用户名: 密码: 验证码:
东昆仑断裂带东段(玛沁—玛曲)晚第四纪长期滑动习性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东昆仑断裂带、阿尔金断裂带、祁连山-海原活动断裂带等组成了青藏高原北部大型走滑断裂系。这些断裂之间的空间联系、巨大的走滑量及其地壳缩短特征,都显示了它们在印度板块和欧亚板块汇聚过程中青藏高原的形成扮演了主要角色。这些断裂准确的滑动速率对于研究青藏高原变形和演化过程,确定水平滑动、变形的规模,建立高原的变形和演化模式提供了重要依据。
     东昆仑断裂带东段(玛沁-玛曲)地处甘川青三省交界的青藏高原东北部,为昆仑-柴达木块体和巴颜喀拉块体的边界断裂的东部。作为东昆仑断裂带上人口最多的地震空区,其几何结构及其现今构造运动特征的研究,对于玛沁、玛曲县城的避让带的准确确定、地震危险性分析和更加科学有效的防震减灾有着重要的现实意义,对于青藏高原的隆升机制争议模型的检验及该区断裂带构造变形机制的研究有重大的理论意义。本文旨在分析、整理和总结前人成果的基础上,通过航卫片的解译及野外实地验证相结合的方法来分析该段的几何结构,通过构造地貌和古地震相结合的方法来获得断裂的完整大震序列,最新地表破裂位移,从而得到断裂的长期滑动速率,并与构造地貌方法获得的滑动速率进行对比验证。系统获得东昆仑断裂带东段几何学和运动学特征,以达到研究东昆仑断裂带中西段的快速左旋走滑向东如何消减的目的。
     本文在分析整理前人资料的基础上,通过航卫片判读,进行了野外地质调查,室内样品测试,滑动速率的计算,开挖古地震探槽,综合分析断裂晚第四纪以来的活动历史,及该区域气候与阶地形成时间的对比,主要得到以下几点认识:
     1.几何结构:
     东昆仑活动断裂带东段(玛沁-玛曲段)西起阿尼玛卿山北麓,经过东倾沟、大武滩、扎木儿山前、纳姆擦克耳山北侧、西贡周、莫哈塘、西科河羊场、唐地、在克生托洛穿过黄河,展布在哲合拉布肖山前,过玛曲后,进入若尔盖盆地、从罗叉北出沼泽地与塔藏断裂相交,全长约330km,总体走向北西295°,倾向以南西为主,倾角70°-80°,局部近直立。该区处于地震较多的南北带中段及中国东西部构造和南北向构造交汇部位,东昆仑断裂与很多断裂交汇:在阿尼玛卿山西侧与中铁断裂相交,在莫合塘南侧与西贡周西侧分别阿万仓断裂东、西分支相交,形成西贡周断层交汇区。迭部—武都断裂距离东昆仑断裂北侧15km,与东昆仑断裂左阶斜列。
     2.几何结构和地表破裂分段:
     几何结构分段:走滑断层的几何特征往往由一系列呈雁列排列次级断层、褶皱和盆地等多种构造类型按一定规律组合而成的狭长条带。其几何分段标志主要为阶区、弯曲、间断、分叉、交汇或分叉和断裂宽度变化,活动性的变化等,依据这些标志,可将东昆仑断裂带东段(玛沁-玛曲段)分为8段,从西往东为东倾沟段、大武滩段、肯定那段、西科河段、唐地段、玛曲段、墨溪段和罗叉段,前7段,除唐地段与玛曲段为右阶排列,其余左阶排列,各阶区之间范围较小,联系紧密,表明各段之间贯通程度较好。最长的阶区长约lOkm,宽约1.3km,为西科河段与唐地段的梭状断裂交接组合。最小的阶区为玛曲段与墨溪段,在玛曲县城南侧形成长300m,宽200m的小拉分盆地。东倾沟段与西段的阿尼玛卿山段形成34°的挤压弯曲。墨溪段主要隐伏在若尔盖高原沼泽内,在罗叉北出沼泽地与塔藏断裂相交,形成10°的挤压弯曲。在莫哈汤南侧和西贡周西侧东昆仑断裂与阿万仓断裂相交汇,也为大武滩段、西科河段的分段标志。该段广泛分布的构造地貌和古地震造成的破裂标志表明该段曾经历过多次活动。
     地表破裂分段:阿尼玛卿山为长40km,宽lOkm的双挤压弯曲,阶区内山体隆升,可作为障碍体和应力集中区。东昆仑断裂在莫哈塘南侧和西贡周西侧分别与阿万仓断裂的东西两支相交,形成西贡周断层交汇区,构成构造不连续点,可作为障碍体和应力集中区。这两个障碍体和应力集中区可将东昆仑断裂玛沁-玛曲段分成两条地表破裂段,玛沁断裂和玛曲断裂。
     3.构造地貌方法获得的滑动速率:
     水平滑动速率:通过对东昆仑断裂带玛沁-玛曲段30个观测点的地貌测量、年龄测试和计算,得到了各地表破裂段的晚更新晚期以来的长期水平滑动速率,玛沁段的左旋滑动速率为9.3±2mm/a,西贡周断层交汇区水平滑动速率为7.4±1mm/a,玛曲段水平滑动速率为4.9±1.3mm/a,断裂水平滑动速率呈梯度下降,且下降的突变点集中在阿万仓断裂与东昆仑断裂交汇区的两端,锐减的滑动速率构造转换到阿万仓断裂的地壳缩短,与东昆仑断裂带的几何结构一一对应。
     垂直滑动速率:通过对东昆仑断裂带玛沁-玛曲段30个观测点的地貌测量、年龄测试和计算,得到了各段的晚更新晚期以来的长期垂直滑动速率,玛沁段为0.7±0.2mm/a,西贡周断层交汇区1.6±0.4mm/a,玛曲段,0.25±0.05mm/a,这些速率在西贡周断层交汇区最大,与水平滑动速率之比大约为1:5,在唐地段最小。反映了东昆仑断裂主要以左旋走滑为主,兼有倾滑分量,在玛沁段西侧的东倾沟表示为逆走滑性质,在玛沁县城以东主要为正倾滑性质。
     4.大震序列:
     玛沁段:揭露的活动期次共有7次:综合上述,可获得断裂全新世早期以来主要发生了7次古地震事件,第一次为358-430Cal a BP(公元1520-1592年)以后不久;第二次为公元1061年(977-1090Cal a BP)(公元860-973年)以后不久;第三次为距今(1689-1736)Cal a BP~(2.0±0.3)ka;第四次为(3058-3211)Cal a BP~(3342~3454)Cal a BP;第五次为距今(6.6±0.7)-(7.2±0.8)ka;第六次事件为(7971-8050)Cal a BP~(8451~8632) Cal a BP之间;第七次事件为(9.9±1.0)ka-(10.1±1.0)ka。全新世早期以来的古地震复发周期为500-1000年,距今2000年以来的古地震复发周期为600±100。其中公元1061年前后的古地震事件可以根据民间史诗《格萨尔王传》得到证实。最新一次地震事件的离逝时间约为400a,距离最近古地震复发时间的最小值500a只有100a,地震危险性应该引起重视。
     玛曲段:揭露的活动期次有8次:第一次为1055-1524a Cal BP以来;第二次事件(1210±50)-(1730±50)a BP之间;第三次事件(1730±50)-(2530±40)a BP之间;第四次事件为距今(3736±57)a-(4586±124)a之间;第五次事件(4850±40)-(7460±60)a BP之间;第六次为距今(7460±60)-(8690±40)a BP;第七次9000-10000a CalBP之间;第八次为距今(15800±2500)-(24100±2900)a BP。大震平均复发间隔为1000-2000a,最近三次古地震的复发间隔为1000a。最新一次古地震事件的离逝时间大约1000a,已经接近最新的复发间隔,地震危险性非常严峻。
     同时2008年5.12汶川Ms8.0级地震对玛沁-玛曲断裂造成了应力的加载,提高了玛沁一玛曲段的地震危险性,因此该区的地震危险性应当给予重视,需要加强该区的防震减灾法的宣传,提高大家的防震减灾意识。
     5古地震获得的滑动速率
     玛沁段:玛沁断裂的最新地表破裂造成的水平位移为4±0.5m,近2000年来的古地震复发周期600±100a,利用公式S=D/Rx获得断裂的水平滑动速率为7±lmm/a,与构造地貌获得的断裂长期滑动速率9.4±1 mm/a相差不多。
     玛曲段:玛曲西侧的最新地表破裂造成的平均水平位移为3m,通过最近三次的大震复发间隔1000a,计算出来的滑动速率为3mm/a,和构造地貌方法获得的长期滑动4.9±1.3mm/a相差不多。
     6构造转换
     无论是构造地貌还是古地震方法计算的滑动速率,东昆仑断裂带东段滑动速率都呈梯度下降,下降主要集中在断裂走向的弯曲和横向构造的交汇区,与断裂的几何结构变化一一对应。断裂通过西贡周断层交汇区后,滑动速率锐减了大约4mm/a,锐减的部分与阿尔金断裂类似,主要转换到阿万仓断裂带上的逆冲和左旋走滑。通过对构造变形的矢量分解,得到阿万仓断裂西支的左旋滑动速率为2.4mm/a;东支的左旋滑动速率为1.4mm/a,垂直断裂水平缩短速率为2.3mm/a,东西两支构成一种滑移分解模式,对二者的矢量合成,得到南西侧块体相对北东侧块体在112.1°的方向上有4.6mm/a的滑动速率。
     7阶地形成期
     通过对该区观测点地貌面年龄的统计,获得该区阶地形成时间主要集中在1-2ka,3-5ka, 7-10ka,12.5-15ka,28-35ka,40-45ka,65-70ka7个时间段内,分别与该区的气候特征相对应,1-2ka主要对应新冰期后的间冰期,3-5ka对应全新世大暖期晚期温湿阶段,7-10ka对应全新世大暖期早期潮湿阶段,12.5-15ka对应末次冰消期,28-35ka,40-45ka对应末次冰期冰盛期的异常温暖期和末次冰期间冰阶的异常高温期,65-70ka对应末次冰期早冰阶。由此可见该区的阶地形成主要受气候温暖潮湿影响。
The East Kunlun fault is situated in the southernside of the Kunlun Mountains, which divides the north and south of China tectonics. The East Kunlun fault,Altyn Tagh fault, and Haiyuan faults constitute margin of the northern Tibetan Plateau.They paly a major role in accommodating Indo-Asian convergence as the great lateral extents and spatial relationship to high-angle shortening with large thrust. The accurate slip rates along these faults provide significant evidence in the field of research on the Tibetan Plateau deformation and evolution, determining horizontal slip and deformation degree and establishing plateau deformation and evolution models.
     The eastern segment of the East Kunlun fault (Maqin-Maqu), that is the eastern border between Kunlun-Chaidamu block and Bayankala block, lies in the northeast of the Tibetan Plateau where Gansu, Sichuan and Qinghai Provinces adjoin.As the most inhabited area of the East Kunlun fault,the research of its geometric structure and present motion features is very meaningful in reality to determining the safety distance for the Maqin and Maqu Town, seismic risk analysis and earthquake prevention.It is also meaningful in theory to test the various controversial models of the uplift mechanism of Tibet and research of tectonic transformation of the regional faults. Based on analysis, collection and summary of previous achievements, this thesis aims to analyze geometric structure of this segment through interpretation of satellite images and field test, to obtain its large earthquake sequence by connection of the tectonic geomorphology and paleoseismology.Finally,this work gets the geometric and movement features of the eastern segment of East Kunlun fault so as to research the lateral slip rate which diminishes sharply from the west segment to the east segment.
     Based on the analysis and coordination of the existing data,interpretation of ETM、Quickbird and Worldview satellite images, field geological survey as well as tests of age samples and calculation of slip rates on the East Kunlun fault (Maqin-Maqu), this dissertation comes to the following conclusions:
     1. Geometric structure
     In the west it starts from the north pediment of the Animaqing mountain, passes through north of Dongqinggou, Dawutan, pediment of Zhamuer, Dawumuchang, Kendingna, Dagongka, north side of Namucakeer, Xigongzhou, Mohatang, Xikeheyangchang, Tangdi, Oula, crossing over the Yellow River in Keshegntuoluo, spreading on the face of northern Yellow River, then extending to Ruoergai everglade by Maqu and intersecting with the Tazang fault after coming out from northern wetland of Luocha. The total length is around 330 km, it generally strikes in 295°; mainly dips to south west at angles 70°-80°, locally close to upright. It is located in the eastern edge of the Tibetan plateau, which is the middle part of the north-south seismic belt with frequent earthquakes. It belongs to the cross section of east-west and south-north structures, which is quite complicated with so many ruptures crossing each other. On the west side of the Animaqing Mountain,the East Kunlun fault intersects with the Zhongtie fault.On the West side of Xigongzhou and south side of Mohatang, the East Kunlun fault intersects with the west and east strands of the Awancang fault,which form the fault intersection zone at Xigongzhou. The Diebu-Wudu fault is 15km to the North side of the East Kunlun fault, which form a broad dilational log with the East Kunlun fault in left-step manner.
     2. Segmentation
     A strike-slip fault has many structure features, such as en echelon secondary farctures, faults, folds and basins, which are combined into a narrow and long band in a certain law. Its geometrical segmentation indicators mainly include step-over,bend,discontinuity, bifurcation, intersection or the width variation and active transformation. Through interpretation of ETM and QuickBird satellite images and utilization of the segmental signs of the strike slip fault, such as the geometrical shape, the combination of the geomorphic features and the fault zone materials, the Kunlun fault (Maqin-Maqu) can be geometrically divided into eight segments, which are named Dongqinggou, Dawutan, Kendingna, Xikehe, Tangdi, Maqu,Moxi and Luocha by sequence from west to east. These eight segments form a left-stepping echelon, except the Tangdi and Maqu segments, which are a right-stepping echelon. The space between segments is small which are well-connected. The evidence of the extensive landform and paleoseismic rupture indicates that the Maqin-Maqu segment has experienced numerous movements. The longest step-over with length around 10km and width 1.3km is the spindle-shaped conjoining connection of the Xikehe segment and Tangdi segment. The smallest step-over is between the Maqu segment and Moxi segment, which form a small pull-apart basin with length 300m and width 200m at south side of Maqu Town. There is a 34°extrusion bend between the Dongqinggou and Animaqing segment,which form the Animaqing uplift. The Moxi segment is mainly buried in the swampland of the Ruoergai basin and intersects with the Tazang fault at north of Luocha,which forms an 10°extrusion bend. The East Kunlun fault intersects with Awancang fault at the south side of Mohatang, which is the segmentation indicators for the Xikehe segment. The extensively distributed landform and rapture signs caused by earthquakes in ancient times show that there have happened many movements.
     Suface rupture segmentation:The Animaqing mountain is a double restraining bend, long 40km, wide 10km, with the mountain uplift as a barrier and stress concentration.The Xigongzhou intersection zone is a structural discontinued point that becomes another barrier. They can divide the Eastern Kunlun fault into two surface rupture segments, Maqin segment and Maqu segment.
     3. Slip rate from tectonic geomorphology
     Horizontal slip rate:Based on of geomorphic measurements, dating and calculation of long term horizontal slip rates of 30 investigated sites, the long term horizontal slip rates of the three rupture segments since late Pleistocene are obtained. The horizontal slip rate of the fault is 9.3± 2.5mm/a in the Maqin segment,7.4±1mm/a in Xigongzhou intersection zone, and 4.9±1.3mm/a in the Maqu segment since late Pleistocene,respectively.It can be seen that the horizontal slip rate decreases gradiently,by about 4mm/a from Maqin to Maqu segment.The discontinuity is just the Xigongzhou intersection zone, which is the intersection of the East Kunlun fault and Awancang fault and may be the structural transform to the Awancang fault with crustal shortening.The slip rate gradients are corresponding to the geometrical structures.
     Vertical slip rate:Based on of surveying of geomorphic survey, dating and calculation of long term vertical slip rates of 30 investigated sites, the long term vertical slip rates of the three rupture segment since late Pleistocene are obtained. They are 0.7±0.2mm/a in the Maqin segment,1.6±0.4mm/a in the Xigongzhou intersection zone,and 0.25±0.05mm/a in the Maqu segment,respectively. It is biggest in Xigongzhou segment with ratio is 1:5 to the horizontal slip rate.It reflects the fault is mainly of strike slip with oblique components,which is reverse strike slip at the Dongqinggou,the west side of the Maqin fault, and is normal strike slip at the east of Maqin town.
     4. Large earthquake sequence
     Maqin segment:Seven events are revealed by the trenches on the Maqin segment. The ages of these thirteen events are as follows:(1) 358~430Cal a BP; (2) 977-1090 Cal a BP;(3) (1689-1736) Cal a BP~(2.0±0.3) ka; (4) (3058-3211) Cal a BP~(3342~3454) Cal a BP (5) (6.6±0.7)~(7.2±0.8) ka; (6) (7971~8050) Cal a BP-(8451~8632) Cal a BP; (7) (9.9±1.0)ka~(10.1±1.0)ka. The recurrence interval is about 500-1000a since Holocene. The average interval is 600±100a from event 1 to event 3,whereas the intervals vary largely between 500~1000a from event 4 to event7 since Holocene. The event 1061A.D can be confirmed by the epic of Gesar. The elapsed time of the latest event is 120a,and the another event will come only 180a later to the minimum of the interval, so the hazard analysis should be paid attention to.
     Maqu segment:Eight events are determined through the analysis of the trenches on the Maqu segment. The ages of these eight events are as follows:(1) 1055~1524a Cal BP;(2)(1210±50)~(1730±50)a BP;(3) (1730±50)~(2530±40)a BP;(4) (3736±57)a~(4586±124); (5) (4850±40)~(7460±60)a BP; (6)(7460±60)~(8690±40)a BP; (7) 9000~10000a Cal BP;(8) (15800±2500)~(24100±2900)a BP. The recurrence interval is about 500-2000a since late Pleistocene.The average interval is 1000a from event 1 to event 3. The elapsed time of the latest event is~1000a,beyond the maximum of latest interval, so the seismic hazard analysis should be made strenuously.
     The Wenchuan M8.0 earthquake of 12 May 2008 has imposed the stress load to the eastern Kunlun fault and increased the seismic hazard.So we should pay attention to the seismic hazard of the Maqin-Maqu fault and strengthen the dissemination of earthquake prevention and disaster reduction to enhance the consciousness of quakeproof.
     5 Slip rate from paleoseismology
     Maqin segment:The latest horizontal slip of the Maqin fault is 4±0.5m.The interval of the paleoearthquakes is 600±100a since 2000a.Using the formula S=D/Rx, and calculated the horizontal slip rate 7±1mm/a, similar to the slip rate 9.4±2.5mm/a from the tectonic geomorphology.
     Maqu segment:The latest horizontal slip of the Maqu segment is 3m.The interval of the paleoearthquakes is1000a since the latest three events and the calculated slip rate is 3mm/a, similar to the slip rate 4.9±1.3mm/a from the tectonic geomorphology.
     6 Tectonics transformation
     Both the tectonic geomorphology and the paleoseismology suggest that the slip rate gradient decreases. The slip rate reduces sharply by almost 4mm/a when the East Kunlun fault passes the Xigongzhou intersection zone.The reduction is centered at the bend and transverse structural intersection, corresponding to the geometric change and the decreased slip rate transform to the transverse structure,the Awancang fault.By the transformation vector partitioning, the horizontal slip rate of the west strand of the Awancang fault is 2.4mm/a, the horizontal slip rate of the east strand is 1.4mm/a,and the shortening rate is 2.3mm/a.The west strand and the east compose of the slip partitioning mode, by the vectorial resultant, the horizontal slip rate between the bilateral block is 4.6 mm/a relative motion at the direction of 112.1°.
     7. Formation times of terrace
     The terraces primarily formed in 7 periods, i.e. 1-2ka,3-5ka,7-10ka,12.5-15ka,28-35ka,40-45ka,65-70ka, respectively corresponding to this area's climate characters. The time 1-2ka mainly corresponds to the interglacial epoch after neoglaciation,3-5ka corresponds to the warm humid phase of the Holocene thermal maximum,7-l0ka corresponds to the humid phase of early big warm period in Holocene,12.5-15ka corresponds to the last deglaciation,28-35ka, 40-45corresponds to the abnormal warm period of the last glacial maximum and abnormal megathermal period of the Interstadial of the last glacial age,65-70ka corresponds to the early Interstadial of the last glacial age. So we can see the terrace formation is mainly influenced by the humid and warm climate.
引文
Ager,D.V.1993.The Nature of the Stratigraphical Record,3rd ed., Wiley, New York
    Aki, K.1979. Characterization of Barriers on an Earthquake Fault, J. Geophys. Res.,84(B11),6140-6148
    Aki,K.1989.Geometric features of a fault zone related to nucleation and termination of an earthquake rupture,USGS.Open File Report89-315,1-9
    Aki.1984. Asperities, Barriers, Characteristic Earthquakes and Strong Motion Prediction. Journal of Geophysical research,89(B7):5867-5872
    Anderson, R.S., Repka, J.L.& Dick, G.S.,1996. Explicit treatment of inheritance in dating depositional surfaces using in situ lOBe and 26Al,Geology,24,47-51
    Avouac, J. P., and P. Tapponnier.1993. Kinematic model of active deformation in central Asia, Geophys.Res. Lett., 20,895-898.
    Birkeland,P.W,Machette,M.N.,Haller,K.M.1991.Solis as a tool for applied Quaternary geology.Utah Geol.Surv.Misc.Publ.91-3,1-63
    Birkeland,P.W.1984.Soils and Geomorphology. Oxford Univ.Press,Oxford,UK
    Bonilla, M, G, Mark, R.B.Lienkaemper,J.J.1991.Statistical relations among earthquake magnitude, surface rupture lengthen,and surface fault displacement. Bull. Seismol.Soc. Am.74 2379-2411
    Bonilla,M,G,Lienkaemper,J,J.1991.Factors affecting the recognition of faults exposed in exploratory trenches.U.S.Geol.Surv.Bull.19,47-54
    Bowman D., King G., Tapponnier P.2003. Slip Partitioning by Elastoplastic Propagation of Oblique Slip at Depth, Science,300:1121-1123
    Bull,W.B.1991.Geomorphic responses to Climatic change.Oxford Univ.Press.New York
    Burchfiel, B. C.2004, New technology; new geological challenges, GSA Today,14,4-10
    C.R.Twidale.1971.Structural landforms(landforms associated with granitic rocks, faults,and folded atrata.Australian national university press,Canberra
    Chang Chengfa,Chen Nansheng,M.P.Coward,et al.1986.Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet.Natures,323,501-507
    Chen, S. F., C. J. L. Wilson, Q. D. Deng, et al.,1994. Active faulting and block movement associated with large earthquakes in the MinShan and Longmen mountains, northeastern Tibetan Plateau,J. Geophys. Res.,99, 24,025-24,038,.
    Chen, Z., Burchfiel, B.C., Liu, Y., et al.2000. Global Positionning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation, J. geophys. Res.,105,16 215-16 227.
    Chorley, R.J.Schumm, S.A., Sugden,D.E.1984.Geomorphology.Methuen,London
    Costa,J.E.,and Baker,V.R.1981.Surficial geology-Building with the earth.Wiley,New York
    Cowgill.2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters 254.239-255
    Cunningham,W.D.,P Mann.2007.Tectonics of strike-slip restraining and releasing bends.Geological Society, London, Special Publications.v.290; p.1-12 doi:10.1144/SP290.1
    Deng, Q., Song, F., Zhu, S., Li, M., Wang, T., Zhang, W., Burchfiel,B.C., Molnar, P.& Zhang, P.,1984. Active faulting and tectonics of the Ningxia-Hui autonomous region, J. geophys. Res.,89,4427-4445.
    DePolo.Carig M,Clark.Douglas G.,Slemmons Burtons.D,et al.1991,Historical surface faulting in the Basin and Range province,western North America:implications for fault segmentation.Journal of Structural Geology.Vol.13.No.2:123-136
    England, P. and Molnar, P.2005.Late Quaternary to decadal velocity fields in Asia J. Geophys. Res.110, B12401, doi:10.1029/2004JB003541,
    England, P.C,Houseman, G.1986. Finite strain calculations of continental deformation comparisi on with the India-Asia collision zone, J. geophys. Res.,91,3664-3676.
    England, P.C. Molnar, P.,1997. Active deformation of Asia:From kinematics to dynamics, Science,278, 647-650.
    England, P.C. Molnar, P.1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet, Nature,344,140-142.
    Fairer,G.M.Ehitney,J.W.,Coe,J.A.1989.A close-range photogrammetric technique for mapping neotectonic fearures in trenches.Bull.Assoc.Eng.Geol.26,521-530
    Fu Bihong, Yasuo Awata, Du Jianguo, Yoshiki Ninomiya, He Wengui.2005.Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake, northern Tibet, China. Tectonophysics 407,43-63.
    Fu Bihong.Yasuo Awata.2007.Displacement and timing of left-leteral faulting in the Kunlun Fault zone,northern Tibet,inferred from geologic and geomorphic feature Journal of Asian Earth Scien ces.29.253-265
    Gaudemer Y., Tapponnier P., Meyer B.,et al.1995.Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu (China). V 120, No 3,P 599-645
    Ghosh,S.K.1988.Analytical Photogrammetry,2nc ed.Pergamon,New York
    Guo Jianming, Lin Aiming, Sun Guoqiang,et al.2007.Surface Ruptures Associated with the 1937 M 7.5 Tuosuo Lake and the 1963 M 7.0 Alake Lake Earthquakes and the paleoseismicity along the Tuosuo Lake Segment of the Kunlun Fault, Northern Tibet. Bulletin of the Seismological Society of America, Vol.97, No.2, pp. 474-496
    Harkins,N,Kirby,E.2008. Fluvial terrace riser degradation and determination of slip rates on strike-slip faults:An example from the Kunlun fault, China. Geophysical Research Letters, Vol.35, L05406, doi:10.1029/2007GL033073
    Hatheway,A.W.Leighton,F.B.1979.Exploratory trenching, Geol.Soc.Am.,Rev,Eng.Geol.4,169-195
    Kadinsky,K,A.A.Barka.1989.Effects of restraining bends on the rupture of strike-slip earthquakes.U.S.G.S. Open-File Report 89-135,181-192
    Kidd W S F,Molnar P.1988.Quaternary and active faulting observed on the 1985 Academia Sinica-Royal Society Geotraverse of Tibet. Phil.Trans.Roy.Soc. London.A327:337~363
    King G, Klinger Y, Bowman D, Tapponnier P.2005. Slip-partitioned surface breaks for the Mw 7.82001 Kokoxili earthquake, China. Bulletin of the Seismological Society of America 95:731-738.
    King G, Nabelek J.1985.Role of Fault Bends in the Initiation and Termination of Earthquake Rupture. Science.Vol. 228. no.4702, pp.984-987.DOI:10.1126
    Kirby, E.,Whipple, K.X., Burchfiel, B.C.,et al.2000. Neotectonics of the Min Shan, China:Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau, Geol. Soc. Am. Bull.,112,375-393.
    Kirby,E,Harkins,N,Wang Erqi, Shi Xuhua, Fan Chun,Douglas,B.2007.Slip rate gradients along the eastern Kunlun fault. Tectonics.Vol.26.TC2010. doi:10.1029/2006 TC002033
    Klinger Y, Xu XW, Tapponnier P, Van der Woerd J, Lasserre C, King G.2005. High-resolution satellite imagery mapping of the surface rupture and slip distribution of the M-W similar to 7.8,14 November 2001 Kokoxili Earthquake, Kunlun Fault, northern Tibet, China. Bulletin of the Seismological Society of America 95: 1970-1987.
    Klinger Y.R. Michel, G.C.P. King.2006.Evidence for an earthquake barrier model from Mw-7.8 Kokoxili (Tibet) earthquake slip-distribution. Earth and Planetary Science Letters 242 (2006) 354-364
    Knuepfer,P.L.K.1989.Implications of the characteristics of end-points of historical surface fault ruptures for the nature of fault segmentation. U.S.G.S. Open-File Report 89-135,193-228
    Lasserre C, Morel,P. H., Gaudemer Y., et.al..1999.Postglacial left slip-rate and past occurrence of M≥8 erathquakes on ghe western Haiyuan fault, Gansu, China. J. Geophys. Res.,,104,17,633-17,652
    Lasserre C, Peltzer G, Crampe F, et al.2005.Coseismic deformation of the 2001 Mw=7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry. Journal of Geophysical Research. VOL.110, B12408.
    Lin Aiming, Guo Jianming.2008.Nonuniform Slip Rate and Millennial Recurrence Interval of Large Earthquakes along the Eastern Segment of the Kunlun Fault, Northern Tibet. Bulletin of the Seismological Society of America, Vol.98, No.6, pp.2866-2878, doi:10.1785/0120070193
    Lin, A. M., Guo J. M., Fu B. H..2004.Co-seismic mole track structures produced by the 2001 Ms 8.1 Central Kunlun earthquake, China,J. Struct. Geol.26, no.8,1511-1519.
    Lin, A. M., M. Kikuchi,Fu B. H.2003.Rupture segmentation and process of the 2001 Mw 7.8 central Kunlun, China, earthquake, Bull.Seism. Soc. Am.93, no.6,2477-2492.
    Lin,A M,Fu,B H,Guo,J M,et al.2002.Coseismic strike-slip and rupture length produced by the 2001 Ms 8.1 Central Kunlun earthquake,Science 296,2015-2017
    Liu-Zeng Jing,Yann Klinger,Xiwei Xu,et al.2007.Millennial Recurrence of Large Earthquakes on the Haiyuan Fault near Songshan,Gansu Province,China.Bulletin of the Seismological Society of America, Vol97. (1B).14-34
    Lund,R.W,Euge,K.M.1984.Detailed inspection and geologic mapping of construction excavations at palo Verde Nuclear Generating Station,Arizona.Bull.Assoc.Eng.Geol.21,179-189
    McCalpin, J. P., Forman S. L., Lowe M.1994. Reevaluation of Holocene faulting at the Kaysville site, Weber segment of the Wasatch fault zone, Utah, Tectonics,13(1),1-16.
    McCalpin, JP.1995.Frequency distribution of geologically-determined slip rates for normal faults in the western United States. Bull. Seismol.Soc.Am.85 (6):1867-1872
    McCalpin,JP.1989.Current investigative techniques and interpretive models for trenching active dip-slip faults.In Engineering Geology and Geotechnical Engineering(R.C.Watters,ed),Proc.Symp. Eng.Geol.Geotech.Eng. 25th A.A.Balkema,Rotterdam,249-258
    McCalpin,JP.1996.Tectonic geomorphology and Holocene paleoseismicity of the Molesworth section of the Awatere fault, South Island, New Zealand. N.Z.J. Geol.Geophys.39 (1):33-50
    McCalpin,JP.1997.Paloseismology.Academic Press,Inc.London
    McCalpin.1987.Geological criteria of recognition for individual paleoseismic events in environments.USGS Open File Report 87-683,102-114
    McGill,Sieh,K,E.1991.Surfacial offsets on the central and eastern Garlock Fault associated with prehistoric earthquakes.J.Geophys.Res.96,21,597-21,621
    Meiraux A.-S., Ryerson F.J, Tapponnier P,etal.2004.Rapid slip along the central Altyn Tagh fault:Morphochrono logical evidence from Cherchen He and Sulamu Tagh. Journal of Geophysical Research. Vol. 109.B06401.doi:10.1029/2003JB002558
    Meriaux A-S, Tapponnier P,Ryerson FJ,Xu XW,et al.2005.The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate. Journal of Geophysical Research.110(B4). B0440410.1029/2004jb003210
    Meyer B, Tapponnier P, Bourjot L, et al.1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau [J]. Geophysical Journal International,135:1-47.
    Meyer B, Tapponnier P, Gaudemer Y, Peltzer G.1996, Rate of left-lateral movement along the easternmost segment of the Altyn Tagh fault, east of 96(?) (China). Geophys. J. Int.,124:29~44.
    Michael N.Machette,Stephen F,Personius,Alan R.Nelson,et al.1991.The Wasatch fault zone.Utah-segmentation and history of Holocene earthquake.J Struct Geol.13(2):137~149
    Molnar P, Tapponnier P.1975. Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of recent continental in Asia can be interpreted as results of the India-Eurasia collision [J]. Science,189:419-426
    Molnar P., B. C. Burchfiel, Liang K, Zhao Z.,1987. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia, Geology,15,249-253.
    Nelson,A.R.,Manley,W.F.1992.Holocene coseismic and aseismic uplift of Esla Mocha,south-central Chile.In Impacts of Tectonics on Quaternary Coastal Evolution(Y.Ota,A.R.Nelson,)
    Okada,A.,Watanabe,M.,Ando,M,et al.1992.Estimation of paleo-seismicity in the Nobi active fault system.J.Geogr.101,1-18(in Japanese with English abstract)
    Olig,S.S.Lund,W.R,Black,B.D.1994.Large Mid-Holocene and late Pleistocene earthquakes on the Oquirrh fault zone,Utah.Geomorphology.10,285-315
    Olliver C.1981.Tctonics and landforms. Longman House, New York.K.M.Clayton, Editor, University of East Anglia
    Parsons T,Chen Ji,Kirby E.2008.Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin, Nature 454,509-510.doi:10.1038/nature07177
    Peltzer, G,Grampe,F,King,G.1999. Evidence of nonlinear elasticity of the crust from the Mw 7.6 Manyi earthquake.Science 286.272-276
    Peltzer, G.& Saucier, F.,1996. Present-day kinematics of Asia derived from geologic fault rates, J. Geophys. Res., 101,27 943-27 956.
    Peltzer, G. Tapponnier, P.,1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision:an experimental approach, J. geophys. Res.93(15) 095-117.
    Peltzer, G., Tapponnier, P., Zhang, Z.et al.1985. Neogene and Quaternary faulting in and along the Qinling Shan, Nature,317,500-505.
    Personius,S.F.1991.Paleoseismic analysis of the Wasatch fault zone at the Brigham City trench site,Brigham City, and the Pole Patch trench site,Pleasant View,Utah.Spec.Stud.Utah Geol.Miner.Surv.76,1-39
    Porter,S.C.,An Zhisheng, and Zhang, Hongbo.1992. Cyclic Quaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of the Qinling Shan, central China. Quaternary Research 38,157-169.
    Sanders C O.1993.Interaction of the San Jacinto and San Andreas fault zones,southern California:Triggered earthquake migration and coupled recurence intervals.Science.260:973-976
    Schumm, S.A.1986. Alluvial river response to active tectonics. In:Studies in National Research Council (Ed.), Active Tectonics. National Academy Press,Studies in Geophysics, Washington, D.C, pp.195-214.
    Schumm, S.A.1991.To interpret the Earth-Ten Ways to be Wrong.Cambridge Univ.Press, Cambridge,UK
    Schwartz, D. P.& Lund, W. R.1987. Paleoseismicity and earthquake recurrence at Little Cottonwood Canyon, Wasatch fault zone,Utah. In:the Footsteps of G. K. Gilbert--Lake Bonneville andNeotectonics of the Eastern Basin and Range Province (edited by Machette, M. N.). Utah Geol.& Min. Surv. Misc. Publ.88-1,82-85
    Shan B, Xiong X, Zheng Y, et al. Stress changes on major faults caused by Mw7.9 Wenchuan earthquake, May 12, 2008. Sci China Ser D-Earth Sci,2009,52(5):593-601, doi:10.1007/s11430-009-0060-9
    Shen Z-K, Lu J, Wang M, et al.2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau [J]. Journal of Geophysical Research,110:1-17.
    Shlemon,R.J.1985.Application of soil-stratigraphic techniques to engineering geology.Bull Assoc. Eng. Geol.22. 129-142
    Sieh,K.E,Jahns,R.H.1984a.Holocene activity of the San Andreas fault at Wallace Creek,California, Geol. Soc. Am.Bull.95:883-896
    Sieh,K.E,Minze Stuiver, David Brillinger.1989.A more precise chronology of earthquakes produced by the San Andreas fault in Southern California. J.Geophys.Res.94(Bl).603-623
    Sieh,K.E.1978a.Prehistoric large earthquakes produced by slip on the San Andreas fault at Pallet Creek,California.J.Geophys.Res.83:3907-3939
    Sieh,K.E.1978b.Slip along the San Andreas fault associated with the great 1857 earthquake. Bull.Seismol. Soc. Am.68,1421-1448
    Sieh,K.E.1981.A review of geological evidence for recurrence times of large earthquakes. In Earthquake Prediction, An international review,(D.W.Simpson and P.G.Richards,eds) Maurice Ewing Series Vol,4.181-207,Am Geophys Union, Washington, DC
    Sieh,K.E.1984b.Lateral offsets and revised dates of large prehistoric earthquake at Pallet Creek,southern California.J.Geophys.Res.89(B9).7641-7670
    Sims J D,Garvin,C D.1995.Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and 1991 aftershocks:Implication for paleoseismicity studies.Bull.Seismol.Soc.Am.85,51-65.
    Solonenko,V.P.1973.Paleoseismogeology.Izv.Acad.Sci.USSR.Phys.Solid Earth9,3-16(in Russian)
    Solonenko,V.P.1977.Seismogenic deformations and the paleoseismogeological method,in Solonenko,V.P., ed., Seismic Zonation of Eastern Siberia and its Geological and Geophysical Basis:NaukaPubl. House, Novosibirsk,p,5-47
    Stein R S, Barka A A, Dieterich J H.1997.Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys J Int.128:594-604
    Swan, F. H., Ⅲ, Schwartz, D. P,Cluff, L. S.1980. Recurrence of moderate to large magnitude earthquakes produced by surface faulting on the Wasatch fault zone, Utah. Bull. seism. Soc. Am.70,1431-1462.
    Swan, F. H., Ⅲ, Schwartz, D. P,Hanson,K.L,et al.1981.Srudy of earthquake recurrence intervals on the Wasatch fault at the Kaysville site,Utah.U.S.Geol.Surv.Open File Rept.81-228,1-30
    Tapponnier P,Xu ZQ,Roger,F.,et al.2001a.Geology-Oblique stepwise rise and growth of the Tibet plateau.Science, 294 (5547):1671-1677
    Tapponnier P. and P. Molnar.1976.Slip-line field theory and large-scale continental tectonics, Nature, VOL.264, pages 319-324.
    Tapponnier P., G. Peltzer, A.Y. Le Dain, R. Armijo.1982, Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine, Geology, VOL.10, pages 611-617.
    Tapponnier P; Molnar, P.1977.Active faulting and tectonics in China, Journal of Geophysical Research,82 (20): 2905-2930
    Tapponnier P; Ryerson, FJ; Van der Woerd, J; et al.2001b.Long-term slip rates and characteristic slip:keys to active fault behavior and earthquake hazard.Comptes Rendus de Lacademie des sciences serie II Fascicule A-Sciences de la terre et des Planetes.333(9):483-494
    Van der woerd J,Ryerson FJ,Tapponnier P,A.-S.Meriaux,et al.2000.Uniform slip-rate along the Kunlun fault:Implication for seismic behaviour and large-scale tectonics.Geophysical Research Letters,Vol 27(16),2353-2356
    Van der Woerd J, Ryerson FJ, Tapponnier P, et al.1998.Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segment of the Kunlun fault (Qinghai, China), Geology.26:695-698
    Van der Woerd J, Tapponnier P, Ryerson FJ et al.2002b.Uniform postglacial slip-rate along the central 600 km of the Kunlun fault, from 26A1, lOBe, and 14C dating of riser offsets, and climatic origin of the regional morphology [J]. Geophysical Journal International,148:356-388.
    Van der Woerd, J, Y. Klinger, K Sieh,et al.2006. Long-term slip rate of the southern San Andreas Fault from 10Be-26Al surface exposure dating of an offset alluvial fan, J. Geophys. Res., 111, B04407, doi: 10.1029/2004JB003559
    Van der Woerd, J., A. S. Meriaux, Y. Klinger,et al.2002a. The 14 November 2001, Mw= 7.8 Kokoxili earthquake in northern Tibet (Qinghai Province, China), Seism.Res. Lett.73, no.2,125-135.
    Wallace, R.E.,1970, Earthquake recurrence intervals on the San Andreas fault. Geol. Soc. Amer. Bull., VOL.81, pages 2875-2890.
    Wallace,R.E.,chaiman.1986.ActiveTectonics:StudiesinGeophysics.Natl.Acad.Sci.Washington,DC
    Wallace,R.E.1977.Profiles and ages of young fault scarps,north central Nevada, BGSA.V88:1267-1278
    Wallace,R.E.1981.Active faults,paleoseismology,and earthquake hazards in the western United States.In Earthquake Prediction:An international review (D.W Simpson and P.G Richards,eds) Maurice Ewing Ser.4,209-216.Am. Geophys Union,Washington,DC
    Wang Q, Zhang Pei-Zhen,Jeffrey T. Freymueller, et al.2001. Present-day crustal deformat-ion in China constrained by Global Positioning System measurements, Science,294,574-577.
    Wang Xulong, Lu Yanchou, Wintle A.G.2006. Recuperated OSL dating of fine-grained quartz in Chinese loess. Quaternary Geochronology,89-100:
    Weldon, R., K. Scharer, T. Fumal, and G. Biasi.2004.Wrightwood and the earthquake cycle; what a long recurrence record tells us about how faults work, GSA Today 14,4-10.
    Weldon, R., P. McCalpin, and T. K. Rockwell.1996.Paleoseismology of strike-slip tectonic environments, in Paleoseismology, J. McCalpin (Editor), Academic Press, San Diego,271-329.
    Well.D.L,Coppersmith,K,J.1994.Empirical relationships among magnitude,rupture length.rupture area,and surface displacement,Bull.Seismol.Soc.Am.84,974-1002
    Wen Xueze, Yi Guixi, Xu Xiwei.2008.Background and recursory seismicities along and surrounding the Kunlun fault before the Ms8.1,2001, Kokoxili earthquake, ChinaJournal of Asian Earth Sciences 30 (2007) 63-72
    Wesnousky S.G.1988.Seismological and structural evolution of strike-slip faults. Nature.335(22):340-342
    Wesnousky S.G.2006.Predicting the endpoint of earthquake ruptures.Nature.444(16):doi:10.1038/nature05275
    Xu X. W.,Chen W. B., Ma W. T.,et al.2002.Surface Rupture of the Kunlun Earthquake (Ms 8.1), Northern Tibetan Plateau, China. Seismological Research Letters.73 (6),884~892.
    Xu Xiwei, Yu Guihua,Klinger Y, et al.2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8),northern Tibetan Plateau, China., Vol.111. B05316, doi:10.1029/2004JB003488
    Xu Xiwei, Deng Qidong.1996 Nonlinear Characteristics of paleoseismicity in China.Journal of Geophysical Research.Vol.101.No.3.6209-6231
    Xu Xiwei, Wen Xueze, Yu Guihua, et al.2009.Coseimic reverse-and oblique-slip surface faultin generated by the 2008 Mw 7.9 Wenchuan earthquake,China.Geology.V.37.no.6,515-518
    Yeats, R.S., Sieh, K., Allen, C.R.,1997. The Geology of Earthquakes.Oxford University Press, New York..
    Yeats,R.S.1994.Histroical paleoseismology.In Proceedings of the Workshop on Paleoseismology.18-22 September 1994,Marshall,California(C.S.Prentice, D.P.Schwartz,and R.S.Yeats, conveners), U.S.Geol.Surv. Open-File. Rep.94-568,208-210
    Zhang Peizhen, Peter Molnar, and Xiwei Xu.2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. TECTONICS, VOL.26, TC5010, doi:10.1029/2006 TC002014
    Zhang, Y. Q., Pierre Vergely, Jacques Mercier.1995, Active faulting in and along the Qinling range (China) inferred from SPOT imagery analysis and extrusion tectonics of south China, Tectonophysics,243,69-95.
    曹伯勋.1995.地貌学及第四纪地质学.中国地质大学出版社
    常承法,潘裕生,郑锡澜.1982.青藏高原地质构造.北京:科学出版社,1-92.
    常承法.郑锡澜.1973.中国西藏南部珠穆朗玛地区地质构造特征以及青藏高原东西向诸山系形成的讨论[J];中国科学A辑
    陈桂华.2006.川滇块体北东边界活动构造带的构造转换与变形分解作用.博士学位论文.中国地震局地质研究所
    陈杰,陈宇坤,丁国瑜,等.2001年昆仑山口西8.1级地震地表破裂带.第四纪研究.2003,23(6):629-639
    陈杰,陈宇坤,丁国瑜,等.2004;2001年昆仑山口西Ms8.1地震地表同震位移分布特征.第四纪研究.26(3):378-392
    陈文彬,徐锡伟,张志坚,等.2001.2001年11月14日青新交界Ms8.1地震地表破裂带的初步调查[J].西北地震学报.23(4):313-317.
    陈文彬.2003.河西走廊及邻近地区最新构造变形基本特征及构造成因分析.博士学位论文.中国地震局地质研究所
    陈文寄,彭贵.1991.年轻地质体系的年代测定.北京.地震出版社
    陈文寄等,1999,年轻地质体系的年代测定(续),北京:地震出版社
    崔之久,高全洲,刘耕年等.1996.夷平面、古岩溶与青藏高原隆升.中国科学(D辑),26(4):378-385.
    崔之久.1979.中国西部冰期之划分与依据.冰川冻土.1(2):13-22
    崔中元,杨斌.1979.托索湖—玛曲活动断裂带[J].西北地震学报.1(2):57-61.
    邓起东,陈立春,冉永康.2004.活动构造定量研究与应用.地学前缘.11(4):383-392
    邓起东,张培震,冉永康,等.2003.中国活动构造与地震活动.地学前缘.10(Suppl) 66-73.
    邓起东,张培震,冉勇康,等.2002.中国活动构造基本特征.中国科学(D),32(12):1020-1030.
    邓起东,张培震.1995.活动断裂分段研究的原则和方法(一),现代地壳运动研究,第6卷,P196,地震出版社
    邓起东.1996.中国活动构造研究.地质论评.48(2):168-177
    邓起东,张维岐,张培震,等.1989.海原走滑断裂带及其尾端挤压构造.地震地质.11(1).1-14
    邓起东.2005.活动构造研究及其应用.大地构造与成矿学.29(1)17-23
    邓起东.2008.关于四川汶川8.0级地震的思考.地震地质.Vol.30.No.4.811-827
    邓晓峰,刘时银,丁永建等.2004.阿尼玛卿山第四纪古冰川与环境演变.冰川冻土.26(3).305-311
    丁国瑜,1992,有关活断层分段的一些问题,中国地震,8(2),1-10
    丁国瑜,田勤俭,孔凡臣等.1993.活断层分段—原则、方法及应用.北京:地震出版社
    丁国瑜.1995.阿尔金活断层的古地震与分段.第四纪研究.(2)97-106
    都昌庭,杨广华,等.2001.青海省河南Ms5.1和玛沁Ms5.0地震后库玛断裂带的地震活动趋势研究.西北地震学报.23(2).155-159
    段永红,张先康,刘志,等.2007.阿尼玛卿缝合带东段地壳结构的接收函数研究.地震学报.29(5)483-491
    顾功叙(主编).1983.中国地震目录.北京.科学出版社.
    国家地震局《阿尔金活动断裂带》课题组.1992.阿尔金活动断裂带.地震出版社.
    国家地震局地质研究所,宁夏回族自治区地震局.1990.海原活动断裂带.北京.地震出版社.中国活断层研究专辑
    国家地震局震害防御司(编).1995.中国历史强震目录(公元前23世纪—公元1911年).北京.地震出 版社
    中国地震局震害防御司(编).1999.中国历史强震目录(公元前1912—公元1990年,Ms≥4.7).北京.中国科学技术出版社.
    韩慕康.1992.构造地貌学.地球科学进展,7(5):61-62.
    何文贵,熊振,袁道阳,等.2006a.东昆仑断裂带东段玛曲断裂古地震初步研究.中国地震.中国地震,22(2),126-134
    何文贵,袁道阳,熊振,等.2006b.东昆仑断裂带东段玛曲断裂新活动特征及全新世滑动速率研究.地震.26(4).67-75
    胡道功,吴中海,吴珍汉,赵希涛,叶培盛.2007.东昆仑断裂带库赛湖段晚第四纪古地震研究.第四纪研究.27(1).27-34
    胡道功,叶培盛,吴珍汉,吴中海,赵希涛,刘琦胜.2006.东昆仑断裂带西大滩段全新世古地震研究.第四纪研究.26(6).1013-1020
    贾云鸿,戴华光,苏向州.1988.青海托索湖地震断层[A].中国地震断层研究.乌鲁木齐:新疆人民出版社
    江娃利,谢新生.2006.东昆仑活动断裂带强震地表破裂分段特征.地质力学学报.12(2).132-139
    焦克勤,沈永平.2003.唐古拉山地区第四纪冰川作用与冰川特征[J].冰川冻土,25(1):34-42.
    赖晓玲,李松林,张先康,成双喜.2001.玛沁—兰州—靖边剖面壳幔复杂性的研究.地球物理学进展.16(2).65-72
    赖晓玲,张先康,方盛明.2004.青藏高原东北缘壳幔过渡带研究.地震学报.26(2).2002.132-139
    劳雄.1989.秀沟一玛沁断裂[J].中国地质科学院院报.19:1-7.
    李陈侠,戴华光,陈永明,等.2006.对1937年托索湖7.5级地震若干问题的讨论.地震地质.28(1),12-21
    李传友.2005.青藏高原东北部几条主要断裂带的定量研究.博士学位论文.中国地震局地质研究所
    李春峰,贺群禄,赵国光.2005.东昆仑活动断裂带东段古地震活动特征[J].地震学报.25(1):60-67
    李春锋,贺群禄,赵国光.2004.东昆仑活动断裂带东段全新世滑动速率研究.地震地质.26(4).676-687
    李春昱.1980.中国板块构造的轮廓.中国地质科学院院报,2(1):11-22.
    李海兵,戚学祥,朱迎堂,等.2004.2001年东昆仑地震(M s=811)不对称的同震地表破裂构造.地质学报.78(5).634-645
    李吉均,方小敏,马海洲,等.1996.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学,D辑,26(4):316-322
    李吉均,方小敏,潘保田,等.2001.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,21(5):381-391
    李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569-1574
    李吉均.1983.青藏高原的地貌轮廓及形成机制.山地学报.1(1).7-15
    李龙海,贾云鸿.1981.一九三七年青海托索湖7.5级地震形变带特征[J].西北地震学报.3(3):61-65.
    李砰.1993.鲜水河-小江断裂带.地震出版社.北京
    李松林,张先康,张成科,赵金仁,成双喜.2002.玛沁—兰州—靖边地震测深剖面玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究.地球物理学报.45(2).210-217
    刘东生,施雅风,王汝建,等.以气候变化为标志的中国第四纪地层对比表.第四纪研究,2000,20(2):108-128
    刘光秀,沈永平,王苏民.1995全新世大暖期若尔盖的植被与气候.冰川冻土.17(3).247-249
    刘光琇,沈永平,张中平,王苏民.1994.青藏高原若尔盖地区RH孔800--150KaBP的孢粉记录及古气候意义.沉积学报.12(4).101-109
    刘光锈,施雅风,沈永平,洪明.1997.青藏高原全新世大暖期环境特征之初步研究.冰川冻土.19(2).114-122
    刘光勋,肖振敏,谢新生,涂德龙,曾秋生,邬树学,张瑞斌,王焕贞.1996.1937年花石峡71/2级地震地表破裂带及有关问题[A].国家地震局地质研究所编、活动断裂研究(5).北京:地震出版社.
    刘光勋.1996.东昆仑活动断裂带及其强震活动.中国地震.12(2):119-126
    刘嘉麒,倪云燕,储国强.2001.第四纪的主要气候事件.第四纪研究.21(3)239-248
    刘静,徐锡伟,李岩峰,冉永康.2007.以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性—兼论古地震研究中的若干问题.地质通报.26(6).650-660
    马寅生,施炜,张岳桥,等.2005.东昆仑活动断裂带玛曲段活动特征及其东延.地质通报.Vo1.24.No.1.30-35
    毛风英,张培震.1995.古地震研究中的逐次限定法与新疆北部主要断裂带的古地震研究.活动断裂研究(4).北京:地震出版社.153-164
    裴先治.2001.勉略—阿尼玛卿构造带的形成演化与动力学特征.博士学位论文.西北大学
    青海省地震局,中国地震局地壳应力研究所.1999.东昆仑活动断裂带[M].北京:地震出版社
    青海省地质矿产局,1986,中华人民共和国区域地质调查报告,果洛藏族自治州和优云公社副
    冉勇康,邓起东.1999.古地震学研究的历史、现状和发展趋势.科学通报.44(1):12-20
    冉勇康.1997.我国几个典型地点的古地震细研究和大地震重复行为探讨.博士学位论文.中国地震局地质所
    任金卫,汪一鹏,吴章明,等.1993.青藏高原北部库玛断裂东、西大滩段全新世地震形变带及其位移特征和水平滑动速率[J].地震地质.15(3):285-288
    任金卫,汪一鹏,吴章明.1999.青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率,活动断裂研究(7).北京.地震出版社.147-164
    任金卫,王敏.2005.GPS观测的2001年昆仑山口西Ms 8.1级地震地壳变形.第四纪研究.25(1):34-44
    沈正康万永革甘卫军曾跃华任群.2003.东昆仑活动断裂带大地震之间的黏弹性应力触发研究.46(6).786-795
    施雅风,孔昭宸,王苏民,等.1992.中国全新世大暖期的气候波动与重要事件.中国科学(B),12:1300--1308
    施雅风,孔昭宸,王苏民,等.1993.中国全新世大暖期鼎盛阶段的气候与环境.中国科学(B).23(8)865-872
    施雅风,郑本兴,李世杰.等.1990.青藏高原的末次冰期与最大冰期.冰川冻土.19(2)97-113
    孙鸿烈,郑度主编.1998.青藏高原形成、演化与发展[M].广州:广东科技出版社,1-348
    孙鸿烈.1996.青藏高原研究的新进展.地球科学进展.11(6):536-542
    孙建中,赵景波.1991黄土高原第四纪.北京:科学出版社
    汤吉,詹艳,赵国泽等.青藏高原东北缘玛沁—兰州—靖边剖面地壳上地幔电性结构研究.地球物理学报,2005,48(5):1205-1216
    陶玮,沈正康,万永革等.根据2001年Mw 7.8可可西里强震InSAR同震测量结果反演东昆仑断裂两侧地壳弹性介质差异.地球物理学报,2007,50(3):744-751
    唐领余,沈才明,孔昭宸,等.1998.青藏高原末次冰期最盛期气候的花粉证据.冰川冻土.20(2):133-140
    涂德龙,孙洪斌,许勤.2000.青海省玛沁县5.0级地震的烈度分布及其构造环境.高原地震.12(1).23-28
    万永革,沈正康,甘卫军等.2003.东昆仑活动断裂带大地震之间的弹性应力触发研究.西北地震学报.25(1).1-7
    万永革,王敏,沈正康等.2004.利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布.地震地质.26(3):393-404
    汪一鹏.1998.青藏高原活动构造基本特征.活动断裂研究-理论与应用.6.中国地震局科技发展司地震出版社.北京.135-144
    王跃,李森.2001.试论青藏高原隆升对中国沙漠形成演化的影响.干早区研究.13(2).20-24
    王锋.2003.阿尔金断裂带晚第四纪滑动速率及其地震地表破裂分段特征.博士学位论文,中国地震局地质所
    王敏,沈正康,牛之俊,等.2003.现今中国大陆地壳运动与活动块体模型.中国科学.33(增刊).21-32
    王琪,张培震,Freymueller, J.T.,赖锡安,李延兴,朱文耀,刘经南, Bilham, R., Larson,K.M..2001中国大陆现今地壳运动和构造变形.中国科学(D),31(7):529-536.
    闻学泽,徐锡伟,郑荣章,谢英情,万创.2003.甘孜-玉树断裂的平均滑动速率与近代大地震破裂.中国科学(D)33增刊.199-208
    闻学泽.1995.活动断裂地震潜势的定量评估.北京:地震出版社.
    邬树学.1989.对青海省地壳构造若干基本特征的认识.高原地震.1(1).37-43
    肖庆辉.2002.近年来喜马拉雅-青藏高原形成模式的主要进展,国土资源情报,28(2).14-18
    肖振敏,刘光勋,王焕贞,等.1988.青海花石峡地震形变带的初步研究[J].中国地震.4(1):68-75.
    徐锡伟, P.Tapponnier.J.Van Der Woerd,等,2003.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论.中国科学.33(10).967-974
    徐锡伟,陈文彬,于贵华,等.2002.2001年11月14日昆仑山库赛湖地震(Ms 8.1)地表破裂带的基本特征[J].地震地质.24(1):1-13.
    徐锡伟,米仓伸之.1996.山西六棱山北麓晚第四纪不规则断裂作用的地貌学研究.地震地质.18(2).169-181
    徐锡伟,闻学泽,于贵华,等.2005.川西理塘断裂带平均滑动速率、地震破裂分段与复发特征.中国科学D辑.地球科学35(6):540-551
    徐锡伟,闻学泽,于贵华,等.2008.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义.中国科学.38(5):529-542
    徐锡伟,于贵华,陈桂华,等.2007.青藏高原北部大型走滑断裂带近地表地质变形带特征分析.地震地质.29(2).201-217.
    杨景春,李有利.2005.地貌学原理.北京大学出版社.
    姚檀栋,Thompson L G,施雅风,等.1997.古里雅冰芯中末次间冰期以来的气候记录研究.中国科学,D辑.27(5):447-452
    姚檀栋,焦克勤,章新平,杨志红.1992.古里雅冰帽冰川学研究.冰川冻土.14(3).233-241
    姚檀栋焦克勤杨志红,施维林.1995.古里雅冰芯中小冰期以来的气候变化.中国科学.25(10).1108-1114
    姚檀栋.1993.祁连山敦德冰芯记录的全新世气候变化.见施雅风.中国全新世大暖期气候与环境.北京.海洋出版社.206-211
    姚檀栋.1999.末次冰期青藏高原的气候突变-古里雅冰芯与格陵兰GRIP冰芯对比研究.中国科学(D辑),29(2):175-184
    姚志祥,王椿镛,裴正林.2007.昆仑山断裂带围陷波的有限差分数值模拟解释.地球物理学报,50(3):760—769
    易朝路、崔之久、熊黑钢,2005,中国第四纪冰期数值年表初步划分,第四纪研究,25(5):609-619
    詹艳,赵国泽,王继军,等.2005.青藏高原东北缘海原弧形构造区地壳电性结构探测研究.地震学报.4(27).431-440
    张培震,王敏,甘卫军,邓起东.2003a.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约.地学前缘,10(suppl):81-92.
    张培震,王琪,马宗晋.2002.青藏高原现今构造变形特征与GPS速度场.地学前缘,9(2):442-450.
    张培震,闻学泽,徐锡伟,等.2008年汶川8.0级特大地震孕育和发生的多单元组合模式.科学通报,2009,54(7):944-953
    张培震,邓起东,张国民,等,2003b.中国大陆强震活动与活动地块[J].中国科学.33(增刊):12-20
    张培震,李传友,毛凤英.2008.河流阶地演化与走滑断裂滑动速率.地震地质.30(1).44-57
    张培震.2008.青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程.中国科学D辑:38(9):1041-1056
    张瑞斌,张晓梅,王赞军,等.2002.东昆仑断裂带强震构造条件研究.高原地震.14(1):26-31
    张瑞斌,赵培林,陈玉华.1996.东昆仑活动断裂带的强震构造条件及未来强震危险区分析.高原地震.8 (3).12-21
    张先康,杨卓欣,徐朝繁,等.2007.阿尼玛卿缝合带东段上地壳结构—马尔康-碌曲-古浪深地震测深剖面结果.地震学报.29(6).592-604
    赵国光.1996.青藏高原北部的第四纪断层运动.中国地震.12(2):107-118
    赵国泽,汤吉,詹艳,等2004.青藏高原东北缘地壳电性结构和地块变形关系的研究.中国科学D辑.34(10).908-918
    赵瑞斌,李军,向志勇等.2003.昆仑山口西8.1级地震西破裂带尾端破裂特征.[J].地震地质.25(3):575-580
    郑荣章.2005.阿尔金构造系晚更新世中晚期以来的构造隆升及其变形机制.博士学位论文.中国地震局地质所
    钟大赉,丁林.1998.青藏高原的隆起过程及其机制探讨.中国科学(D).26(4):289-295
    周荣军,李勇,A lexander L Densmore.,等.2006.青藏高原东缘活动构造.矿物岩石.26(2):40-51
    朱志澄.1999.构造地质学.中国地质大学出版社.
    尹金辉,郑勇刚,刘粤霞.2005.古地震14C年龄的日历年代校正.地震地质.27(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700