用户名: 密码: 验证码:
番茄白粉病抗性反应关键基因的鉴定及功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄白粉菌(Oidium neolycopersici)是一种产生单生分生孢子的真菌,主要分布在欧洲、非洲、南北美洲和亚洲的一种世界性植物病害病原菌。番茄白粉病严重影响了番茄的产量和质量,而杀菌剂的大量喷施造成了环境污染,防治该病害最关键有效的方法是培育抗病品种,而抗病品种选育的成效取决于抗病基因资源的挖掘和利用。本文利用建立的病毒诱导基因沉默(virus induced gene silencing, VIGS)的功能基因组学研究平台,对番茄白粉病抗性反应关键基因进行了鉴定及功能验证,在细胞和基因水平上研究了番茄对白粉病的抗性机理,为番茄抗病育种提供理论依据。主要研究结果如下:
     1 .对番茄白粉菌商丘菌株进行了鉴定,在国内首次报道了番茄白粉菌(O.neolycopersici)。对河南商丘分离出的番茄白粉病病原菌进行了致病性检测、形态学及分子生物学鉴定。菌落形态、显微结构及核糖体DNA(rDNA)内转录间隔区(internal transcribed spacer, ITS)序列分析表明,该病原菌属于番茄白粉菌(O. neolycopersici)。番茄抗性材料特异性分析和品种抗病性评价表明,人工接种该病原菌导致番茄栽培品种Solanum lycopersicum致病,而野生品种S. habrochaites G1.1560(携带抗性基因Ol-1)和S. arcanum LA2172(携带抗性基因Ol-4)表现为高抗。
     2.对番茄与白粉菌互作中活性氧的积累及生理生化反应进行分析。番茄与白粉菌亲和互作中感病番茄叶片细胞活性氧积累较慢、较少,无法完全抑制白粉菌的生长;而在非亲和互作中,抗病番茄叶片细胞活性氧积累较快、较多,能够在短时间内抑制白粉菌生长,使其无法完成生活周期,Ol-1和Ol-4介导的番茄白粉病抗性反应与快速过敏反应(hypersensitive reaction,HR)相关。通过防御反应相关酶活性分析,研究了核黄素诱导的番茄系统抗病性,发现细胞内活性氧积累速度和程度、膜脂过氧化、PAL和POD在核黄素诱导番茄对白粉菌的抗性反应中发挥重要作用。
     3.建立番茄的VIGS体系,对前期研究获得的白粉菌诱导的上调番茄抗性候选基因序列进行功能鉴定,确定抗性反应的关键基因。对高抗白粉病番茄植株S. habrochaites G1.1560(携带抗性基因Ol-1)进行候选基因的沉默,观察到不同程度抗性丧失的表型。进而对沉默植株进行显微形态学观察,发现白粉菌可在沉默植株完成其整个无性生活周期,沉默植株对白粉菌表现为慢性过敏反应,而对照植株表现为快速过敏反应。根据沉默后表型变化鉴定出4个番茄白粉病抗性反应关键基因:ShGSTU1、ShME1、ShMADSTF、ShORR-1。BLAST分析预测关键基因的编码产物,其中ShGSTU1编码谷胱甘肽转移酶(glutathione transferases, GST),ShME1编码NADP苹果酸酶(NADP-malic enzyme, NADP-ME),ShMADSTF编码MADS盒转录因子(transcription factor, TF),而ShORR-1为功能未知的新基因。依据番茄全基因组序列对ShGSTU1、ShME1和ShORR-1进行基因步移,设计引物,PCR扩增,测序获得基因的全长(ShGSTU1 GengBank登录号:JF957860;ShME1 GengBank登录号:JF957861)。
Tomato powdery mildew caused by Oidium neolycopersici is a kind of fungus with a single-celled conidium produced on conidiosphore, which is a worldwide plant fungal disease distributed in Europe, African, South and North America and Asian. Tomato powdery mildew is responsible for a remarkable reduction in quality and yield of tomato, while insecticide spraying to stop the disease results in environmental contamination. The most effective way to prevent this disease is resistant breeding, which depends on the resistant materials and resistance genes. In the paper, virus induced gene silencing(VIGS)as a functional genomic research platform established was used to identify and functional analyze key genes for tomato resistance to powdery mildew, and resistance mechanism of tomato to powdery mildew was studied in the cellular and genetic levels, which provided theoretical basis for tomato resistant breeding. The main results were as follows:
     1. The O. neolycopersici Shangqiu isolate was identified as the causual agent of tomato powdery mildew spreading in Shangqiu, which was the first report of O. neolycopersici in China. The pathogen of tomato powdery mildew was studied based on colony morphology, histological structure and internal transcribed spacer (ITS) sequence of rDNA. It indicated that the pathogen was O. neolycopersici. The wild types and cultivated varieties of tomato were inoculated with the fungi for disease test. Tomato cultivated varieties (Solanum lycopersicum) were susceptible to the fungi, while the tomato wild types S. habrochaites G1.1560 (carrying Ol-1 gene)and S. arcanum LA2172 (carrying Ol-4 gene)were highly resistant.
     2. Active oxygen accumulation, physiological and biochemical changes in different tomato species to powdery mildew fungi were examined in the cellular level. It indicated that the slow accumulation speed and low quantity of active oxygen resulted in incompletely inhibiting the growth of powdery mildew in susceptive tomato, while the fast accumulation and high quantity of active oxygen can inhibit the growth of powdery mildew in resistant tomato successfully, in which the pathogen can’t finish it life cycle. The tomato resistance responses to powdery mildew mediated by Ol-1 or Ol-4 gene were involved with fast hypersensitive reaction. Systemic acquired resistance of tomato induced by unspecialized elicitor– riboflavin was studied by analyzing enzyme activities related to resistant pathway. The results suggested that riboflavin induced physiological changes including H2O2 accumulation, lipid peroxidation, POD and PAL could play a role in the increase of tomato resistance to O. neolycopersici.
     3. VIGS system was used to analyze the function of the up-regulated candidate gene sequences associated with tomato resistance to powdery mildew. It was found silencing of candidate gene sequences resulted in resistance-breaking phenotype of different degrees in S. habrochaites G1.1560(carrying Ol-1 gene). Microscopic observation showed that O. neolycopersici can finish its whole life cycle and a slow hypersensitive reaction was displayed in epidermal cells of silenced plant leaves compared to fast hypersensitive reaction in control plant. Based on the results of VIGS analysis and microscopic observation, four genes ShGSTU1, ShME1, ShMADSTF and ShORR-1 were identified as key genes for tomato resistance response to powdery mildew. By BLAST, the putative encoding proteins of these genes were predicted, ShGSTU1 encoding glutathione transferases, ShME1 encoding NADP-malic enzyme, ShMADSTF encoding MADS box transcription factor, and ShORR-1 encoding an unknown function protein. Primers for obtaining complete sequences of ShGSTU1、ShME1 and ShORR-1 were designed based on gene walking in tomato genome sequence. PCR products of ShGSTU1、ShME1 and ShORR-1 amplified from S. habrochaites G1.1560 genemic DNA were sequenced to get the complete sequence. The GeneBank code of ShGSTU1 was JF957860, ShME1 was JF957861.
引文
1. Adam A, Farkas T, Somlyai G, Hevesi M, Kiraly Z. Consequence of O2·? generation during a bacterially induced hypersensitive reaction in tobacco: deterioration of membrane lipids. Physiological and Molecular Plant Pathology, 1989, 34(1): 13-26.
    2. Alvarez ME, Pennell RI, Meijer P-J, Ishikawa A, Dixon RA, Lamb C. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 1998, 92(6): 773-784.
    3. Asselbergh B, Curvers K, Franca SC, Audenaert K, Vuylsteke M, Van Breusegem F, Hofte M. Resistance to Botrytis cinerea in sitiens, an abscisic aciddeficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiology, 2007, 144: 1863-1877.
    4. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science, 2002, 295(5562): 2077-80.
    5. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science, 2002, 295(5562): 2073-2076.
    6. Bai Y, Huang CC, van der Hulst R, Meijer-Dekens F, Bonnema G and Lindhout P. QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol. Plant. Microbe Interact, 2003, 16: 169-176.
    7. Bai Y, van der Hulst R, Huang CC, Wei L, Stam P and Lindhout P. Mapping Ol-4, a gene conferring resistance to Oidium neolycopersici and originating from Lycopersicon peruvianum LA2172, requires multi-allelic single locus markers. Theor Appl Genet, 2004, 109(6): 1215-23.
    8. Bai Y, van der Hulst R, Bonnema G, Marcel TC, Meijer-Dekens F, Niks R and Lindhout P. Tomato defense to Oidium neolycopersici: Dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. Mol Plant Microbe Interact, 2005, 18: 354-362.
    9. Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar SP (1997). Signaling in plant-microbe interactions. Science , 276: 726~733.
    10. Baulcombe DC. Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol, 1999, 2:109-113.
    11. Beggs J and Wellman E (1994) Photocontrol of flavonoid biosynthesis.In: Kendrik RE and Kronberg GHM (eds) Photomorphogenesis in Plants, pp 733-751. Kluwer Academic Publishers, Dordrecht, The Netherlands
    12. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1-2): 248-254.
    13. Braun U, Cook RTA, Inman AJ, Shin HD. 2002. The taxonomy of the powdery mildew fungi. Pages 13-55 in: The Powdery Mildews: A Comprehensive Treatise. Bélanger RR, Bushnell WR, Dik AJ, and Carver TLW, eds. American Phytopathological Society, St. Paul, MN.
    14. Braun U, Takamatsu S, Heluta V, Limkaisang S, Divarangkoon R,Cook R, Boyle H. Phylogeny and taxonomy of powdery mildew fungi of Erysiphe sect. Uncinula on Carpinus species. Mycol Prog, 2006, 5: 139-153.
    15. Burch-Smith TM, Anderson JC, Martin GB and Dinesh-Kumar SP. Applications and advantages of virus-induced gene silicening for gene function studies in plants. Plant J, 2004, 39: 734-746.
    16. Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol, 2006, 142: 21-27.
    17. Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F and Schulze-Lefert P. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695-705.
    18. Cai XZ, Xu QF, Wang CC, Zheng Z. (2006) Development of a virus induced gene-silencing system for functional analysis of the RPS2-dependent resistance signaling pathway in Arabidopsis. Plant Mol Biol, 2006, 62:223-232.
    19. Chapman S, Kavanagh T, Baulcombe D: Potato virus X as a vector for gene expression in plants. Plant J, 1992, 2: 549-557.
    20. Chaure P, Gurr SJ, Spanu P. Stable transformation of Erysiphe graminis, an obligate biotrophic pathogen of barley. Nat Biotechnol, 2000, 18: 205-207.
    21. Chen Q, He J, Phoolcharoen W, Mason HS.Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccin, 2011, 1;7(3).
    22. Chen YY, Lin YM, Chao TC, Wang JF, Liu AC, Ho FI, Cheng CP. Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiologia Plantarum, 2009, 136: 324-335.
    23. Ciccarese F, Amenduni M, Ambrico A and Cirulli M. The resistance to Oidium lycoeprsici conferred by ol-2 gene in tomato. Acta Physiol Plant, 2000, 22: 266-266.
    24. Ciccarese F, Amenduni M, Schiavone D and Cirulli M. Occurrence and inheritance of resistance to powdery mildew (Oidium lycopersici) in Lycopersicon species. Plant Pathol, 1998, 47: 417-419.
    25. Coaker G, Falick A, Staskawicz B. Activation of a phytopathogenic bacterial effector proteinby a eukaryotic cyclophilin. Science, 2005, 308: 548-550.
    26. Constantin GD, Krath B N. Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J, 2004, 40(4): 622-631.
    27. Cook RTA, Henricot B, Henrici A, Beales P. Morphological and phylogenetic comparisons amongst powdery mildews on Catalpa in the UK. Mycol Res, 2006, 110: 672-685.
    28. Cook RTA., Inman AJ, Billings C. Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. Mycol Res, 1997, 101: 975 -1002.
    29. Dangl JL and Jones JDG. Plant pathogens and integrated defense responses to infection. Nature, 2001, 411:177-193.
    30. Day B, Dahlbeck D, Huang J, Chisholm ST, Li D and Staskawicz BJ. Molecular basis for the RIN4 negative regulation of RPS2 disease resistance. Plant Cell, 2005, 17: 1292-1305.
    31. De Giovanni C, Dell'orco P, Bruno A, Ciccarese F, Lotti C and Ricciardi L. Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in Tomato. Plant Science, 2004, 166: 41-48.
    32. De Wit PJGM. Plant biology: on guard. Nature, 2002, 416: 801-803.
    33. De Wit PJGM. Pathogen avirulence and plant resistance a key role for recognition. Trends in Plant Science, 1997, 2 (12): 452 -458.
    34. Dean DF, Goodwin PH, Hsiang T.. Induction of glutathione S-transferase genes ofNicotiana benthamiana following infection by Colletotrichum destructivum and C.orbiculare and involvement of one in resistance. Journal of Experimental Botany, 2005, 56: 1525-1533.
    35. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci U S A, 2003, 100: 8024-8029.
    36. Dixon MS, Golstein C, Thomas CM, van Der Biezen EA and Jones JD. Genetic complexity of pathogen perception by plants: the example of Rcr3, a tomato gene required specifically by Cf-2. Proc Natl Acad Sci U S A, 2000, 97: 8807-8814.
    37. Dong HS, Beer SV. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology, 2000, 90: 801-811.
    38. Dong YY, Burch-Smith TM, Liu YL , Mamillapalli P, Dinesh-Kumar SP. A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiology, 2007, 145: 1161-1170.
    39. Edwards R, Dixon DP, Walbot V: Plant glutathione S-transferases:enzymes with multiple functions in sickness and in health. Trends Plant Sci, 2000, 5: 193-198.
    40. Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP and Martin GB. Two MAPK cascades,NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J, 2003, 36: 905-917.
    41. Feuillet C, Schachermayr G, Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J, 1997, 11 (1): 45~52.
    42. Fitzmaurice WP, Holzberg S, Lindbo JA, Padgett HS, Palmer KE, Wolfe GM, Pogue GP. Epigenetic modification of plants with systemic RNA viruses. Omics, 2002, 6: 137-151.
    43. Flor HH. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol, 1971, 9: 275-296.
    44. Freialdenhoven A, Peterhansel C, Kurth J, Kreuzaler F and Schulze-Lefert P. Identification of genes required for the function of non-race-specific mlo resistance to powdery mildew in barley. Plant Cell, 1996, 8: 5-14.
    45. Freialdenhoven A, Scherag B, Hollricher K, Collinge DB, Thordal-Christensen H, Schulze-Lefert P. Nar-1 and Nar-2, two loci required for Mla12-specified race-specific resistance to powdery mildew in barley. Plant Cell, 1994, 6: 983-994.
    46. Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2011
    47. Gastaldi G, Laforenza U, Casirola D, Ferrari G, Tosco M, Rindi G. Energy depletion differently affects membrane transport and intracellular metabolism of riboflavin taken up by isolated rat enterocytes. The Journal of Nutrition, 1999, 129: 406-409.
    48. Godge MR, Purkayastha A, Dasgupta I, Kumar PP. Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Rep, 2008, 27: 209-219.
    49. Hahn C, Strittmatter G. Pathogen-defense gene prp1-1 from potato encodes an auxin responsive glutathione S-transferase. European Journal of Biochemistry, 1994, 226: 619-626.
    50. Hammond-Kosack KE, Parker JE. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol, 2003, 14: 177-193.
    51. Hammond-Kosack KE, Tang S, Harrison K, Jones JDG. The tomato Cf-9 disease resistance gene functions in tobacco and potato to confer responsiveness to the fungal avirulence gene product Avr9. Plant Cell, 1998, 10: 1251-1266.
    52. Hayward A, Padmanabhan M, Dinesh-Kumar SP.Virus-induced gene silencing in Nicotiana benthamiana and other plant species. Methods Mol Biol, 2011, 678: 55-63.
    53. Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C. Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol, 2005, 38: 2155-2164.
    54. Holzberg S, Brosio P, Gross C, Pogue GP. Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J, 2002, 30(3):315-327.
    55. Huang C C, Groot T, Meijer-Dekens F, Niks RE, Lindhout P. The resistance to powderymildew (Oidium lycopersici) in Lycopersicon species is mainly associated with hypersensitive responses. European Journal of Plant Pathology, 1998, 104: 399-407.
    56. Huang CC, Cui YY, Weng CR, Zabel P and Lindhout P. Development of diagnostic markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor. Appl. Genet, 2000a, 101: 918-924.
    57. Huang CC, van der Putte PM, Haanstra-van der Meer JG, Meijer-Dekens F and Lindhout P. Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accessions: Evidence for close linkage of two Ol-genes on chromosome 6. Heredity, 2000b, 85: 511-520.
    58. Inuma T, Khodaparast SA, Takamatsu S. Multilocus phylogenetic analyses within Blumeria graminis, a powdery mildew fungus of cereals. Mol Phylogenet Evol, 2007, 44: 741-751.
    59. Jankovics T, Bai Y, Kovács GM, Bardin M, Nicot PC, Toyoda H, Matsuda Y, Niks RE, Kiss L. Oidium neolycopersici: intraspecific variability inferred from amplified fragment length polymorphism analysis and relationship with closely related powdery mildew fungi infecting various plant species. Phytopathology, 2008, 98(5): 529-540.
    60. Jia Y, McAdams SA, Bryan GT, Hershey HP and Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000, 19: 4004-4014.
    61. Johal GS, Briggs SP. Reductase activity encoded by the Hm1 disease resistance gene in maize. Science, 1992, 258 (5084): 985-987.
    62. John M W, Simon P B.Effect of humidity on development of tomato powdery mildew (Oidium lycopersici) in the glasshouse. European Journal of Plant Pathology, 2000(106): 395-397.
    63. Jones H, Whipps JM and Guu SJ. The tomato powdery mildew fungus Oidium neolycopersici, Mol Plant Pathol, 2001, 2(6): 303-309.
    64. Kang NJ. Inhibition of powdery mildew development and activation of antioxidant enzymes by induction of oxidative stress with foliar application of a mixture of riboflavin and methionine in cucumber. Scientia Horticulturae, 2008, 118(3): 181-188.
    65. Kashimoto K, Matsuda Y, Matsutani K, Sameshima T, Kakutani K, Nonomura T, Okada K, Kusakari S, Nakata K, Takamatsu S, Toyoda H. Morphological and molecular characterization for aJapanese isolate of tomato powdery mildew Oidium neolycopersici and its host range. J Gen Plant Pathol, 2003, 69: 176-185.
    66. Kiss L, Cook RTA, Saenz GS, Cunnington JH, Takamatsu S, Pascoe I, Bardin M, Nicot PC, Sato Y, Rossman Y. Identification of two powdery mildew fungi, Oidium neolycopersici sp. Nov. and O. lycopersici, infecting tomato in different parts of the world. Mycol Res, 2001, 105(6): 684-697.
    67. Kiss L, Takamatsu S, Cunnington JH. Molecular identification of Oidium neolycopersici asthe casual agent of the recent tomato powdery mildew epidemics in North America. Plant Dis, 2005, 89: 491-496.
    68. Kjemtrup S, Sampson KS, Peele CG, Nguyen LV, Con-kling MA. Gene silencing from plant DNA carried by a geminivirus. Plant J, 1998, 14(1): 91-100.
    69. Kumagai MH, Donson J, Dellacioppa G, Harvey D, Hanley K, Grill LK.Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci. USA 1995; 92: 1679-1683.
    70. Lamb C, Dixon R A. The oxidative burst in plant disease re-sistance. Annu Rev Palant Mol Biol, 1997, 48: 251-275.
    71. Lebeda A, MieslerováB. Variability in pathogenicity of Oidium neolycopersici on Lycopersicon species. Z Pflanzenkr Pflanzenschutz, 2002, 109: 129-141.
    72. Lebeda A, MieslerováB. Identification, occurrence and host range of tomato powdery mildew (Oidium lycopersici) in the Czech Republic. Acta Phytopathol Hun, 1999, 34: 13-25.
    73. Li C. Transcriptional, microscopic and macroscopic investigations into monogenic and polygenic interactions of tomato and powdery mildew. PhD thesis, Wageningen Uinversity, the Netherlands. 2005, 128pp.
    74. Li CW, Bai YL, Jacobsen E, Visser R, Lindhout P, Bonnema G (2006) Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible, monogenic- and polygenic resistance responses are mainly in timing. Plant Mol Bio, 62: 127-140.
    75. Li CW, Bonnema G, Che D, Dong L, Lindhout P, Visser R, Bai Y. (2007) Biochemical and molecular mechanisms involved in monogenic resistance responses to tomato powdery mildew. MPMI, 20: 1161-1172.
    76. Li CW, Pei DL, Wang WJ, Ma YS, Wang L, Wang F. First report of powdery mildew caused by Oidium neolycopersici on tomato in China. Plant disease, 2008, 92 (9): 1370.
    77. Lico C, Chen Q, Santi L. Viral vectors for production of recombinant proteins in plants. Journal of Cellular Physiology, 2008, 216(2): 366-377.
    78. Lieberherr D, Wagner U, Dubuis PH, Metraux JP, Mauch F. The Rapid Induction of Glutathione S-Transferases AtGSTF2 and AtGSTF6 by Avirulent Pseudomonas syringae is the Result of Combined Salicylic Acid and Ethylene Signaling. Plant Cell Physiol, 2003, 44(7): 750-757.
    79. Lindhout P, Pet G, van der Beek H. Screening wild Lycopersicon species for resistance to powdery mildew (Oidium lycopersicum). Euphytica, 1994a, 72: 43-49.
    80. Lindhout P, van der Beek H. and Pet G. Wild Lycopersicon species as sources for resistance to powdery mildew (Oidium lycopersicum): Mapping of resistance gene Ol-1 on chromosome 6 of Lycopersicon hirsutum. Acta Hortic, 1994b, 376: 387-394.
    81. Liu F, Wei FF, Wang L, Liu H, Zhu XP, Liang YC. Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum.Physiological and Molecular Plant Pathology, 2010, 74(5-6):330-336.
    82. Liu SY, Liu W, Takamatsu S, Li Y. Powdery mildew on tomato caused by Oidium neolycopersici in Changchun in China. New Disease Reports, 2008, 16: 41.
    83. Liu Y, Schiff M, Marathe R and Dinesh-Kumar SP. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance response to tobacco mosaic virus. Plant J, 2002a, 30: 419-415.
    84. Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP. Autophagy regulates programmed cell death during the plant innate immune response. Cell, 2005, 121: 567-577.
    85. Liu Y, Schiff M, Serino G, Deng XW and Dinesh-Kumar SP. Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene mediated resistance response to tobacco mosaic virus. Plant Cell, 2002b, 14: 1483-1496.
    86. Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, Rathjen JP, Bendahmane A, Day L, Baulcombe DC. High throughput virus-induced gene silencing implicates heat shock protein
    90 in plant disease resistance. EMBO J, 2003, 22: 5690-5699.
    87. Mackey D, Holt BF, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 2002, 108: 743-754.
    88. Mandal S, Mitra A. Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiological and Molecular Plant Pathology, 2007, 71(4-6): 201-209.
    89. Mandar RG, Arunima P, Indranil D, Prakash PK. Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Rep, 2008, 27: 209-219.
    90. Marcei T,Rene F K,Ronald H A P. The genetics of RNA silencing. Annu Rev Genet, 2002, 36: 489-519.
    91. Matsuda Y, Kashimoto K, Takikawa Y, Aikami R, Nonomura T, Toyoda H. Occurrence of new powdery mildew on greenhouse tomato cultivars. J. Gen. Plant Pathol, 2001, 67: 294-298.
    92. Matsuda Y, Mori Y, Sakano Y, Nishida M, Tarumoto K, Nonomura T, Nishimura H, Kusakari S, Toyoda H. Screening of wild Lycopersicon species for resistance to Japanese isolate of tomato powdery mildew Oidium neolycopersici. Breed Sci, 2005, 55: 355-360.
    93. Mauch F, Dudler R. Differential induction of distinct glutathione S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiology, 1993, 102: 1193-1201.
    94. MieslerováB, Lebeda A. Taxonomy, distribution and biology of the tomato powdery mildew (Oidium lycopersici). Z Pflanzenkr Pflanzenschutz, 1999, 106: 140-157.
    95. Nagamatsu A, Masuta C, Senda M. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnol J, 2007, 5(6):778-790.
    96. Niks RE and Rubiales D. Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica, 2002, 124: 201-216.
    97. Park MJ, Jee HJ, Kim JH, Shin HD. First confirmed report of tomato powdery mildew caused by Oidium neolycopersici in Korea. New Disease Reports, 2009, 19: 65.
    98. Pushpalatha HG, Mythrashree SR, Shetty R, Geetha NP, Sharathchandra RG, Amruthesh KN, Shetty HS. Ability of vitamins to induce downy mildew disease resistance and growth promotion in pearl millet. Crop Protection, 2007, 26(1): 1674-1681.
    99. Qin GZ,Tian SP,Liu HB. Polyphenol oxidase,peroxidase and phenylalanine ammonium lyase induced in postharvest peach fruits by inoculation with Pichia membrane faciens or Rhizopus stolonifer. Agricultural Sciences in China, 2002, 1(12): 1370-1375.
    100.Ratcliff F, Martin-Hernandez, AM, Baulcombe DC. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J, 2001, 25: 237-245.
    101.Rick CM, Biosystematic studies in Lycopersicon and closely related species of Solanun. 1979, pp. 667-677 in: Hawkes JC, Lester RN and Skelding AD (eds), The Biology and Taxonomy of Solanaceae. Acadmic Press, New York
    102.Rooney HC, Van' t Klooster JW, Van der Hoorn RA, Joosten MH, Jones JD, De Wit PJ. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science, 2005, 308: 1783-1786.
    103.Rowland O, Ludwig AA, Merrick CJ, Baillieul F, Tracy FE, Durrant WE, Fritz-Laylin L, Nekrasov V, Sjolander K, Yoshioka H, Jones JD. Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato.Plant Cell, 2005, 17: 295-310.
    104.Ruiz MT, Voinnet O, Baulcombe DC. Initiation and Maintenance of Virus-Induced Gene Silencing, Plant Cell, 1998, 10: 937-946.
    105.Saikia R, Yadav M, Varghese S, Singh BP, Gogoi DK, Kumar R, Arora DK. Role of riboflavin in induced resistance against Fusarium wilt and charcoal rot diseases of chickpea. The Plant Pathology Journal, 2006, 22(4):339-347.
    106.Salmon E S. A monograph of the Erys iphaceae. Memoirs of the Torrey Botanical Club, 1900, 9: 1-292.
    107.Schaaf J, Walter MH and Hess D. Primary metabolism in plant defense. Regulation of a bean malic enzyme gene promoter in transgenic tobacco by developmental and environmental cues. Plant Physiol, 1995, 108: 949-960.
    108.Seifi A, Kaloshian I, Vossen J, Che D, Bhattarai KK, Fan J, Naher Z, Goverse A, Tjallingii WF, Lindhout P, Visser RG, Bai Y. Linked, if Not the Same, Mi-1 Homologues Confer Resistance to Tomato Powdery Mildew and Root-Knot Nematodes. Mol Plant Microbe Interact, 2011, 24(4): 441-450.
    109.Senthil-Kumar M, Hema R, Anand A. A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol, 2007, 176(4): 782-791.
    110.Shiba M, Kondo K, Miki E, Yamaji H, Morota T, Terabayashi S, Takeda S, Sasaki H, Miyamoto K, Aburada M. Identification of medicinal Atractylodes based on ITS sequences of nrDNA. Biol Pharm Bull, 2006, 29(2): 315-320.
    111.Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA, 2002, 99: 11640-11645.
    112.Spooner DM, Peralta IE, Knapp S. Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes Solanum L. section Lycopersicon (Mill.) Wettst. Taxon, 2005, 54: 43-61.
    113.Sutherland MW. The generation of oxygen radicals during host plant responses to infection. Physiol Mol Plant Pathol, 1991, 39: 79-93
    114.Taheri P, Hofte M. Riboflavin induces resistance in rice against rhizoctonia sheath diseases by activating signal transduction pathways leading to upregulation of rice cationic peroxidase and formation of lignin as a structural barrier. Communication in Agricutural and Applied Biological Sciences, 2006, 71(1): 255-258.
    115.Taheri P, Tatighi S. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology, 2010, 167(3): 201-208.
    116.Takahashi A, Casais C, Ichimura K, Shirasu K. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A, 2003, 100(20): 11777-11782.
    117.Takamatsu S. Phylogeny and evolution of the powdery mildew fungi (Ersiphales, Asomycota) inferred from nuclear ribosomal DNA sequences. Mycroscience, 2004, 45: 147-157.
    118.Takken FL, Luderer R, Gabri?ls SH, Westerink N, Lu R, de Wit PJ, Joosten MH.A functional cloning strategy, based on a binary PVX-expression vector, to isolate HR-inducing cDNAs of plant pathogens. Plant J, 2000, 24(2): 275-283.
    119.Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y and Martin GB. Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science, 1996, 274: 2060-2063.
    120.Tiemann K, InzéD, Van Montagu M and Barz W. Pterocarpan phytoalexin biosynthesis in elicitor-challenged chickpea (Cicer arietinum L.) cell cultures: Purification, characterization and cDNA cloning of NADPH isoflavone oxydoreductase. Eur J Biochem, 1991, 200: 751-757.
    121.Tzeng DD-S, Tzeng HC, Chen RS, Cheng AH, Tsai CC, Chen CW, Hwang TC, Yeh Y,James ED. The use of MR formulation as a novel and environmentally safe photodynamic fungicide for the control of powdery mildews. Crop Protection, 1996, 15(4): 341-347. 122.Upreti KK, Das M, Khanna SK. Role of antioxidants and scavengers on argemone oil-induced toxicity in rats. Archives of Environmental Contamina and Toxicology, 1991, 20:531-537.
    123.van Kammen A. Virus-induced gene silencing in infected and transgenic plants. Trends Plant Sci, 1997, 2: 409-411.
    124.Voinnet O. RNA silencing as a plant immune system against viruses. Trends Genet, 2001, 17 (8): 449-459.
    125.Wagner U, Edwards R, Dixon DP, Mauch F. Probing the diversity of the Arabidopsis glutathione S-transferase family. Plant Molecular Biology, 2002, 49: 515-532.
    126.Wege S, Scholz A, Gleissberg S, Becker A. Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants. Ann.Bot (Lond), 2007, 100(3): 641-649.
    127.Whetten R and Sederoff R (1995) Lignin biosynthesis. Plant Cell, 7: 1001-1013.
    128.Whipps JM, Budge SP, Fenlon JS. Characteristics and host range of tomato powdery mildew. Plant Pathol, 1998, 47: 36-48.
    129.Wojtaszek P. Oxidative burst: An early plant response to pathogen infection. Biochem, 1997,322: 681-683.
    130.Zabihollah A-S, Soraya CF, David DV, Hofte M. Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response. Physiological and Molecular Plant Pathology, 2010, 75(1-2): 23-29.
    131.Zhang Y, Li J, Pu H, Jin J, Zhang X, Chen M, Wang B, Han C, Yu J, Li D:Development of Tobacco necrosis virus A as a vector for efficient and stable expression of FMDV VP1 peptides. Plant Biotechnol J, 2010, 8: 506-523.
    132.Zhang SJ, Yang X, Sun MW, Sun F, Deng S, Dong HS. Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. Journal of Integrative Plant Biology, 2009; 51(2): 167-174.
    133.Zhu X, Dinesh-Kumar SP. Virus-induced gene silencing as a tool to identify host genes affecting viral pathogenicity. Methods Mol Biol, 2008, 451(5): 641-648 .
    134.高俊凤.植物生理实验技术.西安:世界图书出版公司, 2000.
    135.郝再彬.植物生理学实验.哈尔滨:哈尔滨工业大学出版社, 2004, 24-38.
    136.马红珍,裴冬丽,耿慧霞,王来,王文静,李成伟.病毒诱导番茄的基因沉默.西北植物学报, 2009, 29(8): 1531-1537.
    137.王爱国,罗光华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990, 26 (6): 55-57.
    138.张志良.植物生理学实验指导.北京:高等教育出版社, 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700