用户名: 密码: 验证码:
山地城市污水管道气体爆炸风险评估及预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市规模的发展和人们环境意识的加强,政府和社会对市政环境领域的关注和投入越来越大,建立一套有效的污水管道有害气体监测与预警系统既是城市环境监测的重要内容,也是市政设施现代化建设的必然要求。
     本文在国家水体污染控制与治理重大专项“重庆主城排水系统安全与城市面源污染控制技术研究与综合示范(2008ZX07315-001)”的资助下,对重庆市江北区、沙坪坝区等典型区域开展污水管道有害气体成分分析、积聚规律及溯源研究,构建污水管道多元气体二维湍流爆炸模型并进行爆炸过程的数值模拟研究,研制污水管道气体安全阈值研究装置进行气体爆炸试验,分析污水管道爆炸成因与气体爆炸极限,建立了污水管道气体爆炸风险评估模型,通过技术研究和综合示范,建立了山地城市污水管道有害气体监测与预警系统,对保障污水管道系统安全运行具有实用价值和积极意义。取得的主要成果有:
     ①根据密闭空间气体燃烧爆炸过程的特点,建立了山地城市污水管道气体爆炸的基本物理模型和数学模型。构建了能量方程、动量方程、质量方程、状态方程、湍流方程、组分方程、化学反应速率方程,用Fluent6.3软件,模拟爆炸管径为300mm、CH_4浓度依次为0.8%、2%、5%、8%、9.5%、10%的爆炸试验。试验发现,CH_4浓度为8%、9.5%和10%时,点火端压力比CH_4浓度为5%时出现了明显的陡增。惰性气体CO_2的加入,降低了混合气体的反应活性,导致点火延迟时间增大,燃烧反应速度随之减小。
     ②搭建了污水管道气体爆炸模拟试验系统,对污水管道多元气体二维湍流爆炸模型进行验证和校对。设计实现了由配气系统、爆炸腔、点火装置、监测系统四个部分所构成的污水管道气体安全阈值研究装置。爆炸腔为内径25mm长0.5m透明圆胶管。爆炸试验过程中,CH_4浓度为4.4%—5.9%、H_2S浓度为0—0.02%、CO_2浓度为0.03%—0.8%;O_2浓度为20.9%;N2浓度为72.93%—73.55%。试验结果表明,5.5%的CH_4比5.6%的CH_4的爆炸波峰出现早,CH_4浓度小于5.5%均不能产生爆炸。进行L_(25)(5~6)正交试验表明,当CH_4浓度为5.6%时,2%浓度的CO_2可以抑制爆炸的发生;当CH_4浓度为5.7%、5.8%时,2%浓度的CO_2对爆炸制作用不明显。当CH_4浓度超过5.5%时,0.01%浓度的H_2S对CH_4爆炸温度波峰的出现有稍微的促进作用,使得爆炸温度峰值出现稍微偏高和提前。H_2S对污水管道安全的影响主要表现在它的毒性方面,微量浓度的H_2S对CH_4爆炸阈值的影响很小,可以忽略不计。
     ③通过数值模拟和污水管道气体安全阈值研究装置系统试验,确定污水管道CH_4爆炸阈值为5.5%。污水管道气体安全阈值研究装置特点如下:配气精确,各气体成分和含量能精确配制成预定的要求;能精确确定爆炸前后温度、压力变化情况;能精确确定多元混合气体爆炸下限值。
     ④阐述山地城市污水管道气体爆炸风险评估的必要性及其特点,提出了基于风险矩阵的污水管道气体爆炸风险评估模型。风险矩阵由风险因素、风险概率、风险影响、风险级别、Borda序值和风险权重组成。以江北区绿云尚都国际时装城3号井为例构建风险矩阵,计算出甲烷、二氧化碳、硫化氢、温度、区域环境和检查井位置6个风险因素的风险权重分别为0.4295、0.0246、0.2895、0.0379、0.1435和0.0750。对重庆主城典型区域污水管道进行了风险评估,并提出了管理决策。
     ⑤构建了基于GIS和GPRS技术的山地城市污水管道有害气体监测与预警管理信息系统,污水管道气体爆炸预警值设为两级,低位预警30%LEL,高位报警50%LEL。监测探头设在距离窨井盖下0.3-0.5m处。该系统经示范运行,数据采集与传输达到设计要求,系统运行稳定。
Along with the development of the scale of cities, the enhancement of theawareness of environment, the more and more antention and input of the governmentand societies, setting up a set of effective sewers harmful gas monitoring and earlywarning system is not only an important content of the city environment monitoring butalso a necessity requirement of the modern construction of the municipal establishment.
     The paper is sponsored by national important water pollution control andmanagement item of Chongqing main city drainage system safey and city non-pointsource pollution control technology research and comprehensive demonstration(2008ZX07315-001).This paper finished the component analysis and the reason studyof accumulation rule of sewers harmful gas of main typical area of Chongqing JiangbeiDistrict and Shapingba District. Built a model of sewers’ two dimensional turbulence ofmultiple gas and studied on Numerical Simulation of the explosion. Developed thesewers gas safety threshold research facility to conduct a series of explosion tests, toanaylse the explosion reason of the sewers gas and to decide the gas explosion limit.Found the sewers gas explosion risk evaluation model. By means of technique reachand comprehensive demonstration, set up the mountain city sewers harmful gasmonitoring and early warning system. It has the practical and positive meaning toensure the safety running of sewers. The main achievements include:
     ①In accordance with the characteristic of gas explosion in confined space,builtthe basic physical and maths model of the mountain city sewers gas explosion.Constructed a set of energy equation、momentum equation、mass equation、stateequation、 turbulence equation、 component equation and chemical reation rateequation.Using the Fluent6.3software,simulated many explosion tests with CH_4concentration on0.8%、2%、5%、8%、9.5%、10%in the pipe diameter of300mm.Testsfound that when the CH_4concentration on8%、9.5%and10%,the ignition end pressureis steep than that of the CH_4concentration on5%. Along with the adding of inertia CO_2,reduced the reaction activity of mixture gas, leading to the increase of the ignition delaytime and the minishment of the combustion reaction velocity.
     ②Constructed the sewers gas explosion simulation experiment system,which couldchecking the sewers’ two dimensional turbulence module of multiple gas.The facilityhas four parts, gas distribution system, the explosion cavity, ignition device and monitoring system. The explosion cavity is a transparent hose with the inner diameter of25mm and0.5m long.During the explosion experiment, the oncentration of CH_4is from4.4%to5.9%.The concentration of H_2S is0to0.02%. The concentration of CO_2is from0.03%to0.8%. The concentration of O_2is20.9%.The oncentration of N2isfrom72.93%to73.55%. The test results show that CH_4with the oncentration of5.5%has theexplosion wave appeared earlier than that of5.6%.CH_4with the oncentration of5.5%can not produce an explosion。The orthogonal test L_(25)(5~6) show that when theoncentration of CH_4is5.6%,CO_2with the oncentration of2%can inhibit theoccurrence of explosion,while with the oncentration of CH_4is5.7%and5.8%, CO_2withthe oncentration of2%has no obviously effect.When the oncentration of CH_4is over5.5%,H_2S with the oncentration of0.01%can promot the temperature of explosionwave slightly,with the explosion temperature peak value appeared a little on the highside and advance.H_2S is a kind of toxicity gas in sewers. With trace concentration,it hasnegligible effect on the explosion threshold of CH_4.
     ③By means of numerical simulation and the system test through the sewers gassafety threshhold study facility,confirmed the explosion threshhold of CH_4in sewers is5.5%.The facility has such characteristics as gas distribution accurately.The gascomposition and content can be precisely formulated into a predeterminedrequirement.Can exactly determine the explosion temperature pressure changes beforeand after and can accurately determine the mixed gas explosion lower limit.
     ④Elaborate the necessary and the characteristic effect of risk assessment onMountain City sewers gas explosion.Promote the risk assessment module on MountainCity sewers gas explosion based on risk matrix. The risk matrix is composed of riskfactors, risk probability, risk effect, risk level、 Borda sequence value and riskweight.With the example of Luyun Shangdu international fashion town No.3inspectionwell,caculated the risk weight of0.4295、0.0246、0.2895、0.0379、0.1435and0.0750,which is respectively on behalf of risk factors of CH_4,CO_2,H_2S,temperature,regional enviorment and inspection well position. Done the riskassessment to sewers of Chongqing typical area and proposed a series of managementdecision.
     ⑤Set up the mountain city sewers harmful gas monitoring and early warninginformation system based on the technology of GIS and GPRS.The sewers explosionthreshhold has the low Level of30%LEL and the other high level of50%LEL.Monitoring probe is located under the manhole cover in the distance of0.3-0.5m.With the demonstrative field trial operation in Chongqing Jiangbei District,the system’s dataacquisition and transmission meet the design requirements and the terminal equipmentruns normally and with stable situation.
引文
[1] Cynthia Rosenzweig, David C. Major, Kate Demong,Christina Stanton, Radley Horton,Melissa Stults. Managing climate change risks in New York City’s water system: assessmentand adaptation planning[J]. Mitig Adapt Strat Glob Change,2007,12:1391~1409.
    [2] Emanuel KA. Increasing destructiveness of tropical cyclones over the past30years[J]. Nature,2005,436:686~688.
    [3] Clean Air Partnership, The (Updated2006) Adapting to Climate Change in Toronto. TheClean Air Partnership.Available via DIALOG:http://www.cleanairpartnership.org/climate_change.php. Cited8April2006.
    [4] London Climate Change Partnership (LCCP)(2002) London’s Warming: The impacts ofclimate change on London. London Climate Change Partnership. Available via DIALOG.http://www.london.gov.uk/gla/publications/environment.jsp#climate. Cited6April2006.
    [5]谢振辉,王秀芳,黄艳,龚兵.下水道爆炸事故的原因及对策[J].中国给水排水,1997,13(4):44~45.
    [6]李秋荣,宋月,李杰军.污水井频发中毒事件引发的思考[J].职业与健康,2008,24(3):278~279.
    [7] http://www.semp.us/publications/biot_reader.php?BiotID=356
    [8]龙灏,唐崭.重庆城市形态发展演变研究——一个山地城市的典型样本[J].室内设计,2011,5:47~51.
    [9]马念,郝曼.山地城市排水管道的设计[J].中国给水排水,2007,23(8):30~34.
    [10]陈述彭.山·水与城市——西欧几个国际大都市的历史经验与教训[J].山地学报,2002,20(6):641~645.
    [11]伊口田.排污、防病和减灾于一体的伦敦下水道[J].中国减灾,2011,8:14~15.
    [12] Viviana Re, Seynabou Cissé Faye, Abdoulaye Faye, Serigne Faye and Cheikh Becaye Gaye,et al. Water quality decline in coastal aquifers under anthropic pressure: the case of asuburban area of Dakar (Senegal)[J].Environmental Monitoring and Assessment,2011,172:605-622.
    [13] Canadian Department of Natural Resources (CDNR)(updated2010). Iqaluit's SustainableSubdivision. http://www.nrcan.gc.ca/earth-sciences/climate-change/community-adaptation/case-study/711.
    [14] Wright, Kenneth R. Civil Engineering, Legal, and Political Collaboration: Solving Denver’sDrainage Infrastructure Dilemma[J].Leadership&Management in Engineering,2008,8(4),p301~305.
    [15] Fuchs. Development and implementation of a real-time control strategy for the sewer systemof the city of Vienna[J]. Water Science and Technology,2005,52(5):187~194.
    [16] María Jesús Martínez Buenoa, Maria Dolores Hernando. Pilot survey of chemicalcontaminants from industrial and human activities in river waters of Spain[J]. InternationalJournal of Environmental Analytical Chemistry,2010,90(3-6):321~334.
    [17] A.K. Sharma, S. Gray, C. Diaper, P. Liston and C. Howe. Assessing integrated watermanagement options for urban developments–Canberra case study[J]. Urban WaterJournal,2008,5(2):147~159.
    [18]邹声文,杨伶.流入河湖的每一滴水都经过处理”——瑞士水资源保护见闻.新华网日内瓦7月16日电,2007,http://news.xinhuanet.com/society/2007-07/16/content_6385297.htm.
    [19] Dong-Bin Huang,Bader Hans-Peter,Scheidegger Ruth,Schertenleib Roland,Gujer Willi.Confronting limitations: New solutions required for urban watermanagement in Kunming City.Journal of Environmental Management[J],2007,84(1):49-61.
    [20]赵培等.城市中有毒有害气体对公共安全的影响研究[J].安全环境与工程,2011,18(3):98~101.
    [21]文平,杜元龙.硫化氢气体的危害性及其检测方法[J].材料保护,1996,29(12):17~18.
    [22]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996:5~45.
    [23] Zabetakis MG.Flammablility characteristics of combustible gases and vapors [J]. US Bureauof Mines Bullet,1965,33(2):110~125.
    [24]崔克清.安全工程燃烧爆炸理论与技术(第1版)[M].北京:中国计量出版社,2005.59~60.
    [25]王新,陈网桦,都振华.初始温度和初始压力对气体爆轰参数影响的研究[J].中国安全科学学报,2010,20(2):75~79.
    [26]刘向军,陈昊.初始压力对矿井瓦斯爆炸过程影响的理论研究[J].矿冶,2006,15(1):5~9.
    [27]陈志华,范宝春,李鸿志.管内均相湍流燃烧加速的数值模拟[J].爆炸与冲击,2003,23(4):337~342.
    [28]杨宏伟,范宝春,李鸿志.障碍物和管壁导致火焰加速的三维数值模拟[J].爆炸与冲击,200l,2l (4):259~260.
    [29]范宝春,姜孝海,谢波.障碍物导致甲烷一氧气爆炸的三维数值模拟[J].煤炭学报,2002,27(4):27l~273.
    [30] R. R. Sayers Source. Gas Hazards in Sewers and sewerage-treatment plants [J]. Public HealthReports (1896-1970)[R],1997(49):145-155.
    [31]苏有勇.沼气发酵检测技术[M].北京:冶金工业出版社,2011.
    [32]梁春利,李芳.管道内可燃气体爆炸研究进展[J].化工装备技术,2006,27(2):38~64.
    [33] Fairlie R. A Numerical Study of Loading on Plate Structures due to Transient CompressibleFlows [J]. Appl Numer Math,2000,34:381~403.
    [34] Moen I O, Lee J H S. Pressure Development Due to Turbulent Flame Propagation in Large-Scale Methane-Air Explosions[J]. Combust Flame,1982,47:31~52.
    [35] Nettleton M A (1997). Gaseous detonations[M]. London, New York: Chapman and Hall,1997.
    [36] Christoph K, Hans F. Investigation of Deflagrations and Detonations in Pipes and FlameArresters by High-Speed Framing [J]. J Loss Prev Process Ind,2004,17:43~50.
    [37]邓军,吴晓春,程超.CH4、CO、C2H4多元可燃气体爆炸的实验研究[J].煤矿现代化,2007,80(5):63~65.
    [38]王华,葛岭梅,邓军.惰性气体抑制矿井瓦斯爆炸的实验研究[J].矿业安全与环保,2008,35(1):4~7.
    [39]谢东.模糊信息处理及应用[M].北京:科学出版社,2003.
    [40]桂晓宏,林伯泉.火焰速度与超压关系[J].淮南工业学院学报,1999,19(4):14~18.
    [41]杨明增,李拴保,唐慧林.安全风险评估模型综述[J].河南教育学院学报(自然科学版),2010,19(4):6~8.
    [42]黄锋,杨乃莲.欧盟开展风险评估活动启示录[J].现代职业安全,2009,3:58-59.
    [43] Ngo, E. B. When Disasters and Age Collide: Reviewing Vulnerability of theElderly[J].Natural HmIds Review:2001,2(2):80-89.
    [44] Cutter.S.L.The Vulnerability of Science and the Science of Vul.nerability[J].Annals ofthe Association of American Geographers,2003,93(1):1~12.
    [45] Renn,Ortwin.Concept of Risk:A Classification.In Social Theories of Risk[M].Westport,cT:Praeger,2003.
    [46] Kasperson,Roger E.,K.David Pikawka.Societal Response to Hazards and Major HazardEvents: Comparing Natural and Technological Hazards[J]. Public AdministrationReview.1985,45:7~18.
    [47]何川等.国外灾害风险评估模型对比分析.中国安全生产科学技术[J].2010,6(5):148~153.
    [48] Romano P, Lorenzo E. Control of industrial discharges into the sewerage system [R].22ndInternational Water Services Congress and Exhibition, Aug18-Sep241999.
    [49] A Christia-Lotter, C Bartoli, M D Piercecchi-Marti, D Demory, A L Pelissier-Alicot, ASanvoisin, G Leonetti.Fatal occupational inhalation of hydrogen sulfide[J]. Forensic ScienceInternational,2007,169:206~209.
    [50] Blake, Bob.BRIEF: County workers suspended: Men lacked safety equipment, were hurt insewer, Lima News, The (OH), Jul30,2009
    [51]王军华.北京将装备井下有毒气体监测仪,可避免作业伤害[EB/OL].http://news.sina.com.cn/c/2004-08-24/14173481901s.shtml,2004-8-24/2012-4-5.
    [52]南方网讯.广州多了一道安全闸,率先开展下水道气体监测[EB/OL]. http://www. southcn.com/news/gdnews/gdtodayimportant/200305090142.htm,2003-05-09/2012-04-05.
    [53]范兵,陈虹.重庆市南岸区下水道及化粪池气体安全监控预警系统建设纪实[J].市容环卫,2006-6,33~34.
    [54]广州市城市排水监测站,广州市城市排水监测站关于开展下水道可燃易爆有毒有害气体监测情况介绍. http://www.gzcpj.org.cn/psjc1.asp.
    [55]杨静,梁伟臻,孟庆强.城市下水道可燃有毒气体的监测方法[J].中国给水排水,2005,21(1):89-90.
    [56]包亮,王里奥,陈萌,蒋良伟.基于GPRS的市政下水道气体安全监测预警系统[J].中国给水排水,2009,25(15):40~43.
    [57]废水中咪唑烷的测定气相色谱法.GB21523—2008[M].北京:中国环境科学出版社,2008.
    [58]黄君礼.水分析化学[M].北京:中国建筑工业出版社,2008.
    [59]丁维新,蔡祖聪.温度对甲烷产生和氧化的影响[J].应用生态学报,2003,14(4):604~608;
    [60]杨建设,尹爱国,杨孝军,钟丽霞.缺氧环境下H2S的产生与防除问题[J].水土保持研究,2005,12(4):85~87.
    [61]张小里,刘海洪.硫酸盐还原菌生长规律的研究[J].西北大学学报(自然科学版),1999,29(5):397~402.
    [62]刘宏芳,许立铭,郑家焱.SRB生物膜与碳钢腐蚀的关系[J].中国腐蚀与防护学报,2000,20(1):4l~46.
    [63]杨建设,黄玉堂,吴楚施,蔡晓宜.温度和pH对硫酸盐还原菌活性的影响[J].茂名学院学报,2006,16(4):1~3.
    [64]赵爽.对产甲烷细菌的分析与研究[J].山西建筑,2009,35(28):167~168.
    [65]陶颖,陈晓晔,朱建良.活性污泥产酸发酵研究进展[J].生物技术,2011,21(3):94~97.
    [66]杨泗霖.防火与防爆(第1版)[M].北京:首都经济贸易大学出版社,2000.31~37.
    [67] Lindstedt R P, Sakthitharan V. Time Resolved Velocity and Turbulence Measurements inTurbulent Gaseous Explosions[J]. Combustion and Flame,1998,114(3~4):469~483.
    [68] Fairweather M, Hargraveg K, Ibrahims S, et al. Studies of Premixed Flame Propagation inExplosion Tubes[J]. Combustion and Flame,1999,116(4):504~518.
    [69] Patel S, Ibrahims S, Yehiama A,et al. Investigation of Premixed Turbulent Combustion in aSemi-Confined Explosion Chamber[J]. Experimental Thermal and Fluid Science,2003,27(4):355~361.
    [70] Paul R,Garvey P R,Lansdowne Z F.Risk matrix:An approach for identifying,assessing,and ranking program risks[J].Air Force Jourhal of Logistics,1998(25):16~19.
    [71] Lansdowne Z F,Woodward B S.Applying the Borda method[J].Air Force Journal ofLogistics,1996,20:27-29.
    [72] Saaty T L.The analytic hierarchy process[M].New York:McGraw-Hill Into,1980;
    [73]张弢,慕德俊,任帅,姚磊.一种基于风险矩阵法的信息安全风险评估模型[J].计算机工程与应用,2010,46(5):93~95.
    [74]李聪波,刘飞,谭显春,等.基于风险矩阵和模糊集的绿色制造实施风险评估方法[J].计算机集成制造系统,2010,16(1):209~214.
    [75] Troiani G. Effect of velocity inflow conditions on the stability of a CH4/air jet-flame[J].Combustion and Flame,2009,156(2):539~542.
    [76] Essen V M, Sepman A V, Mokhov A V, et al. Pressure dependence of no formation in laminarfuel-rich premixed CH4/air flames[J]. Combustion and Flame,2008,155(3):434~441.
    [77] Masri A R. Ibrahim S S. Experimental study of premixed flame propagation over various solidobstructions. Exptherm Fluid Sci,2000,21:109~116.
    [78] Oh K H. Kim H. Kim J B. A study on the obstacle-induced variation of the gas explosioncharacteristics. J Loss Prev Process Ind,2001,14:597~602.
    [79]梅稚平,肖扬,等.水电工程地下洞室有害气体成因及防治措施[J].隧道建设,2010,30(6):638~642.
    [80]包亮.城市下水道及化粪池可燃气体监控预警系统研制与应用[D].重庆:重庆大学,博士学位论文,2009.
    [81] Spencer A.U.,Nolland S.S.,Gottlieb L.J.Bathtub fire:an extraordinary burn injury[J].Burn CareRes.2006,27(1):97-98.
    [82]煤炭科技名词审定委员会.煤炭科技名词1996[M].北京:科学出版社,1997.
    [83]刘金艳.论排水系统中硫化氢气体来源危害及预防措施[J].内蒙古科技与经济,2008,24(178):123~125.
    [84] K.-H.Oh,H.Kim,J.-B.Kim,S.-E.Lee,A study on the obstacle-induced variationof the gas explosion characterisics.Journal of Loss Prevention in the Process Industries,200l,14:597~602
    [85]王华等.可燃性气体爆炸研究现状及发展方向[J].矿业安全与环保,2008,35(3):79~82.
    [86]苏健成.我国城市地下空间易燃有毒气体在线监测现状及建议[J].仪器仪表与分析检测,2006,(2):44~46.
    [87]温汝俊等.重庆市主城排水系统及污水处理方案的比较[J].重庆大学学报(自然科学版),2001,24(1):32~35.
    [88]罗荣祥.浅谈山地城市污水管网改造设计[J].给水排水,2009,35(8):108~113.
    [89] M·Q·艾欧德特等.竖直平板嵌入非Darcy多孔介质时数值研究流过平板的不稳定MHD自然对流中的Dufour和Soret效应[J].应用数学和力学.2012,33(2):195~208.
    [90]胡非.湍流、间歇性与大气边界层[M].北京:科学出版社,1995.
    [91]李进良,李承曦,胡仁喜等.精通FLUENT6.3流场分析[M].北京:化学工业出版社,2009.10.
    [92]李成兵,吴国栋,周宁,罗勇. N2/CO2/H2O抑制甲烷燃烧数值分析[J].中国科学技术大学学报,2010,40(3):288~293.
    [93]李生娟等.气体爆炸研究现状及发展趋势[J].化工装备技术,2002,23(6):15~19.
    [94]吴九如.下水道硫化氢产生的原因及施工中的监测[J].科技资讯,2011,(2):120~122.
    [95]张维兰,禄彤,贺媛媛.可燃气体检测报警器检定用标准物质的选择[J].化学分析计量,2007,16(4):72~75.
    [96]凯元,李宗芬.丙烷空气爆燃波的火焰面在直管道中的加速运动[J].爆炸与冲击,2000,20(2):137~142.
    [97]田兰等.化工安全技术[M].北京:化学工业出版社,1984,116~117.
    [98]孙世荣,郑时选. NY/T1700-2009沼气中甲烷和二氧化碳的测定气相色谱法[M].北京:中国农业出版社,2009.
    [99]方子江.排水管道及泵站中有毒有害易燃易爆气体产生及预防[J].天津建设科技,2004(6):45~46.
    [100]鲁晓青.混合气体爆炸的条件与可能性研究[J].工业安全与环保,2004,30(3):33~36.
    [101]周邦智等.煤气-空气多元爆炸性混合气体爆炸反应极限范围的研究[J].青海师范大学学报,2003(4):46~48.
    [102]刘安邦.气体爆炸和防止爆炸的措施[J].电气防爆,2004(4):34~37.
    [103]王淑兰等.工业多元混合气体爆炸极限计算[J].化工装备技术,2000,21(6):28~30.
    [104]胡耀元,周邦智等. H2,CH4,CO多元爆炸性混合气体的爆炸极限及其容器因素[J].中国科学(B辑),2002,32(1):35~39.
    [105]胡双启,张景林.燃烧与爆炸[M].北京:兵器工业出版社,1992.
    [106]吴龙标,袁宏永.火灾探测与控制工程[M].合肥:中国科学技术大学,1999.
    [107]王海福,马顺山.防爆学原理[M].北京:北京理工大学出版社,2001.
    [108]范维澄,王清安等.火灾学简明教程[M].合肥:中国科学技术大学出版社,1995.
    [109]张国顺.燃烧爆炸危险与安全技术[M].北京:中国电力出版社,2003.
    [110] Zabetakis MG. Flammablility characteristics of combustible gases and vapors [J]. US Bureauof Mines Bullet,1965,33(2):110~125.
    [111] Peter N. Daniel B. Solution Adaptive CFD Simulation of Premixed Flame Propagation overVarious Solid Obstructions [J]. J Loss PrevProcess Ind,2002,15:189~197.
    [112] Huld T, Peter G, Stadtke H, et a1. Numerical Simulation of Explosion phenomena in IndustrialEnvimnments [J]. J Hazard Mater,1996,46:185~195.
    [113] Christoph K, Hans F. Investigation of Deflagrations and Detonations in Pipes and FlameArresters by High-Speed Framing [J]. J Loss Prev Process Ind,2004,17:43~50.
    [114] Maresh C M, Armstrong L E, Kavouras S A, et al. Physiological and psychological effectsassociated with high carbon dioxide levels in healthy men[J]. Aviat Space Environ Med,1997,68(1):41~50.
    [115]李景惠.化工安全技术基础[M].北京:化学工业出版社,1995.
    [116] Green.etal. Using the sewerage system main conduits for biological treatment[J]. WaterResearch,1985(8):1023-1028.
    [117] Leung D.H.W. Study of oxygen utilitation and dissolved organic removal in a senitary gravitysewer. M.phil.Dissertation, Hong Kong:The Hong Kong university of science and technology,2000.
    [118] Ozer A. etal. Substrate removal in long sewer lines[J]. Water Science and Technology,1995(7):120-125.
    [119] Leung D.H.W. etal. Removal of dissolved organic carbon in sanitary gravity sewer[J].Environment Engineery,2001(127):1-7.
    [120]王西俜等.利用下水管网系统净化城市污水的中试研究[J].应用与环境生物报,2000(3):254-256.
    [121]杨民和.微生物学[M].北京:科学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700