1.17±0.04) mm/a, which is much less than previous reported 3.3-4.3mm/a.
     GPS measurements and late Quaternary fault slip rates reveal the kinematic pattern of outward growth of the northern margin of the Tibetan Plateau. Base on the geologic data and GPS velocity slip rates of major boundary faults are less than 10 mm/a including the Altyn-Tagh fault and Haiyuan- Qilianshan fault. The distributions of slip rates along the two major faults show constant slip rate along their middle portion and decrease toward their ends. For example, the left-lateral slip rates on the central segment of Altyn-Tagh Fault appear to be in the range of 8-12 mm/a, but decreases eastward to only 1-2 mm/a near 97°E. On the Haiyuan-Qilian Shan fault, slip rates are 1-2 mm/a in its western segment, and increase to 4-5mm/a in its eastern and middle segments, and then decrease to 1-3 mm/a near its eastern end near the Liupan Shan. This kind of slip distribution suggests that almost all motion along a strike-slip fault is accommodated by crustal shortening or convergence near the ends of the strike-slip fault. The crustal shortening across the Qilian Shan absorbs strike-slip along the Altyn Tagh fault. The convergence in Liupan Shan accommodates left-lateral slip along the Qilian-Haiyuan fault.
     Northern Tibetan Plateau includes the NNE-teending Altyn Tagh Fault, NWW-striking Haiyuan-Qilian Shan Fault and uplifted Qilian Shan mountain belt, Hexi Corridor basin and Alashan block. Tectonic processes in the region can be described as combination of three structural styles. First, outward growth of the northern Tibetan Plateau cause west northwest trending reverse faulting and folding in the Qilian Shan and Hexi Corridor, and the deformation might have migrated to north of the Hexi Corridor caused reverse faulting and earthquake rupturing in Heli Shan and Longshou Shan. Second, left-lateral strike slip on the main boundary faults (The Altyn Tagh fault and the Qilian-Haiyuan fault) cause reverse faulting, folding and uplifting of mountains to accommodate the lateral motions. And third, internal deformation within the Qilian Shan, Hexi Corridor, and even with the interior of tectonically stable Alashan Block. These three tectonic deformations contribute to outward and upward growth of the northern margin of Tibetan Plateau. Our studies show that tectonic deformation occurred mainly within the northern Tibetan Plateau, and that the rule of strike slip faulting has been reconciling differences of crustal shortening or crustal thickening rather than extruding crustal blocks out of the plateau interior.
引文
Aitken, M.J. An Introduction to Optical Dating. Oxford University Press,Oxford,1998, p.39-50.
    Alexander, J., Bridge, J.S., Leeder, M.R., et al. Holocene meander-belt evolution in an active extensional basin, southwestern Montana. Journal of sedimentary Research,1994,v.B64, p.148-154.
    Anderson J G. Geological notes from Gansu. Bull.Geol.Soc. China,1925,4:15.
    An Z S, Kutzbach J E, Prell W L et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature,2001,411:62-66
    Argand E. La tectonique de I'Asie:International geological congress,13th, brussels, Reports. 1924,1:170-372.
    Armijo R P, Tapponnier P, Han Tonglin.Late Cenozoic right-lateral strike-slip faulting in southern Tibet. JGR,1989,94:2787-2838.
    Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia. Geophys Res Lett,1993,20:895-898.
    Bendick R, Bilham R, Freymueller J, et al. Geodetic evidence for a low slip rate in the Altyn Tagh Fault system. Nature,2000,404:69-72.
    Braun, J. and Beaumont, C. Three-dimensional numerical experiments of strain partitioning at oblique plate boundaries:implications for contrasting tectonic styles in the southern Coast Ranges, California and central South Island, New Zealand, Journal of Geophysical Research, 1995,v.100,pp.18,059-18,074
    Brian J.Darby, Bradley D.Ritts, Yongjun Yue, et al. Did the Altyn Tagh fault extend beyond the Tibetan Plateau? Earth and Planetary Science Letters,2005,240:425-435.
    Burbank, D.B. and Anderson R.S. Tectonic geomorphology. Blackwell Science,Inc.2001, p.60-83.
    Burchfiel B C, Zhang P, Wang Y, et al. Geology of the Haiyuan fault zone, Ningxia Autonomous Region, China and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics,1991,10:1091-1110.
    Bu" rgmann, R., Pollard, D.D. and Martel, S.J., Slip distribution on faults:effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction. J. Struct. Geol.,1994,16,1675-1690.
    Cartwright, J.A., Trudgill, B.D.,and Mansfield, C.S. Fault growth by segment linkage:an explanation for scatter in maximum displacement and trace length data from the Canyonlands grabens of SE Utah. Journal of structural geology,1995, v.17, p.1319-1326.
    Cavalie, O., Lasserre, C., Doin, M.-P.,et al. Measurement of interseismic strain across the Haiyuan fault (Gansu, China) by InSAR:Earth and Planetary Science Letters,2008,v.275, p.246-257.
    Chen Z, Burchfiel B C, Liu Y, et al. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. Journal Geophys Res, 2001,105:16215-16227.
    Christie-Blick, N. and Biddle, K.T. Deformation and basin formation along strike-slip faults. in Biddle, K.T., and Christie-Blick, N., eds., strike-slip deformation, basin formation, and sedimentation, Society of Economic Plaeontologists and Mineralogists, Spec. Pub.37, 1985,p.1-34.
    Coleman M., Hodges K.. Evidence for Tibet Plateau uplift before 14Ma age from a new minium age for east-west extension. Nature,1995,374:49-52.
    Copeland P et al. Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscorite,Bengal fan.Geology,1990,187:354-357.
    Corne, A.J. and Machette, M.N. Surface faulting accompanying the Borah Peak earthquake, central Idaho. Geology,1984,v.12, p.664-667.
    Cowie, P.A. and Scholz, C.H., Growth of faults by accumulation of seismic slip. J. Geophys. Res., 1992a.97,11085-11095.
    Cowie, P.A. and Scholz, C.H., Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model. J. Struct. Geol.,1992b.14,1133-1148.
    Cobbold P R.Davy Ph.Indentation tectonics in nature and experiment 2:Central Asia 1988.
    Dawers, N.H., Anders, M.H., and Scholz, C.H. Growth of normal faults:Displacement-length scaling. Geology,1993,v.17,p.607-614.
    Dawers, N.H. and Anders, M.H. Displacement-length scaling and fault linkage. Journal of structural Geology,1995,v.17, p.607-614.
    Delcaillau B, Deffontaines B, Floisseac L,et al.Morphotectonic evidence from lateral propagation of an active frontal fold:Pakuashan anticline foothills of Taiwan. Geomorphology,1998,24: 263-290.
    Deng, Q., Zhang, P., and Chen, S. Structure and deformation character of strike-slip fault zones. Pure and Applied Geophysics,1986,v.124, p.203-223.
    Deng, Q., F. Song, S. Zhu, et al. Variations in the geometry and amount of slip on the Haiyuan (Nanxihaushan) fault zone, China, and the surface rupture of the 1920 Haiyuan earthquake, in Earthquake Source Mechanics, S. Das, J. Boatwright, and C. H. Scholz (Editors), American Geophysical Monograph.1986,37,169-182.
    Dewey, J.F. and Bird, J.M. Mountain belts and the new global tectonics:J. Geophysical Research, 1970, (75) p.2625-2647.
    Dewey and Burke.Variscan and precambrain basement reactivation:Products of continental collision. Journal of Geology,1973,81:683-692.
    Edmond J M. Himalayan tectonics, weathering process and the strontium istope record in marine limestone.Science,1992,258:1594-1597.
    Ellis, M.A. and Dunlap, W.J., Displacement variation along thrust faults:implications for the development of large faults. J. Struct. Geol.,1988,10,183-192.
    England P C, Mckenzie D. A thin viscous sheet model for continental deformation. Geophys Int, 1982,70(2):295-321.
    England P, and Houseman G. Finite strain calculations of continental deformation 2, Comparison with the India-Asia collision. J. Geophys. Res,1986,91:3664-3667.
    England P, and Houseman G. The mechanics of the Tibetan Plateau:Royal society of London Philosophical Transactions,1988,ser:A,V326,P301-320.
    England P C, Molnar P. The field of crustal velocity in Asia calculated from Quaternary rates of slip on fault. Geophys J Int,1997,130(3):551-582
    England, P., and Molnar P. Active Deformation of Asia:From Kinematics to Dynamics Science, 1997,Vol.278. no.5338, pp.647-650,DOI:10.1126/science.278.5338.647
    England, P., and P. Molnar. Late Quaternary to decadal velocity fields in Asia, J. Geophys. Res., 2005,110, B12401,doi:10.1029/2004JB003541.
    Gan W, Zhang P, Shen Z, et al. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res,2007,112:B08416, doi:10.1029/2005JB004120
    Gaudemer Y, P.Tapponnier, B.Meyer, et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu(China). Geophysical Journal,1995,120(3):599-645.
    George A D, Marshaallsea S J, Wyrwoll K, et al. Miocene cooling in the northern Qilain shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology,2001,29(10):939-942.
    Hager B H, King R W, Murray M H. Measurement of crustal deformation using the global positioning system. Annu rev earth planet sci,1991,19:351-382.
    Harrison T M, Coppel, Kidd W S F,et al. Rasing Tibet. Science,1990,255:1663-1670.
    Harrison T M,Copeland P, Kidd W S F, et al. Raising Tibet.Science,1992.255:1663-1670.
    Harrison T M, A. Yin, M.Grove et al.The Zedong Window:A record of superposed Tertiary convergence in southeastern Tibet. J. Geophys Res.,2000,105(B8):19211-19230.
    Hetzel, R., S. Niedermann, S. Ivy-Ochs,et al.21Ne versus 10Be and 26Al exposure ages of fluvial terraces:The influence of crustal Ne in quartz, Earth Planet. Sci. Lett.,2002a,201:575-591.
    Hetzel, R., Niedermann, S., Tao, M.,et al. Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature,2002b,417,428-432.
    Hetzel R., Mingxin Tao, Stephen Stokes,et al. Late Pleistocene//Holocene slip rate of the Zhangye thrust(Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau, TECTONICS,2004a,23:TC6006-6023.
    Hetzel, R., M. Tao, S. Niedermann et.al, Implications of the fault scaling law for the growth of topography:Mountain ranges in the broken foreland of NE Tibet[J], Terra Nova,2004b, 16,157-16,162.
    Holt W E, Chamot-Rooke N, Le Pichon,et al. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. Journal of Geophysical Research, 2000.105(B8):19185-19209.
    Houseman, G, and England, P., Crustal thickening versus lateral expulsion in the Indian-Asian continental collision, J. Geophy. Res.,1993, v.98, p.12233-12249.
    Houseman G, England P C. A lithospheric thickening model for the Indo-Aisan collision. In:Yin A, Harrison T M, eds. Tectonic Evolution of Asia. New York:Cambridge University Press,1996, 3-17.
    Jackson, J., Norris, R. and Youngson, J. The structural evolution of active fault and fold systems in central Otago, New Zealand:evidence revealed by drainage patterns. J. Struct. Geol.,1996, 18,217-234.
    Keller, E.A., Bonkowski, M.S., Korsch, R.J., et al. Tectonic geomorphology of the san Andreas fault zone in the southern Indio Hills, Coachella Valley, California. Geological Society of America Bulletin,1982, v.93, p.46-56.
    Keller, E.A., Zepeda, R.L., Rockwell, T.K., Ku, T.L. and Dinklage, W.S. Active tectonics at Wheeler Ridge, southern San Joaquin Valley, California. Geol. Soc. Am. Bull.,1998,110, 298-310.
    Keller E A, Gurrola, L.,and Tierney, T.E.Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding:Geology,1999, V27,P515-518.
    King, G.C.P., Stein, R.S. and Rundle, J.B. The growth of geological structures by repeated earthquakes 1. Conceptual framework. J. Geophys. Res.,1988,93,13,307-13,318.
    Klootwijk C T, Gee J S, Peirce J W et al. An early India-Asia contact:Paleomagnetic constraints from ninety east Ridge. ODP leg 121. Geology,1992,20:395-398.
    Krishnaswami S et al. Strontium istopes and rubidium in the Ganga-Brahmaputra river system:Weathering in the Himalayafluxes to the bay of Bengal and Contribution to the evolution of oceanic 87 Sr/86Sr.Earth and Planetary science letters,1992,109:234-253.
    Lajoie, K.R. Coastal tectonics,Active tectonics. Washington,D.C., National Academy Press,1986, p.95-124.
    Lasserre, C., Morel, P.H., Gaudemer, Y.,et al.,Postglacial left slip rate and past occurrence of M>8 earthquakes on the western Haiyuan fault, Gansu, China, J. Geophys. Res.,1999,104:17,633-17,651.
    Lasserre, C., Y. Gaudemer, P. Tapponnier,et al. Fast late Pleistocene slip rate on the Leng LongLing segment of the Haiyuan fault, Qinghai, China,J. Geophys. Res.,2002,107 (B11),2276, doi:10.1029/2000JB000060.
    Lave', J., and J. P. Avouac, Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal, J. Geophys. Res.,2000,105:5735-5770.
    Liu-Zeng J, Yann Klinger, Xiwei Xu,et al. Millennial Recurrence of Large Earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China. BSSA,2007,V97,NolB,14-34.
    Liu-zeng J, P Tapponnier, Y. Gaudemer, et al. Quantifying landscape differences across the Tibetan plateau:Implications for topographic relief evolution. JOURNAL OF GEOPHYSICAL RESEARCH,2008, VOL.113, F04018, doi:10.1029/2007JF000897
    Lu Yanchou, Wang X.L., Wintle A.G. A new OSL chronology for dust accumulation in the last 130,000 yr for the Chinese Loess Plateau, Quaternary Research,2007,67,152-160.
    Machette, M.N., Persoius, S.F., and Nelson, A.R. Paleoseismicity of the Wasatch Fault zone:a summary of recent investigation, interpretations, and conclusion, in Gori, P.L., ed., Assessment of regional earthquake hazards and risk along the Wasatch Fault, Utah:United States Geological Survery Professional Paper 1500,1992,p.A1-A30.
    Machette, M.N., Persoius, S.F., and Nelson, A.R. The Wasatch Fault zone, U.S.A. Annales Tectonicae,1992, v.6, p.5-39.
    Maslin M A, Seidov D, Lowe J. Synthesis and nature and causes of rapid climate transitions during the Quaternary (a review). In:Sei-dov D, ed. The Oceans and Rapid Climate Change. American Geophysical Union Geophysical Monograph,2001,126:9-51
    Mattauer M. Intracontinental subduction, crust mantle decollement and crustal stacking wedge in the Himalaya and other collision belts. Spec Publ J Geo Soc London,1986,19:37-50.
    Me'riaux, A.-S., F. J. Ryerson, P. Tapponnier, et al. Rapid slip along the central Altyn Tagh fault: morphochronologic evidence from Cherchen He and Sulamu Tagh, J. Geophys. Res.,2004,109, B06401, doi 06410.01029/02003JB002558.
    Meriaux, A.-S., P. Tapponnier, F. J. Ryerson, etal. The Aksay segment of the northern Altyn Tagh fault:tectonic geomorphology, landscape evolution, and Holocene slip rate, J. Geophys.Res. 2005,110, B04404 doi 04410.01029/02004JB003210.
    Metivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet Plateau deduced from balanced reconsruction of two depositional areas:the Qaidam and Hexi corridor basin, China. Tectonics,1998,17 (6):823-842.
    Meyer B, Tapponnier P, Bourjot L, et al. Crustal thickening in Gansu-Qinghai,lithospheric mantle subduction,and oblique,strike-slip controlled growth of the Tibet Plateau.Geophys J Int, 1998,135:1-47.
    Meyer, B., P. Tapponnier, Y. Gaudemer et al. Rate of leftlateral movement along the easternmost segment of the Altyn Tagh Fault, east of 96°E (China), Geophys.J. Int.,1996,124,29-44.
    Molnar, P. and T. Atwater, Relative motion of hot spots in the mantle, Nature,1973.246,288-291,
    Molnar, P., and P. Tapponnier. Cenozoic tectonics of Asia:Effects of a continental collision. Science,1975,189,419-426.
    Molnar P. Continental tectonics in the aftermath of plate tectonics.Nature,1988,335 (6186):131-137.
    Molnar P, Burchfiel B C, Liang K., et al. Geomorphic evidence for active faulting in the Altyn Tagh and qualitative estimates of its contribution to the convergence of the India and Eurasia. Geology,1987,15:249-253.
    Molnar, P., B. C. Burchfiel, K.-Y. Liang et al. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia, Geology,1987,15:249-253.
    Molnar, P., Continental tectonics in the aftermath of plate tectonics, Nature,1988.335,131-137,
    Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibet plateau, and the Indian monsoon. Rev. Geophys,1993,31:357-396.
    Molnar, P., E. T. Brown, B. C. Burchfiel, et al. Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, China, J. Geol., 1994,102:583-602.
    Molnar, P. and J. M. Gipson, A bound on the rheology of continental lithosphere using very long baseline interferometry:The velocity of South China with respect to Eurasia, J. Geophys. Res., 1996.101,545-553
    Molnar, P. Late Cenozoic increase in accumulation rates of terrestrial sediment:How might climate change have affected erosion rates? Annual review of earth and Planetary sciences, 2004,32:67-89
    Molnar, P. Mio-Pliocene Growth of the Tibetan Plateau and Evolution of East Asian Climate, Palaeontologia Electronica,2005,8,8.1.2A,23p, http://palaeo-electronica.org/paleo/2005.
    Muraoka, H.and Kamata, H. Displacement distribution along minor fault traces. J. Struct. Geol., 1983,5,483-495.
    Muraoka, H.and Kamata, H. Displacement distribution along minor fault traces. J. Struct. Geol., 1983,5,483-495.
    Murray A S.Wintle A G The single aliquot regenerative dose protocol:potential for improvements in reliability 2003(4-5).
    Narr, W., and J. Suppe, Kinematics of basement-involved compressive structures, Am. J. Sci., 1994,294:802-860.
    Nicol A, Dissen R Van. Up-dip partitioning of displacement components on the oblique-slip Clarence Fault,NewZealand. Journal of Structural Geology.2002,4(9):1521-1535
    Norris R J, A F Cooper. Late Quaternary slip rate and slip partitioning on the Alpine Fault, New Zealand. Journal of Structural Geology,2000,23:507-520
    Partial P. and Achache J. Indo-Asia collision chronology and its implications for crustal shortening and driving mechanisms of plates. Nature,1984,311:615-621.
    Peacock, D.C.P. Propagation, interaction and linkage in normal fault systems. Earth-Sci. Rev., 2002,58,121-142.
    Peltzer P, Tapponnier P. Formation and evolution of strike-slip faults, and basins during the India-Asia collision—An experimental approach. J Geophy Res,1988,93(B10):15085-15117.
    Peltzer, G, P. Tapponnier, and R. Armijo. Magnitude of Late Quaternary left-lateral displacements along the north edge of Tibet.Science,1989,246,1285-1289.
    Peltzer, G, P. Rosen, F. Rogez, and K. Hudnut, Postseismic rebound in fault step-overs caused by pore fluid flow, Science,1996 272,1202-1204.
    Plafkar,G. Alaskan earthquake of 1964 and Chilean earthquake of 1960:implications for arc tectonics. Journal of Geophysical Research,1972, v.77, p.901-924.
    Pollard, D.D. and Segall, P. Theoretical displacements and stresses near fractures in rock; with applications to faults, joints, veins, dikes, and solution surface. In Atkinson, B.K., ed., Fracture mechanics of rock:London Academic press,1987,p.277-349.
    Ramsay J and Huber M.TheTechniques of Modern Structural Geology, Academic Press, London, 1983.
    Rees-Jones J. Optical dating of young sediments using fine-grain quartz. Ancient TL,1995,13(2): 9-14.
    Replumaz A, and Tapponnier P. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. J Geophy Res,2003,108(B6):2285, doi:10.1029/2001JB000661
    Rockwell, T. K., E. A. Keller, and G. R. Dembroff, Quaternary rate of folding of the Ventura Avenue Anticline, western Transverse Ranges, southern California, Geol. Soc. Am. Bull.,1988, 100:850-858.
    Royden L, Burchfiel B C. King R W, et al. Surface deformation and lower crustal flow in Eastern Tibet. Science,1997,276(5313):788-790
    Scholze,C.H. The mechanics of earthquakes and faulting. Cambridge University Press,1990,p. 439.
    Schlische, R.W., Young, S.S., Ackermann, R.V., et al. Geometry and scaling relations of a population of very small rift-related normal faults. Geology,1996,v.24, p.683-686.
    Shelton, K.L., Burstein, I.B., Hagni, R.D., et al. Sulfur isotope evidence for penetration of MVT fluids into igneous basement rocks, southeast Missouri, U.S.A.:Mineralium Deposita,1995, v. 30, p.339-350.
    Shen,Z.-K.,C.Zhao, A.Yin,et al. Contemporary crustal deformation in East Asia constrained by global positioning system measurements, J. Geophys. Res.,2000,105,5721-5734.
    Shen F, Leigh H R, Burchfiel B C. Large-scale crustal deformation of the Tibetan Plateau. J Geophy Res,2001,106(B4):6793-6816.
    Shen, Z.K., Wang, M., Li, Y, et al. Crustal deformation associated with the Altyn Tagh fault system, western China, from GPS. Journal of Geophysical Research,2001,v.106, p. 30,607-30,621.
    Shen, Z.-K., J.-N. Lu, M. Wang, et al.Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau, J. Geophys. Res.,2005,110, B11409, doi:10.1029/ 2004JB003421.
    Shackleton N J, Backman J, Zimmerman H, et al. Oxygen isotope calibration of the onset of icerafting and history of glaciation in the North Atlantic region. Nature,1984,307:620-623.
    Schwartz D P and Coppersmith K J.Fault behavior and characteristic earthquakes:examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research.1984, V89: 5681-5698.
    Schlische, R.W., Young, S.S., Ackermann, R.V. et al. Geometry and. scaling relations of a population of very small rift-related normal faults. Geology,1996,24,683-686.
    Stein, R.S., King, G.C.P., and Rundle, J.B. The growth of geological structure by repeated earthquake 2. Field examples of continental dip-slip fault. Journal of Geophysical Research, 1988,v.93,p.13319-13331.
    Suppe, J. Geometry and kinematics of fault-bend folding, Am. J. Sci.,1983,283:684-721.
    Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics. Nature,1976, 264:319-324.
    Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extronics in Asia:new insights from experiments with plasticine. Geolgy,1982,10(12):611-616.
    Taponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia. In: Rmasey J, Croward M, Ries A, eds. Collision Tectonics. Geol Soc London Spec Pub,1986,19: 115-157.
    Tapponnier P.,B.Meyer,J.P.Avounc et al. Active thrusting and folding in the Qilianshan, and decoupling between upper crust and mantle in the Northeastern Tibet. Earth and Planetary Science Letters,1990,97:382-403.
    Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science,2001,294(5574):1671-1677
    Thompson, S. C. Active Tectonics in the central Tien Shan, Kyrgyz Republic, Ph.D. thesis, Univ. of Wash., Seattle,2001.
    Thompson, S. C., R. J. I. Weldon, C. M. Rubin, et al. Late Quaternary river terraces provide kinematic tests for fault-related folding in the Kyrgyz Tien Shan, central Asia, Geol. Soc. Am. Abstr. Programs,1999,31(7):128.
    Turner S., Hawkesworth C., Liu J., et al.. Timing of Tibet uplift constrained by analysis of volcanic rocks. Nature,1993,364:50-54.
    Wang Q, Zhang P Z, Freymueller J T et al. Present-day crustal deformation in China constrained by Global Positioning System (GPS)measurements. Science,2001,294:574-577.
    Wang X L. On the performances of the single-aliquot regenerative-dose SAR protocol for Chinese loess-fine quartz and polymineral grains [J].Radiation Measurements.2006,41 (1):1-8.
    Walsh, J.J. and Watterson, J. Distributions of cumulative displacements and seismic slip on a single normal fault surface. J. Struct. Geol.,1987,9,1039-1046.
    Weldon, R. J. I., and K. E. Sieh. Holocene rate of slip and tentative recurrence interval for large earthquakes on the San Andreas Fault, Cajon Pass, southern California, Geol. Soc. Am. Bull., 1985,96:793-812.
    Weldon, R. J. Late Cenozoic geology of Cajon Pass:Implications for tectonics and sedimentation along the San Andreas Fault, Ph.D. thesis, Calif. Inst. of Technol., Pasadena,1986.
    Wesson, R.L., Helley, E.J., Lajoie, K.R., et al. Faults and future earthquakes. In Borchardt, R.D., ed., Studies for seismic zonation of the San Francisco Bay region, U.S. Geological survey Professional Paper 941 A,1975.
    Willemse, E.J.M. Segmented normal faults:correspondance between threedimensional mechanical models and field data. J. Geophys. Res.,1997,102,675-692.
    Wittlinger G, Tapponnier P, Poupinet G. Tomographic evidence for locailzed lithospheric shear along Altyn Tagh fault. Science,1998,282:74-76
    Van der Woerd, J., X. Xiwei, L. Haibing, etal. Rapid active thrusting along the north-western range front of the Tanghe Nan Shan (western Gansu, China), J. Geophys. Res., 2001,106:30,475-30,504.
    Xu X., Yu G., Klinger Y., et al. Re-evaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake(Mw7.8), Northern Tibetan Plateau, China. J.Geophys Res.,2006,111:B05316, doi:10.1029/2004JB003488.
    Yeats, R.S. Active faults related to folding, in Wallace, R.E. (Editors), Active Tectonics:National Academy Press, Washington, D.C.,1986, p.63-79.
    Yuan Dao-Yang, Zhang Pei-Zhen, Liu Xing-Wang, et al. Late Quaternary strike-slip features along the Halahua fault, western segment of Haiyuan-Qilianshan fault, NE Tibetan Plateau.2009. (in press)
    Zhang P, Molnar P, Burchfiel B C, et al. Bounds on the Holocene slip rate along the Haiyuan fault, north-central China. Quaternary Research,1988,30:151-164.
    Zhang P, Burchfiel B C, Molnar P, et al. Rate, amount, and style of late Cenozoic deformation of southern Ningxia, northeastern margin of Tibetan Plateau. Tectonics,1991,10:1111-1129.
    Zhang P.,Molnar, P.,& Downs, W.. Increased sedimentation rates and grainsizes 2-4Myr ago due to the influence of climate changes on erosion rates. Nature,2001,410:891-897.
    Zhang P., Shen Z., Wang M., et al. continuous deformation of the Tibetan Plateau from global positioning system data. Geology,2004,32(9):809-812.
    Zhang P Z, Molnar P, Xu X W. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. TECTONICS,2007,VOL.26, TC5010, doi:10.1029/2006TC002014
    Zhao, W and W J Morgan. Uplift of the Tibetan Plateau. Tectonics,1985,4(4):359-369.
    Zhao, W and Dave A. Injection of Indian crust into Tibetan low crust:A temperature-dependent viscous model. Tectonics,1987,6(4);505-514.
    Zheng H B, Powell C M, An Z S et al. Plocence uplift of the northern Tibetan Plateau. Geology, 2000,28(8):715-718
    Zheng J. Significance of the Altun Fault of China.Episodes,1991,14:307-312
    Zheng D, Zhang P, Wan J, et al. Rapid exhumation at-8Ma on the Liupanshan thrust from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science letters,2006,248:183-193.
    Zheng D.,M.K.Clark, Zheng W., et al.Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau).2009(in press).
    Zheng W., Yuan D., and He W. Characteristics of paleoseismic activy along the Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilian mountains. Earthquake Research in China,2005a,19(2):139-151.
    Zheng W., Yuan D., Zhang D., et al. Rupture property of the 1927 Gulang Ms8.0 earthquake and numerical simulation of rupture mechanism. Earthquake Research in China, 2005b,19(4):409-420.
    安芷生,王苏民,吴锡浩,等.中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动.中国科学,D.辑,1998,28(6):481-490
    边庆凯,张培震,苏向洲.榆木山北缘断裂的构造地貌特征与断层活动性.华北地震科技,2001(3):41-49.
    常承法,郑锡澜.中国西藏南部珠穆朗玛地区地质构造特征及其青藏高原东西向诸山系形成的探讨.中国科学(D辑),1973,2:190~201.
    陈柏林,刘建民,刘建生,等,高台车站断裂全新世活动特征.地质学报,2005,80(4):497-507.
    陈杰.祁连山西段第四纪构造运动的阶段、性质及其年代研究.博士学位论文.北京:国家地震局地质研究所1995.
    陈杰,卢演俦,丁国瑜.祁连山西段及酒西盆地地区第四纪构造运动的阶段划分.第四纪研究.1996,(3):263-271
    陈杰,卢演俦,尹功明,等.甘肃玉门地区第四纪晚期构造阶地的红外释光测年.高校地质学报,1996,2(4):390-399.
    陈杰,卢演俦,魏兰英,等.第四纪沉积物光释光测年中等效剂量测定方法的对比研究,地球化学,1999.28(5):443-452.
    陈杰,卢演俦.中国西部前陆盆地生长不整合、生长地层与构造变形.卢演俦,.高维明等主编:新构造与环境,北京:地震出版社,2001,407-421.
    陈文彬.河西走廊及邻近地区最背后构造变形基本特征及构造成因分析.博士学位论文.北京:中国地震局地质研究所,2003:21-87.
    陈正乐,万景林,王小凤,等.阿尔金断裂带8Ma左右的快速走滑及其地持意义.地球学报.2002,23(4):295-300.
    崔之久,伍永秋,伍永秋等.关于“昆仑-黄河运动”.中国科学,D辑,1998.28(1):53~59.
    戴华光,陈永明,苏向洲,等.天桥沟—黄羊川断裂古地震的初步研究.活动断断裂研究(4).北京:地震出版社.1995.92-103.
    戴华光,陈永明,苏向洲,等.天桥沟-黄羊川断裂的几何学和运动学特征.西北地震学报.1999.21(3):259-267.
    邓起东,张裕明,许桂林,等.中国构造应力场特征与板块运动的关系.地震地质,1979(1).
    邓起东,张裕明,环文林等.中国地震烈度区划图编制的原则和方法.地震学报.1980,2(1).
    邓起东,冯先岳,尤惠川等.新疆独山子-安集海活动逆断裂-褶皱带的变形特征及其形成机制.活动断裂研究(1),北京:地震出版社,1991,17-36.
    邓起东,陈社发,赵小麟.1994.龙门山及其邻区的构造和地震活动及动力学.地震地质,16(4):389~403.
    邓起东,于贵华,叶文华.地震地表破裂参数与震关系研究,活动断裂研究(2),1992:247-264。
    邓起东,张培震,冉勇康,等.中国大陆活动构造基本特征.中国科学(D),2002,32(12):1020-1030.
    丁林.钟大赉.潘裕生.黄萱.王庆隆东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.中国科学D辑.1995(16).
    丁国瑜主编.中国岩石圈动力学概论.北京:地震出版社.1991.
    丁国瑜,1988,关于青藏高原活动构造的一些问题,西北地震学报,第11卷(增刊).
    董治平.1954年山丹地震断裂带.兰州大学出版社.2007.
    方小敏,赵志军,李吉均,等.祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升.中国科学(D).2004,34(2):94-106.
    方小敏,吕连清,杨胜利等.昆仑山黄土与中国西部沙漠发育和高原隆升.中国科学(D辑),2001,31(3):177~184.
    甘肃省地质矿产局.中华人民共和国地质矿产部地质专报(区域地质第13号)-陕西省区域地质志.北京:地质出版社.1989:624-625.
    甘肃省地质矿产局.一比二十万区域地质调查报告及图件(昌马幅、玉门市幅、玉门镇幅、酒泉幅、祁连山幅、高台幅、平川幅、肃南幅、张掖幅、山丹幅、武威幅、天祝幅、永登幅、大景幅等).1965-1979.
    高先志,陈发景,马达德,等.中、新生代柴达木北缘的盆地类型与构造演化.西北地质.2003,36(4):16-24.
    国家地震局地质研究所,宁夏回族自治区地震局.海原活动断裂带.北京:地震出版社.1990.
    国家地震局阿尔金活动断裂带课题组.阿尔金活动断裂带.北京:地震出版社.1992:1-165.
    国家地震局地质研究所,国家地震局兰州地震研究所.祁连山-河西走廊活动断裂系.北京:地出版社.1993:148-174.
    国家地震局地质研究所,宁夏回族自治区地震局.海原活动断裂带.地震出版社.1990:99-138.
    国家地震局兰州地震研究所编.甘肃省地震资料汇编[M],北京:地震出版社.1989.
    国家地震局兰州地震研究所.昌马活动断裂带.北京:地震出版社.1992:46-66
    国家地震局兰州地震研究所.祁连山活动裂1:5万地质填图和特征地震研究报告(85-02-1-3-4)(东部组).1995.(内部资料).
    国家地震局兰州地震研究所.祁连山活动裂1:5万地质填图和特征地震研究报告(85-02-1-3-4)-古浪活动断裂带1:5万地质图说明书及图集.1995.(内部资料).
    国家地震局震害防御司.中国历史地震资料汇编.北京:地震出版社.1995.
    国家地震局震害防御司.中国历史强震目录(公元前23世纪—公元1911年),地震出版社.1995.
    国家质量监督检验检疫总局.中华人民共和国国家标准<中国地震烈度表>.北京:中国标准出版社.1999.
    虢顺民,向宏发,黄昭,等.河西走廊南缘断裂第四纪活动的考察.中国地震年鉴.北京:地震出版社,1987.
    虢顺民,向宏发.甘肃高台榆木山地区晚新生代活动断裂及断层陡坎.现代地壳运动研究(5),地震出版社.1990.
    何文贵,郑文俊,赵广坤,等.2002年12月14日甘肃玉门5.9级地震的发震构造研究.地震地质.2004,26(4).
    何文贵,刘百篪,袁道阳,等.冷龙岭活动断裂的滑动速率研究.西北地震学报,2000,22(1):90-97.
    何文贵,刘百篪,吕太乙,等.老虎山断裂带分段性研究.西北地震学报.1994,16(3):66-72
    黄汲清.中国新构造运动的几个类型.中国科学院第一次新构造运动座谈会发言记录.科学出版社.1957.
    黄汲清.对中国大地构造特点的一些认识并着重讨论地槽褶皱带的多旋回发展问题.地质学报.1979,53(2).
    黄汲清,陈炳蔚.中国及邻区特提斯海的演化.北京:地质出版社.1987.
    侯康明.1927年古浪8级大震的发震构造条件形成机制及区域动力学环境研究(博士学位论文).北京:国家地震局地质研究所.1996,96-100.
    李传友.青藏高原东北部几条主要断裂带的定量研究.博士学位论文.北京:中国地震局地质研究所.2005:193-203.
    李吉均,文世宣,张青松,等.青藏高原隆起的时代、幅度和形式的探讨.中国科学,1979,(6):608-616
    李吉均,方小敏,朱俊杰,等.临夏盆地新生代地层古地磁年代与模式序列.青藏项目专家委员会编.青藏高原形成演化、环境变迁与生态系统研究-学术论文年刊(1994).北京:科学出版社,1995:41-54.
    李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569~1574.
    李玉龙,侯珍清,康哲民,等.中国西北陕甘宁青地震区划.兰州:甘肃人民出版社,1986.
    李有利,谭利华,段烽军,等.甘肃酒西盆地河流地貌与新构造运动.干旱区地理,2000,23(4):304-308.
    李有利,杨景春,李保俊,等.河西走廊榆木山边缘断层构造地貌研究.地质力学学报,1997,3(4):20-26.
    刘百篪.1998.青藏高原的新生代重要地质事件与构造演化.见:中国地震学研究进展—纪念谢毓寿教授八十寿辰,北京:地震出版社,299~307.
    刘百篪,周俊喜.海原活断层上的史前大地震.地震地质,1985,7(4):11-21.
    刘东生等.黄土与环境.北京:科学出版社.1985.
    刘东生郑绵平.亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性.第四纪研究,1998,(3).
    刘建生,刘百篪,袁道阳.肃南断裂晚第四纪活动特征及古地震初步研究.中国活动断层研究.北京:地震出版社.1994:36-41
    马瑾.从断层中心论向块体中心论转变—论活动块体在地震活动中的作用.地学前缘,1999,6(4):363-370
    马杏垣.中国及其邻区海域岩石圈动力学图(1:400万).地质出版社.1987.
    毛凤英,张培震.古地震研究的逐次限定法与新疆北部主要断裂带的古地震研究.活动断裂研究(4),北京:地震出版社.1995,153-164.
    闵伟,张培震,何文贵等.酒西盆地断层活动特征及古地震研究.地震地质,2002,24(1):35-44.
    牛之俊,马宗晋,陈鑫连,等.中国地壳运动观测网络.大地测量与地球动力学,2002,22(3):88-93.
    冉勇康,段瑞涛,邓起东,等.海原断裂高湾子地点三维探槽的开挖与古地震研究.地震地质,1997,19(2):7-107.
    任纪舜,姜春发等.中国大地构造及其演化.科学出版社.1980.
    陕西省地质矿产局.中华人民共和国地质矿产部地质专报(区域地质第13号)-陕西省区域地质志.北京:地质出版社.1989:544.
    宋春晖,孙淑荣,方小敏等.酒西盆地晚新生代沉积盆物重矿物分析与高原北部隆升.沉积学报,2002(4)
    施雅风,中国现代冰川的基本特征,地理学报,1964,30(4).
    施雅风,郑本兴,李世杰等.青藏高原中东部最大冰期时代、高度与气候环境探讨.冰川冻土,1995.17(2):97~112
    施雅风,李吉均,李炳元等.1999.晚新生代青藏高原隆升与东亚环境变化.地理学报,54(1):10~21.
    石应骏,张朝文,寸树苍.龙首山推覆构造的发现及其地质意义.科学通报.1995,40(9):812-813.
    田勤俭,丁国瑜,申旭辉.青藏高原东北隅强震构造模型.地震.2002,22(1):9-16.
    万夫领.古浪黄羊川断裂晚更新世以来活动性初步研究.西北地震学报,1987,9(2):97-100.
    万景林,王瑜,李齐,等.阿尔金北段晚新生代山体隆升的裂变径迹证据.矿物岩石地球化学通报.2001,20(4):222-224.
    王敏,沈正康,牛之俊,等.现今中国陆地地壳运动与活动块体模型.中国科学D辑:地球科学,2003,33(增刊):21-32.
    王琪,张培震,Freymueller J T,等.中国大陆现今地壳运动和构造变形.中国科学(D辑),2001,31(7):529-536.
    王旭龙,卢演俦,李晓妮.红外固体二极管点阵在释光测年中的光照应用.海洋地质与第四纪地质,2004,24:133-138.
    王旭龙,卢演俦,李晓妮,细颗粒石英光释光测年:简单多片再生法.地震地质,2005.27(4):615-623.
    王昌盛,陈杰,张克旗.西南天山明尧勒背斜河流阶地沉积物的光释光测年.地震地质2005.27(4):586-598.
    王同利,陈杰,杨传成Daybreak厚源α-计数仪的标定计测量影响因素的初步研究.地震地 质.2005.27(4):633-644
    汪一鹏,Tapponnier P.关于青藏高原运动学模型的要点及评述.见:地质矿产部科学技术司编,地壳和上地慢研究.北京:中国地质矿产信息研究院.1995,1-5
    汪一鹏.青藏高原活动构造基本特征.见;活动断裂研究(6).北京:地震出版社,1998,135~144.
    王曰伦.中国新构造运动的零检.中国科学院第一次新构造运动座谈会发言记录.科学出版社.1957.
    翁文灏.甘肃地震考察.地质汇编(3),科学,1921,6:10一12.
    翁文灏.甘肃地震谈.东方杂志.1927,24(18).
    向宏发,虢顺民,张秉良等.六盘山东麓活动逆断裂构造带晚第四纪以来的活动特征.地震地质,1998,20(4):321~327.
    邢成起,荣代潞,姚同福,等.1995年7月22日永登5.8级地震发震构造和发震机制分析.西北地震学报,1996,18(3).
    徐仁,孔昭宸,杜乃秋.西藏南部珠穆朗玛峰地区植物化石的发现及其意义.植物学报,1973,15(2):254-258
    徐锡伟,Tapponnier P, Van Der Worerd J et al阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论.中国科学(D).2003,33(10):967-974.
    徐锡伟,闻学泽,叶建青,等.汶川MS8.0地震地表破裂带及其发震构造.地震地质,2008,30(3):597-629.
    许志琴,杨经绥,姜枚等.大陆俯冲及青藏高原周缘造山带的崛起.地学前缘,1999.6(3):139~152.
    杨景春,谭利华,李有利,等.祁连山北麓河流阶地与新构造演化.第四纪研究,1998,
    (3):229-237.
    袁道阳.青藏高原东北缘晚新生代以来的构造变形特征与时空演化.博士学位论文.北京:中国地震局地质研究所.2003:6-145
    袁道阳,张培震,刘百篪,等.青藏高原东北缘晚第四纪活动构造研究的几何图像与构造转换.地质学报,2004,78(2):270-278
    袁道阳,刘百篪,吕太乙,等.北祁连山东段活动断裂带的分段性研究.西北地震学报,1998,20(4):27-34,.
    张培震,邓起东等.盲断裂、褶皱地震与新疆1906年玛纳斯地震.地震地质,1994,16(3):193~204.
    张培震.中国大陆岩石圈最新构造变动与地质灾害.第四纪研究.1999.(5):404-413.
    张培震,王琪,马宗晋.中国大陆现今构造变形的GPS速度场与活动地块地学前缘,2002,9(2):430-441.
    张培震,王琪,马宗晋。青藏高原现今构造变形特征与GPS速度场_地学前缘,2002,9(2):442-450.
    张培震,邓起东,张国民等.中国大陆的强震活动与活动地块.中国科学(D辑),2003.333(增刊):12-20.
    张培震,王敏,甘卫军,等.GPS观测的活动断裂滑动速率及其对现今动力学的制约.地学前缘,2003,10(特刊):81-92.
    张培震,上敏,甘卫军等.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约.地学前缘,2003.10(增刊):81-92.
    张培震,沈正康,王敏,等.青藏高原及周边现今构造变形的运动学,地震地质,2004,26(3),367-377。
    赵朋.肃北地区主要断裂晚第四活动特征研究.硕士学位论文.中国地震局地质研究所.2009.
    赵志军,方小敏,李吉均.祁连山北缘酒东盆地晚新生代磁性地层.中国科学(D辑),2001.31(增刊):195-201.
    赵志军,方小敏,李吉均等.酒泉砾石层的古地磁年代与青藏高原隆升.科学通报,2001.46(14):1208-1212.
    赵志军.2000.酒泉盆地晚新生代地层与青藏高原北缘新构造运动.兰州大学博士学位论文.
    郑德文,张培震,万景林,等.青藏高原东北边缘晚新生代构造变形的时序—临夏盆地碎屑颗粒磷灰石裂变径迹记录.中国科学(D辑),2003,33(增刊):190-198
    郑文俊.古浪活动断裂带古地震活动习性研究(硕士学位论文).兰州:中国地震局兰州地震研究所.2003.
    郑文俊,袁道阳,何文贵.祁连山东段天桥沟-黄羊川断裂古地震活动习性研究.地震地质,.2004a,26(4):645-657.
    郑文俊,袁道阳,何文贵.皇城—双塔断裂冬青顶段古地震活动规律的初步研究.地震研究,2004b,26(1):66-73
    郑文俊,袁道阳,张冬丽,等.1927年古浪8级地震的破裂习性及破裂机制的数值模拟,中国地震,2004c,20(4):353-363.
    郑文俊,何文贵,赵广坤,等.2003年甘肃民乐—山丹6.1、5.8级地震发震构造及发震机制探讨.地震研究,2005,28(2).
    郑文俊,张培震,袁道阳,等.GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形.地球物理学报.2009(已定稿).
    中国地震局地质研究所.西气东输工程场地地震安全性评价,2001(内部资料).
    中国地震局兰州地震研究所.祁连山地区活动地块运动状态及其边界断裂系构造转换关系研究.2003(内部资料).
    中国地质科学院地质研究所.中国大地构造纲要.科学出版社.1959.
    钟大赉,丁林.青藏高原的隆升过程及其机制探讨.中国科学(D辑),1996,26(4):289-295.
    周光.甘肃省山丹地震的地质现象.地质学报,1954,34(3):291-300.
    朱俊杰,曹继秀,钟巍等.兰州地区黄河最高阶地与最老黄土沉积的发现及其古地磁年代学研究.见:青藏高原形成演化、环境变迁与生态系统研究.北京:科学出版社,1995.77~90.
    顾功叙主编.中国地震目录(上册).北京:科学出版社.1983.
    卫星影像资料网站http://earth.google.com/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700