用户名: 密码: 验证码:
青藏高原东北缘(大井)—华南(泉州)壳幔电性结构特征及其构造涵义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文依托“深部探测技术与实验研究”专项课题(SinoProbe-02-04),以全长大于2000km的大井-泉州超长大地电磁测深剖面数据为基础,采用Robust估计、远参考道处理、功率谱挑选等大地电磁测深数据处理技术,获得高质量的大地电磁测深频率响应,通过大地电磁测深三维正演模拟,研究海岸效应对近海地区大地电磁测深资料的影响,通过计算Swift和Bahr二维偏离度、相位张量、磁场感应矢量、电性主轴方位等参数对大地电磁测深剖面沿线区域的维性信息进行分析,维性分析表明大地电磁测深剖面数据整体二维性较好,通过二维非线性共轭梯度反演,获得青藏高原东北缘-华南壳、幔电性结构模型。
     对青藏高原东北缘-华南壳、幔电性结构模型分析研究表明,青藏高原东部电性结构具有纵向分层、横向分块的特征,纵向上大致可分为中、低阻-高阻-低阻-中、高阻4个电性层,华南地区的电性结构与青藏高原东部的电性结构差异较大,整体呈现出高阻特征,并具有横向分块和局部的纵向分层特征。
     青藏高原东部地区中、下地壳广泛发育有壳内高导层,以西秦岭北缘断裂带为界,南、北两侧大地构造单元的壳内高导层可能具有不同的成因机制。北侧祁连地块的壳内高导层可能是由于含盐流体的填充引起的,南侧西秦岭构造带和松潘-甘孜地块的壳内高导层可能是由于地壳内部岩石的局部熔融和含盐流体的填充两种因素共同作用引起的。
     华夏地块广泛分布有花岗岩,西部由于强烈的板内变形,可能在地壳内部形成了独特的构造-岩浆作用,中部在地幔热物质上涌和大陆伸展构造的联合作用下,可能出现了地壳内部的局部熔融现象,东部在太平洋板块向西俯冲的作用下,可能发生了强烈的壳、幔之间的物质交换和热流传输作用。
     龙门山断裂带地区的电性结构特征反映了青藏高原东部中、上地壳脆性物质沿高导的滑脱面产生的逆冲推覆构造,以及扬子地块楔入到青藏高原东部的中、下地壳和上地幔内部形成的楔入构造,逆冲推覆构造和楔入构造的共同作用可能是青藏高原东部地壳隆升的主要原因。
Under the auspices of the SinoProbe-02-04, a long magnetotelluric profile whichis longer than2000km was acquired from the town of Dajing in the northeasternmargin of the Tibetan Plateau to the city of Quanzhou in South China. Many methodshave been used during the magnetotelluric data processing such as the robustestimation, the remote reference method and the editing of the power spectrum in orderto acquire the high quality magnetotelluric data. The effects of the ocean coast onmagnetotelluric data have been studied by three-dimensional electromagnetic forwardmodeling. The qualitative analyses of the electrical structure along the profile havebeen done by analyzing many parameters such as Swift skewness, Bahr skewness,phase tensor, magnetic induction vector, and direction of strike. Dimensionalityanalysis has shown a good two-dimensional character along the profile. Subsurfaceelectrical structure has been obtained through nonlinear conjugate gradients algorithmfor two-dimensional magnetotelluric inversion.
     The electrical resistivity model along the profile indicates that the electricalstructure in eastern Tibetan Plateau is characterized by four distinct layers in verticaldirection and block division in horizontal direction. The electrical properties betweeneastern Tibetan Plateau and South China are quite different. The electrical resistivity ishigh in South China. The electrical structure in South China is characterized by blockdivision in horizontal direction and distinct layering partially in vertical direction.
     There are the high-conductivity layers in the middle and lower crust in easternTibetan Plateau. The distribution of the high-conductivity layers in different blocks isbased on different formation processes. The high-conductivity layers in the crust underQilian block are likely due to the existence of saline fluids. The high-conductivitylayers in the crust under West Qinling orogeny and Songpan-Ganzi block are likelydue to the existence of partial melts and saline fluids.
     The granitic rocks are the main components of the continental crust in Cathaysiablock. There might be tectono-magmatism in the crust in western Cathaysia block due to continental intraplate deformations. Both upsurge of heat mantle materials andcontinental rifting might result in partial melts in the crust in central Cathaysia block.Delivery of thermal energy and interaction between crust and mantle in easternCathaysia block might be induced in the stage that Pacific plate subducted to theEurasian continent.
     The Longmenshan fault in the electrical resistivity model along the profilepresents the overthrusting between the eastern margin of the Tibetan Plateau and theYangtze block. The conductive layer in the range of mid to upper crust marks thedetachment surface under the Longmenshan nappe structure. The boundary betweenthe conductive Tibetan Plateau and the resistive Yangtze block has been shown belowthe conductive layer. The relationship between eastern Tibetan Plateau and Yangtzeblock might reflects the uplift mechanism of eastern Tibet Plateau.
引文
Baba K., Chave A. D.. Correction of seafloor magnetotelluric data fortopographic effects during inversion. Journal of Geophysical Research,2005,110:B12105
    Bahr K.. Geological noise in magnetotelluric data: a classification ofdistortion types. Physics of the Earth and Planetary Interiors,1991,66:24-38
    Bahr K.. Interpretation of the magnetotelluric impedance tensor: regionalinduction and local telluric distortion. Journal of Geophysics,1988,62:119-127
    Bai D., Unsworth J. M., Meju A. M., et al. Crustal deformation of the easternTibetan plateau revealed by magnetotelluric imaging. Nature Geoscience,2010,3(5):358-362
    Bedrosian P. A., Maercklin N., Weckmann U., et al. Lithology-derived structureclassification from the joint interpretation of magnetotelluric and seismic models.Geophysical Journal International,2007,170:737-748.
    Berdichevsky N. M.. Marginal Notes On Magnetotellurics. Surveys in Geophysics,1999,20(3):341-375
    Berdichevsky N. M., Dmitriev I. V.. Models and Methods of Magnetotellurics.Berlin: Springer,2008
    Bostick F. X.. A simple almost exact method of MT analysis. Workshop onElectrical Methods in Geothermal Exploration. US Geological Survey,1977,14080001-8-359
    Burchfiel B. C., Zhiliang C., Yupinc L., et al. Tectonics of the Longmen Shanand Adjacent Regions, Central China. International Geology Review,1995,37(8):661-735
    Cagniard L.. Basic theory of the magnetotelluric method of geophysicalprospecting. Geophysics,1953,18(3):605-635
    Caldwell T. G., Bibby H. M., Brown C.. The magnetotelluric phase tensor.Geophysical Journal International,2004,158(2):457-469
    Charvet J., Shu L. H., Shi Y. H., et al. The building of south China: collisionof Yangzi and Cathaysia blocks, problems and tentative answers. Journal of SoutheastAsian Eeath Sciences,1996,13:223-235
    Clark M. K., Royden L. H.. Topographic ooze: Building the eastern margin of Tibetby lower crustal flow. Geology,2000,28(8):703-706
    Constable S. C., Parker R. L., Constable C. G.. Occam’s inversion: A practicalalgorithm for generating smooth models from electromagnetic sounding data.Geophysics,1987,52(3):289-300
    deGroot-Hedlin C., Constable S.. Inversion of magnetotelluric data for2Dstructure with sharp resistivity contrasts. Geophysics,2004,69(1):78-86.
    deGroot-Hedlin C., Constable S.. Occam’s inversion to generate smooth,two-dimensional models from magnetotelluric data. Geophysics,1990,55(12):1613-1624
    Egbert G. D.. Robust Multiple-Station Magneotelluric Data Processing.Geophysical Journal International,1997,130(2):475-496.
    Egbert G. D., Booker J. R.. Robust estimation of geomagnetic transfer functions.Geophysical Journal Royal Astronomical Society,1986,87:175-194
    Fischer G.. Electromagnetic induction effects at an ocean coast. Proceedingsof the IEEE,1979,67(7):1050-1060
    Gamble T. D., Goubau W. M.,Clarke J.. Magnetotellurics with a remote reference.Geophysics,1979,44:53-68
    Groom R. W., Bailey R. C.. Analytic investigations of the effects of near-surfacethree-dimensional galvanic scatterers on MT tensor decompositions. Geophysics,1991,56(4):496-518
    Groom R. W., Bailey R. C.. Decomposition of magnetotelluric impedance tensorsin the presence of local three-dimensional galvanic distortion. Journal ofGeophysical Research,1989,94(B2):1913-1925
    Huang N. E., Shen Z., Long S. R., et al. The empirical mode decomposition andthe Hilbert spectrum for nonlinear and non-stationarity time series analysis.Proceedings of the Royal Society of London Series A,1998,454:903-995
    Huang N. E., Wu M. C., Long S. R., et al. A confidence limit for the empiricalmode decomposition and the Hilbert spectral analysis. Proceedings of the RoyalSociety of London Series A,2003,459:2317-2345
    Lebedev S., Nolet G.. Upper mantle beneath Southeast Asia from S velocitytomography. Journal of Geophysical Research,2003,108, B12048.
    Jin S., Ye G. F., Wei W. B., et al. Electrical Structure and Fault Features ofCrust and Upper Mantle beneath the Western Margin of the Qinghai-Tibet Plateau:Evidence from the Magnetotelluric Survey along Zhada-Quanshui Lake Profile. Journalof China University of Geosciences,2007,18(4):326-333
    Jones G. A.. Imaging the continental upper mantle using electromagnetic methods.Lithos,1999,48(1–4):57-80
    Jones G. A., Ferguson J. I., Chave D. A., et al. Electric lithosphere of theSlave craton. Geology,2001,29(5):423-426
    Jones G. A., Lezaeta P., Ferguson J. I., et al. The electrical structure of theSlave craton. Lithos,2003,71:505-527.
    Jones G. A., Evans L.R.. Velocity–conductivity relationships for mantlemineral assemblages in Archean cratonic lithosphere based on a review of laboratorydata and Hashin–Shtrikman extremal bounds. Lithos,2009,1-13.
    Li C., van der Hilst R.. Structure of the upper mantle and transition zone beneathSoutheast Asia from traveltime tomography. Journal of Geophysical Research,2010,115, B07308.
    Li C., van der Hilst R., Nafi Toksoz M.. Constraining P-wave velocity variationsin the upper mantle beneath Southeast Asia. Physics of the Earth and PlanetaryInteriors,2006,154(2):180-195.
    Li Y., Densmore A. L., Allen P. A., et al. Sedimentary responses to thrustingand strike-slipping of Longmen Shan along eastern margin of Tibetan Plateau, andtheir implication of Cimmerian continents and India/Eurasia collision. ScientiaGeologica Sinica,2001,10(4):223-243
    Lilley M. Magnetotelluric tensor decomposition: Part I, Theory for a basicprocedure. Geophysics,1998,63(6):1885-1897
    Lilley M. Magnetotelluric tensor decomposition: Part II, Examples of a basicprocedure. Geophysics,1998,63(6):1898-1907
    Lin W., Wang Q. C., Chen K.. Phanerozoic tectonics of south China block: Newinsights from the polyphase deformation in the Yunkai massif. Tectonics,2008,27,TC6004.
    Liu M. L., Mooney W. D., Li S. L., et al. Crustal structure of the northeasternmargin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin.Tectonophysics,2006,420(1-2):253-266
    Mackie R. L., Bennett B. R., Madden T. R.. Long-period magnetotelluricmeasurements near the Central California Coast: a land locked view of theconductivity structure under the Pacific Ocean. Geophysical Journal,1988,95:181-194
    Mackie R. L., Smith J. T., Madden T. R.. Three-dimensional electromagneticmodeling using finite difference equations: The magnetotelluric example. RadioScience,1994,29(4):923-935
    Matsuno T., Seama N., Baba K.. A study on correction equations for the effectof seafloor topography on ocean bottom magnetotelluric data. Earth Planets Space,2007,59:981-986
    McNeice G. W., Jones A. G.. Multisite, multifrequency tensor decomposition ofmagnetotelluric data. Geophysics,2001,66(1):158-173
    Moorkamp M.. Comment on ‘The magnetotelluric phase tensor’ by T. GrantCaldwell, Hugh M. Bibby and Colin Brown. Geophysical Journal International,2007,171(2):565-566
    Ogawa Y.. On two-dimensional modeling of Magnetotellutic field data. Surveysin Geophysics,2002,23:251-272.
    Parker L. R., Booker R. J.. Optimal one dimensional inversion and bounding ofmagnetotelluric apparent resistivity and phase measurements. Physics of the Earthand Planetary Interiors,1996,98:269-282
    Parkinson W. D.. Direction of rapid geomagnetic fluctuation. GeophysicalJournal Royal Astronomical Society,1959,2:1-14
    Parkinson W. D.. The influence of continents and oceans on geomagneticvariations. Geophysical Journal Royal Astronomical Society,1962,6(4):441-449
    Parkinson W. D., Jones F. W.. The geomagnetic coast effect. Reviews of Geophysics,1979,17:1999-2015
    Patro K. P., Egbert D. G.. Regional conductivity structure of Cascadia:preliminary results from3D inversion of USArray transportable magnetotelluric data.Extended Abstract of The19th International Workshop on Electromagnetic Inductionin the Earth,2008,S1.2-E15
    Portniaguine O., Zhdanov M. S.. Focusing geophysical inversion images.Geophysics,1999,64(3):874-887
    Robert A., Pubellier M., de Sigoyer J., et al. Structural and thermal charactersof the Longmen Shan (Sichuan, China). Tectonophysics,2010,491(1-4):165-173
    Rodi W., Mackie R. L.. Nonlinear conjugate gradients algorithm for2-Dmagnetotelluric inversion. Geophysics,2001,66(1):174-187
    Rowley D. B.. Age of initiation of collision between India and Asia: A reviewof stratigraphic data. Earth and Planetary Science Letters,1996,145(1-4):1-13
    Shu X. J., Wang X. L., Sun T., et al. Trace elements, U-Pb ages and Hf isotopesof zircons from Mesozoic granites in the western Nanling Range, South China:Implications for petrogenesis and W-Sn mineralization. Lithos,2011,127:468-482.
    Simpson F., Bahr K.. Practical Magnetotellurics. Cambridge: CambridgeUniversity Press,2005
    Siripunvaraporn W., Egbert G.. An efficient data-subspace inversion method for2-D magnetotelluric data, Geophysics,2000,65:791-803
    Siripunvaraporn W., Egbert G., Lenbury Y., et al. Three dimensionalmagnetotelluric inversion: Data space method. Phys. Earth Planet. Inter.,2005,150:3-14
    Snatos F. M., Nolasco M., Almeida E. P., et al. Coast effects on magnetic andmagnetotelluric transfer functions and their correction: application to MTsoundings carried out in SW Iberia. Earth and Planetary Science Letters,2001,186:283-295
    Sutarno D., Vozoff K. Robust M-estimation of magnetotelluric impedance tensors.Exploration Geophysics,1989,20:383-398
    Swift C. M.. A magnetotelluric investigation of an electrical conductivityanomaly in the southwestern United States:[Ph. D. thesis]. Massachusetts:Massachusetts Institute of Technology,1967
    Tapponnier P., Peltzer G., Le Dain A. Y., et al. Propagating extrusion tectonicsin Asia: New insights from simple experiments with plasticine. Geology,1982,10(12):611-616
    Tapponnier P., Xu Z. Q., Roger F., et al. Oblique stepwise rise and growth ofthe Tibet Plateau. Science,2001,294(5547):1671-1677
    Tikhonov N. A.. On determining electrical characteristics of the deep layersof the earth’s crust. Doklady,1950,73(2):295-297
    Wan T. F.. The Tectonics of China—Data, Maps and Evolution. Beijing: HigherEducation Press,2011
    Wan T. F., Tong Y. F., Zheng W. W.. Thermal Structure of the Lithosphere in Fujian,China. Journal of Geophysical Research,1989,94(B2):1888-1894
    Wang C., Gao R., Yin A., et al. A mid-crustal strain-transfer model forcontinental deformation: A new perspective from high-resolution deepseismic-reflection profiling across NE Tibet. Earth and Planetary Science Letters,2011,306(3–4):279-288
    Wang Q., Qiao X., Lan Q., et al. Rupture of deep faults in the2008Wenchuanearthquake and uplift of the Longmen Shan. Nature Geoscience,2011,4(9):634-640
    Wang Q. C., Liu J. S., Du Z. L., et al. Tectonic framework and deep structureof South China and their constraint to oil-gas field distribution. Acta GeologicaSinica,2009,83(1):170-178.
    Wannamaker P. E.. Advances in3D magnetotelluric modeling using integralequations. Geophysics,1991,56:1716-1728
    Wannamaker P. E., Stodt J. A., Rijo L.. A stable finite element solution fortwo-dimensional magnetotelluric modeling. Geophysical Journal Royal AstronomicalSociety,1987,88:277-296
    Xu X. S., O’Reilly Y. S., Griffin W. L., et al. The crust of Cathaysia: Age,assembly and reworking of two terranes. Precambrian Research,2007,158:51-78
    Xu Z., Ji S., Li H., et al. Uplift of the Longmen Shan range and the Wenchuanearthquake. Episodes,2008,31(3):291-301
    Yamane K., Takasugi S., Lee K. H.. A new magnetotelluric inversion scheme usinggeneralized RRI method. Journal of Applied Geophysics,1996,35:209-213
    Yin A., Harrison T. M.. Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences,2000,28(1):211-280
    Yuan Y. S., Ma Y. S., Hu S. B., et al. Present-day Geothermal Characteristicsin South China. Chinese Journal of Geophysics,2006,49(4):1005-1014
    Zhang Z., Wang Y., Chen Y., et al. Crustal structure across Longmenshan faultbelt from passive source seismic profiling. Geophysical Research Letters,2009,36(17): L17310
    Zheng J. P., O’Reilly Y. S., Griffin W. L., et al. Nature and evolution ofMesozoic-Cenozoic lithospheric mantle beneath the Cathaysia block, SE China. Lithos,2004,74:41-65.
    蔡军涛,陈小斌.大地电磁资料精细处理与二维反演解释技术研究(二)—反演数据极化模式选择.地球物理学报,2010,53(11):2703-2714
    蔡军涛,陈小斌,赵国泽.大地电磁资料精细处理与二维反演解释技术研究(一)—阻抗张量分解与构造维性分析.地球物理学报,2010,53(10):2516-2526
    蔡学林,朱介寿,曹家敏,等.东亚西太平洋巨型裂谷体系岩石圈与软流圈结构及动力学.中国地质,2002,29(3):234-245
    蔡学林,朱介寿,曹家敏,等.华南地区岩石圈三维结构类型与演化动力学.大地构造与成矿学,2003,27(4):301-312
    蔡学林,朱介寿,曹家敏,等.四川黑水-台湾花莲断面岩石圈与软流圈结构.成都理工大学学报,2004,31(5):441-451.
    常利军,王椿镛,丁志峰,等.青藏高原东北缘上地幔各向异性研究.地球物理学报,2008,51(2):431-438
    陈柏林,刘建生.祁连山北缘-河西走廊地区大地形变与地震的关系.地质通报,2009,28(10):1439-1447
    陈柏林,王春宇,宫玉良.河西走廊盆地西段玉门断裂晚新生代的活动特征.地质通报,2008,27(10):1709-1719
    陈东敬,于鹏.大地电磁与地震联合反演技术在西亚某区的综合应用.石油物探,2005,44(3):251-258
    陈国能, Grapes R..花岗岩成因:原地重熔与地壳演化(,彭卓伦,张献河,胡文烨).武汉:中国地质大学出版社,2009.
    陈乐寿,刘任,王天生.大地电磁测深资料处理与解释.北京:石油工业出版社,1989
    陈乐寿,王光锷.大地电磁测深法.北京:地质出版社,1990
    陈石,王谦身,祝意青,等.青藏高原东缘重力导纳模型均衡异常时空特征.地球物理学报,2011,54(1):22-34
    陈小斌,赵国泽,詹艳,等.磁倾子矢量的图示分析及其应用研究.地学前缘,2004,11(4):626-636
    陈毓川,王登红.华南地区中生代岩浆成矿作用的四大问题.大地构造与成矿学,2012,36(3):315-321
    陈玉东.数字信号处理.北京:地质出版社,2005
    崔笃信,王庆良,胡亚轩,等.青藏高原东北缘岩石圈变形及其机理.地球物理学报,2009,52(6):1490-1499
    戴华光,贾云鸿,刘洪春,等.青藏高原东北缘地震断层的研究.地质力学学报,1995,1:38-43
    邓起东,张培震,冉勇康,等.中国活动构造基本特征.中国科学(D辑),2002,32(12):1020-1030
    邓起东,张培震,冉勇康,等.中国活动构造与地震活动.地学前缘,2003,10:66-73
    冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999
    冯益民,曹宣铎.西秦岭造山带的演化、构造格局和性质.西北地质,2003,36(1):1-10
    高坪仙.花岗岩类岩石形成的构造背景及成因类型综述.国外前寒武纪地质,1995,71:48-62
    高锐,黄东定,卢德源,等.横过西昆仑造山带与塔里木盆地结合带的深地震反射剖面.科学通报,2000,45(17):1874-1879.
    郭飚,刘启元,陈九辉,等.中国大陆及邻区上地幔P波各向异性结构.地球物理学报,2012,55(12):4106-4115
    郭进京,韩文峰,李雪峰.西秦岭新生代以来地质构造过程与青藏高原隆升和变形的约束.地学前缘,2009,16(6):215-225
    郭令智.华南板块构造.北京:地质出版社,2001
    郭守年,李勇.南北地震带北段地壳上地幔电性结构及有关资料问题的讨论.西北地震学报,1999,21(3):7-11
    郝天珧,刘伊克,段昶.中国东部及其邻域地球物理场特征与大地构造意义.地球物理学报,1997,40(5):677-690
    何丽娟,胡圣标,汪集旸.中国东部大陆地区岩石圈热结构特征.自然科学进展,2001,11(9):966-969
    胡健民,孟庆任,石玉若,等.松潘-甘孜地体内花岗岩锆石SHRIMP U-Pb定年及其构造意义.岩石学报,2005,21(3):867-880
    华仁民,张文兰,姚军明,等.华南两种类型花岗岩成岩-成矿作用的差异.矿床地质,2006,25(S):127-130
    嘉世旭,张先康.青藏高原东北缘深地震测深震相研究与地壳细结构.地球物理学报,2008,51(5):1431-1443
    蒋洪堪,战双庆,王宏勋.四川大足-福建泉州深部地电特征.地球物理学报,1992,35(2):214-222
    晋光文,孔祥儒.大地电磁阻抗张量的畸变与分解.北京:地震出版社,2006
    金胜,张乐天,金永吉,等.青藏高原东北缘合作-大井剖面地壳电性结构研究.地球物理学报,2012,55(12):3979-3990
    李大心.地球物理方法综合应用与解释.武汉:中国地质大学出版社,2003
    李金铭.地电场与电法勘探.北京:地质出版社,2005
    李清河,张元生.祁连山—河西走廊地壳速度结构及速度与电性的联合解释.地球物理学报,1998,41(2):197-210
    李廷栋.青藏高原隆升的过程和机制.地球学报,1995,1:1-9
    李永华,吴庆举,安张辉,等.青藏高原东北缘地壳S波速度结构与泊松比及其意义.地球物理学报,2006,49(5):1359-1368
    黎源,雷建设.青藏高原东缘上地幔顶部Pn波速度结构及各向异性研究.地球物理学报,2012,55(11):3615-3624
    梁新权,李献华,丘元禧,等.华南印支期碰撞造山—十万大山盆地构造和沉积学证据.大地构造与成矿学,2005,29(1):99-112
    刘国兴,韩凯,韩江涛.华南东南沿海地区岩石圈电性结构.吉林大学学报(地球科学版),2012,42(2):536-544
    刘宏.小波分析在MT去噪处理中的适定性.石油地球物理勘探,2004,39:331-337
    刘明军,李松林,方盛明,等.利用地震波速研究青藏高原东北缘地壳组成及其动力学.地球物理学报,2008,51(2):412-430
    柳建新,童孝忠,郭荣文,等.大地电磁测深法探勘—资料处理、反演与解释.北京:科学出版社,2012
    刘启元,李昱,陈九辉,等.汶川Ms8.0地震:地壳上地幔S波速度结构的初步研究.地球物理学报,2009,52(2):309-319
    马东升.华南重要金属矿床的成矿规律—时代爆发性、空间分带性、基底继承性和热隆起成矿.矿物岩石地球化学通报,2008,27(3):209-217
    马瑞士.华南构造演化新思考兼论“华夏古陆”说中的几个问题.高校地质学报,2006,12(4):448-456
    孟小红,石磊,郭良辉,等.青藏高原东北缘重力异常多尺度横向构造分析.地球物理学报,2012,55(12):3933-3941
    饶家荣,肖海云,刘耀荣,等.扬子、华夏古板块会聚带在湖南的位置.地球物理学报,2012,55(2):484-502
    单斌,熊熊,郑勇,等.地幔岩石圈热结构差异与中国大陆岩石圈均衡分析.地球物理学报,2008,51(4):1058-1065
    沈渭洲.华夏地块基底变质岩同位素年龄数据评述.高校地质学报,2006,12(4):475-482
    石应骏,刘国栋,吴广耀,等.大地电磁测深法教程.北京:地震出版社,1985
    宋维琪,孙山.地震资料约束下大地电磁资料反演.地震学报,2005,27(6),630-636
    舒良树.华南构造演化的基本特征.地质通报,2012,31(7):1035-1053
    孙洁,晋光文,白登海,等.青藏高原东缘地壳、上地幔电性结构探测及其构造意义.中国科学(D辑),2003,33:173-180
    孙洁,晋光文,江钊,等.用大地电磁测深法研究华南地区岩浆活动及深部结构.地震地质,2001,23(2):328-329
    谭捍东,魏文博,邓明,等.大地电磁法张量阻抗通用计算公式.石油地球物理勘探,2004,39(1):114-120
    谭捍东,余钦范, Booker J.,等.大地电磁三维快速松弛反演.地球物理学报,2003,46(6):850-855
    汤吉,晋光文,赵国泽,等.感应矢量及其在长白山天池火山区的应用.地质论评,1999,45:294-303
    汤吉,詹艳,赵国泽,等.青藏高原东北缘玛沁—兰州—靖边剖面地壳上地幔电性结构研究.地球物理学报,2005,48(5):1205-1216
    汤井田,化希瑞,曹哲民,等. Hilbert-Huang变换与大地电磁噪声压制.地球物理学报,2008,51(2):603~610
    滕吉文,曾融生,闫雅芬,等.东亚大陆及周边海域Moho界面深度分布和基本构造格局.中国科学(D辑),2002,32(2):89-100
    万天丰.中国大地构造学.北京:地质出版社,2011
    万天丰.中国大地构造学纲要.北京:地质出版社,2004
    万天丰.中国大陆岩石圈的形成、演化与特征.自然杂志,2012,34(4):196-218
    万天丰,赵庆乐.中国东部构造-岩浆作用的成因.中国科学(D辑),2012,42(2):155-163
    万战生,赵国泽,汤吉,等.青藏高原东边缘冕宁-宜宾剖面电性结构及其构造意义.地球物理学报,2010,53(3):585-594
    王德滋.华南花岗岩研究的回顾与展望.高校地质学报,2004,10(3):305-314.
    王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化.地学前缘,2003,10(3):209-220.
    王光杰,滕吉文,张中杰.中国华南大陆及陆缘地带的大地构造基本格局.地球物理学进展,2000,15(3):25-44
    王海燕,高锐,尹安,等.深地震反射剖面揭示的海原断裂带深部几何形态与地壳形变.地球物理学报,2012,55(12):3902-3909
    王家映,徐义贤,胡祥云,等.国外大地电磁响应函数估计方法.地学前缘,1998,5(1-2):217-222
    王凯,熊熊.利用大地测量和地热资料联合确定黑水-泉州地学断面东段岩石圈热及强度结构.地球物理学进展,2012,27(4):1366-1376
    王懋基.黑水-泉州地学断面的重磁解释.地球物理学报,1994,37(3):321-329
    王琪.中国大陆现今地壳运动研究.地震学报,2003,25(5):453-464
    王庆良,王文萍,崔笃信,等.青藏块体东北缘现今地壳运动.大地测量与地球动力学,2002,22(4):12-16
    王双绪,张希.青藏高原东北缘现今构造变动与地震活动特征.地球学报,2005,26(3):209-216
    王涛.花岗岩研究与大陆动力学.地学前缘,2000,7(S):137-146
    王绪本,朱迎堂,赵锡奎,等.青藏高原东缘龙门山逆冲构造深部电性结构特征.地球物理学报,2009,52(2):564-571
    王有学, Mooney D. W.,韩果花,等.台湾-阿尔泰地学断面阿尔金-龙门山剖面的地壳纵波速度结构.地球物理学报,2005,48(1):98-105
    王志才,张培震.西秦岭北缘构造带的新生代构造活动—兼论对青藏高原东北缘形成过程的指示意义.地学前缘,2006,13(4):119-135
    魏文博,金胜,叶高峰,等.大陆岩石圈导电性的研究方法.地学前沿,2003,10(1):15-20.
    魏文博.我国大地电磁测深新进展及瞻望.地球物理学进展,2002,17(2):245-254.
    魏文博,陈乐寿,谭捍东,等.西藏中、南部壳内高导体与热结构特点—INDEPTH-MT提供的证据.现代地质,1997,11(3):387-395
    吴才来,徐学义,高前明,等.北祁连早古生代花岗质岩浆作用及构造演化.岩石学报,2010,26(4):1027-1044
    吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题.岩石学报,2007,23(6):1217-1238
    吴建平,黄媛,张天中,等.汶川Ms8.0级地震余震分布及周边区域P波三维速度结构研究.地球物理学报,2009,52(2):320-328
    吴满路,马寅生,张春生,等.兰州至玛曲地区地应力测量与现今构造应力场特征研究.地球物理学报,2008,51(5):1468-1474
    肖庆辉,邱瑞照,邢作云,等.花岗岩成因研究前沿的认识.地质论评,2007,53(S):17-27
    肖庆辉,王涛,邓晋福,等.中国典型造山带花岗岩与大陆地壳生长研究.北京:地质出版社,2009
    熊小松,高锐,李秋生,等.深地震探测揭示的华南地区莫霍面深度.地球学报,2009,30(6):774-786
    熊熊,滕吉文.青藏高原东缘地壳运动与深部过程的研究.地球物理学报,2002,45(4):507-515
    邢集善,杨巍然,邢作云,等.中国东部深部构造特征及其与矿集区关系.地学前缘,2007,14(3):114-130
    徐果明,姚华建,朱良保,等.中国西部及其邻域地壳上地幔横波速度结构.地球物理学报,2007,50(1):193-208
    徐克定.中国南方大陆岩石圈结构分析.海相油气地质,2000,5(3-4):31-46
    徐鸣洁,舒良树.中国东南部晚中生代岩浆作用的深部条件制约.高校地质学报,2001,7(1):21-33
    徐夕生.华南花岗岩-火山岩成因研究的几个问题.高校地质学报,2008,14(3):283-294
    徐夕生,周新民, O’Reilly Y. S.,等.中国东南部下地壳物质与花岗岩成因探索.岩石学报,15(2):217-223
    徐夕生,周新民,王德滋.壳幔作用与花岗岩成因—以中国东南沿海为例.高校地质学报,1999,5(3):241-250
    徐义贤,王家映.基于连续小波变换的大地电磁信号谱估计方法.地球物理学报,2000,43:676-683
    许忠淮,汪素云,裴顺平.青藏高原东北缘地区Pn波速度的横向变化.地震学报,2003,25(1):24-31
    许志琴,杨经绥,姜枚,等.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,1999,6(3):139-151
    闫雅芬,王光杰,张中杰.中国华南大陆重力场特征及其大地构造意义.地质学报,2004,78(6):828
    杨辉,王家林,吴健生,等.大地电磁与地震资料仿真退火约束联合反演.地球物理学报,2002,45(5):723-730.
    杨明桂,黄水保,楼法生,等.中国东南陆区岩石圈结构与大规模成矿作用.中国地质,2009,36(3):528-543
    姚琪,徐锡伟,邢会林,等.青藏高原东缘变形机制的讨论:来自数值模拟结果的限定.地球物理学报,2012,55(3):863-874
    袁伟,杨振宇,杨进辉.河西走廊晚泥盆世地层中冥古宙碎屑锆石的发型.岩石学报,2012,28(4):1029-1036
    袁学诚,华九如.华南岩石圈三维结构.中国地质,2011,38(1):1-19
    詹艳,赵国泽,陈小斌,等.宁夏海原大震区西安州-韦州剖面大地电磁探测与研究,地球物理学报,2004,47(2):274-281
    詹艳,赵国泽,王继军,等.1927年古浪8级大震区及其周边地块的深部电性结构,地球物理学报,2008,51(2):511-520
    詹艳,赵国泽,王继军,等.青藏高原东北缘海原弧形构造区地壳电性结构探测研究.地震学报,2005,4(27):431-440
    张国伟,郭安林.中国大陆构造中的西秦岭—松潘大陆构造结.地学前缘,2004,11(3):23-33
    张洪双,滕吉文,田小波,等.青藏高原东北缘岩石圈厚度与上地幔各向异性.地球物理学报,2013,56(2):459-471
    张辉,高原,石玉涛,等.基于地壳介质各向异性分析青藏高原东北缘构造应力特征.地球物理学报,2012,55(1):95-104
    张季生,高锐,曾令森,等.龙门山及邻区重、磁异常特征及与地震关系的研究.地球物理学报,2009,52(2):572-578
    张进,马宗晋,李智敏,等.从西宁盆地新生代变形探讨青藏高原东北缘的变形特征.地质论评,2009,55(4):731-747
    张乐天,金胜,魏文博,等.青藏高原东缘及四川盆地的壳幔导电性结构研究.地球物理学报,2012,55(12):4126-4137
    张培震,沈正康,王敏,等.青藏高原及周边现今构造变形的运动学.地震地质,2004,26(3):367-377.
    张培震,郑德文.有关青藏高原东北缘晚新生代扩展与隆升的讨论.第四纪研究,2006,26(1):1-13.
    张全胜,杨生.大地电磁测深资料去噪方法应用研究.石油物探,2002,41(4):493-500
    张胜业,潘玉玲.应用地球物理学原理.武汉:中国地质大学出版社,2004
    张苑,舒良树,陈祥云.华南早古生代花岗岩的地球化学、年代学及其成因研究—以赣中南为例.中国科学(D辑),2011,41(8):1061-1079
    张岳桥,李海龙,李建华.青藏高原东缘中更新世伸展作用及其新构造意义.地质论评,2010,56(6):781-791
    张岳桥,杨农,陈文,等.中国东西部地貌边界带晚新生代构造变形历史与青藏高原隆升过程初步研究.地学前缘,2003,10(4):599-612
    赵国泽,陈小斌,王立凤,等.青藏高原东边缘地壳“管流”层的电磁探测证据.科学通报,2008,53(3):345-350
    赵国泽,汤吉,詹艳,等.青藏高原东北缘地壳电性结构和地块变形关系的研究.中国科学(D辑),2004,34(10):908-918
    赵金仁,李松林,张先康,等.青藏高原东北缘莫霍界面的三维空间构造特征.地球物理学报,2005,48(1):78-85
    赵理芳,吴健生.大地电磁法数据的采集及质量分析.矿产与地质,2004,4(18):393-397
    郑德文,张培震,万景林,等.青藏高原东北缘晚新生代构造变形的时序-临夏盆地碎屑颗粒磷灰石裂变径迹记录.中国科学(D辑),2003,33:190-198
    郑永飞,张少兵.华南前寒武纪大陆地壳的形成和演化.科学通报,2007,52(1):1-10
    周民都.青藏高原东北缘深地震测深研究成果回顾.西北地震学报,2006,28(2):189-191.
    周民都,吕太乙,张元生,等.青藏高原东北缘地质构造背景及地壳结构研究.地震学报,2000,22(6):645-653
    朱介寿,蔡学林,曹家敏,等.中国华南及东海地区岩石圈三维结构及演化.北京:地质出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700