用户名: 密码: 验证码:
基于OMI卫星数据和数值模拟的中国大气SO_2浓度监测与排放量估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硫(Sulfur dioxide, SO2)作为大气中一种重要的痕量气体,是大气污染的主要成分之一,对大气环境和人体健康造成非常严重的影响。随着改革开放以来社会经济迅速发展,我国SO2排放量不断增加,至2005年全国S02排放总量为2549万吨,比2000年增加了约27%,总量居世界第一。为此,国家把SO2作为“十一五”期间大气污染减排的唯一约束性指标:至2010年S02排放比2005年减少10%。
     本文通过2005~2010年臭氧监测仪(OMI)卫星遥感数据分析我国大气S02时空分布特征,采用中尺度气象模式(WRF)和通用多尺度空气质量模式(CMAQ)对大气802进行模拟,分析了各地SO2的源汇关系,并提出基于遥感数据的S02排放量估算方法,以期为国家S02减排及污染控制提供理论依据和方法参考。
     本文主要研究工作和成果如下:
     (1) OMI/SO2数据获取与处理。对2005~2010年的OMI PBL SO2数据,剔除了太阳天顶角比较高,云量大的数据,通过大气质量因子(AMF)对SO2数据重新校正,计算出中国地区不同月份的大气S02平均浓度。通过与东亚酸沉降监测网(EANET)中国站点SO2浓度数据和重点城市空气污染指数(API)转换的浓度数据对比,卫星数据与地面监测数据具有一致的季节变化趋势和较好的相关性。
     (2)基于OMI数据分析中国大气S02浓度时空分布特征。由卫星数据分析,中国大气SO2分布具有明显的时空变化特征。空间分布上,全国SO2柱含量分布不均匀,东西部地区反差很大,东部地区的浓度明显高于西部地区,其中山西、河北、山东三省交界区域SO2浓度最高。季节变化上,东部地区季节变化明显,夏季浓度最低,冬季浓度最高;而西部地区季节变化幅度不大,但其变化趋势与东部地区相反,表现为夏季浓度高,冬季浓度比较低。年度变化上,呈现明显的波动性,2007年浓度最高,2009年又降至最低,而2010年浓度又开始回升。通过SO2浓度与能源消耗量的相关性分析知,SO2浓度与煤炭的消耗量相关性最好,说明大气中SO2主要来源于煤炭燃烧排放。
     (3)中国大气SO2数值模拟分析。以INTEX-B资料为大气质量模拟所需的排放方案,采用WRF与CMAQ模型对中国地区不同季节的大气SO2浓度进行了模拟。模拟结果的空间分布和季节变化与卫星监测结果类似,冬季是一年中SO2浓度最高的季节,空间分布上东部地区明显高于西北地区。模拟显示不同地区SO2浓度的日变化不同,各地垂直变化主要表现为SO2主要分布在800hPa以下。S02沉降主要集中于S02高排放区域,季节分布上秋冬季节S02沉降量大,且主要分布于中国的中东部地区。
     (4)中国大气S02浓度及沉降的源汇分析。提出四种模拟方案进行各地S02浓度及沉降量源汇分析。对比四种模拟方案,100RM_S方案相关性及误差都要优于其它方案,其误差分布表现为模拟区域的周边地区误差比较大,而中国的大部分地区,特别是SO2浓度比较高的中东部地区误差在3%以内。采用100RM_S方案计算了各区域及分省SO2浓度及沉降量的源汇关系。区域上中部地区对周边影响最大,西南区则主要受自身排放影响;河北、山西等省份对周边地区影响比较大,而北京、天津等地受周边省份影响大;1月源汇明显,而7月则自身排放影响占主导:SO2浓度的源汇明显,而SO2沉降则受自身排放影响比重大。
     (5)基于卫星数据的SO2排放量估算。通过分析大气中SO2的收支平衡方程,提出了基于线性比例和基于源汇关系的SO2排放量估算方法。分别以CMAQ模拟的1月、4月、7月和10月S02浓度和各地S02源汇关系以及OMI卫星观测浓度值,估算出中东部地区12省市的SO2排放量。由于排放因子等不确定性因素的影响,各种以统计数据估算的SO2排放量之间差异较大。而基于卫星观测的S02数据,结合CMAQ模型,自上而下的进行S02排放量的估算,避免了地面不确定性因素影响,将是对传统排放系数法估算有效的补充与提高。
Sulfur dioxide (SO2) is an important trace gas in the atmosphere and one of the main air pollutants, which has a serious impact on atmospheric environment and human health. The SO2in the atmosphere mainly derives from human discharge, and the process of the economic booming since reform and opening up in China is accompanied by the increase of SO2emission. The increasing emission of SO2leads to serious environmental pollution, and it has been regarded as a restricting environment factor in the development of Chinese economy. During the10th Five Year Plan (FYP) period, the totale missions of SO2increased by27.8%from19.95Mt to25.49Mt. In an attempt to address these challenges, the Chinese government published the11th FYP for national environment protection. The11th FYP included only one goal for air pollution control policy to reduce SO2emissions in2010by10%from the2005level.
     The spatiotemporal variation in SO2concentration during2005-2010over China was monitored from the planetary boundary layer (PBL) SO2column concentration retrieved from Aura ozone monitoring instrument (OMI) data, in this study. The Community Multi-Scale Air Quality (CMAQ) modeling system and the Weather Research and Forecasting (WRF) Model were applied to assess the source-receptor relationships of SO2, and a new methodology was developed to constrain the emissions of SO2based on OMI data, so as to provide theoretic reference for national emission control.
     The main studies and results are as follows.
     (1) The acquisition and procession of OMI data:The data used in this study are acquired from the OMI/Aura Level-2SO2data product between2005and2010. The study abandons data affected by large solar zenith angle and big cloud, rectifies the valid data by AMF, and calculates the average value of each month in different area in China. After comparing the SO2concentration data acquired from EANET china station and API data in key cities, this study concludes that the satellite data corresponds to the observed data in season trend well and has a good correlation.
     (2) The temporal and spatial distribution of SO2concentration in china based on OMI data:By the analysis of satellite data, the distribution of SO2in china has obvious temporal and spatial feature. In the spatial distribution, the volume of SO2 varies greatly in China, and there is a big difference between the east and the west. The concentration in the east is much higher than that of the west, with the maximum appeared in the border of ShanXi, HeBei and ShanDong provinces. In the seasonal variation, there is an obvious seasonal change in the east; the concentration is in the lowest in summer and in the highest in winter. Conversely, there is not an obvious seasonal change in the west; the concentration is in the highest in summer and in the lowest in winter. In the annual change trend, there is obvious concentration fluctuations in the five years, which is in the highest in2007and in the lowest in2009, yet restart to increase in2010. With the analysis of correlation between SO2concentration and energy consumption, it is found that the SO2concentration correlates best with coal consumptions, which indicates that the SO2in the atmosphere is mainly from coal burning.
     (3) The simulation of SO2concentration in china:Using data of INTEX-B as the emission scheme to the atmosphere, this study simulates the SO2concentration in different seasons in China by WRF and CMAQ model. It shows that the spatial distribution and the seasonal variation of simulation are similar to satellite monitoring results. The concentration of SO2in the east is much higher than that in the northwest, and winter is the season with highest concentration. The simulation also shows the daily variations of SO2concentration varies in different regions. The curve of Beijing is just like "N" with two peaks. In the vertical change, the SO2distributes mainly under800hpa. The SO2deposition area is the region with high SO2emission, mainly in mid-eastern China, and the heaviest deposition season is fall and winter.
     (4) Source-receptor relationships of SO2concentration and deposition in China. Four simulated schemes are designed to find the source-receptor relationships of SO2concentration and deposition in china. After the comparison of these schemes, it can be found that the100RM_S scheme is far good than others because of the better correlation and less errors. The error is mainly appeared on the surrounding area of simulated region. In most regions in china, especially the mid-eastern China where the SO2concentration is high, the error is under3%. So the source-receptor relationships were calculated by100RM_S model. From the results, it can be found that CTR area has most impact on its surrounding area, while SW area is mainly affected by the emission from its own. HeBei and Shanxi provinces have more impact on other regions, while Beijing and Tianjin cities are heavily influenced by their neighboring areas. Temporally, there is a specific source-receptor relationship in January, and its own emission will be the primary cause in July. SO2concentration has a specific source-receptor relationship, and SO2deposition is mainly determined by its own emission.
     (5) Estimation of SO2emission based on satellite data:SO2concentration in the atmosphere is controlled by some physical and chemical processes, such as surface emission, transport, chemical transform and dry deposition, called SO2budget. A new methodology was developed to constrain the emissions of SO2based on OMI data, Using the linear relationship between concentration and emission, and the source-receptor relationships of SO2. Based on the concentration and the source-receptor relationships simulated by CMAQ and OMI data in January, April, July and October,2006, the SO2emission in the East of China was estimated. It can be found that SO2emission from the statistic data is less than data of INTEX-B and estimation based on satellite. Assessments of the implications of SO2emissions usually are based on "bottom-up" inventories as estimated by using geographical and statistical data to extrapolate measurements of emission factors, typically available only on a sparse spatial and temporal network and subject to uncertainty."Top-down" constraints on SO2emissions through satellite observations could provide valuable data to inform emission inventory development and evaluation.
引文
[1]国家环境保护总局.中国绿色国民经济核算研究报告2004[M/OL].2004.
    [2]国家统计局.中国能源统计年鉴2006[M].2008.
    [3]国家环境保护部.2007年中国环境状况公报[M/OL].2008.
    [4]世界卫生组织.空气质量标准[M].2005.
    [5]王宗爽,武婷,车飞等.中外环境空气质量标准比较[J].环境科学研究,2010,23(3):253-260.
    [6]世界卫生组织.2006年世界卫生报告[EB/OL].2006.
    [7]牛建刚,牛荻涛,周浩爽.酸雨的危害及其防治综述[J].灾害学,2008,23(4):110-116.
    [8]杨本宏.我国酸雨危害现状及防治对策[J].合肥联合大学学报,2000,10(2):102-106.
    [9]邢廷铣.酸雨对农业生产的影响及其对策[J].土壤与环境,2002,18(1):98-100.
    [10]许梅德.酸雨对陆生植物影响的探讨[J].农业环境保护,1995,14(4):185-186.
    [11]张新民,柴发合,王淑兰等.中国酸雨研究现状[J].环境科学研究,2010,23(5):527-532.
    [12]龙威,徐文媛,刘强等.华南城市群酸雨的现状对比分析[J].农业环境与发展,2010,(2):8-10.
    [13]国家环境保护部.环境保护部发布2007年中国环境状况污染防治由被动应对转向主动防控主要污染物排放量首次出现“拐点”[M/OL].2008.
    [14]王文兴,许鹏举.中国大气降水化学研究进展[J].化学进展,2009,21(2/3):266-281.
    [15]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006.
    [16]王刚.卫星反演二氧化硫的BRD算法研究[D].北京:中国气象科学研究院,2009.
    [17]CHARLSON R J, WIGLEY T M L. Sulfate Aerosol and Climatic Change[J]. Scientific American,2004,270(2):48-57.
    [18]魏复盛.制订我国SO_2质量和排放标准的一些思考[J].中国环境监测,1995,11(4):22-28.
    [19]国家环境保护总局,国家发展和改革委员会.国家酸雨和二氧化硫污染防治“十一五”规划[M/OL].2008.
    [20]国家环境保护总局.1993中国环境状况公报[M/OL].1994.
    [21]国家环境保护总局.2005中国环境状况公报[M/OL].2006.
    [22]NEWMAN P A, GLEASON J F, MCPETERS R D, et al. Anomalously low ozone over the Arctic [J]. Geophys Res Lett,1997,24(22):2689-2692.
    [23]MULLER R, CRUTZEN P, GROOB J, et al. Severe chemical ozone loss in the Arctic during the winter of 1995-96 [J]. Nature,1997,389(6652):709-712.
    [24]IPCC. Climate Change 1995:The Science of Climate Change [M]. Cambridge University Press,1999.
    [25]张兴赢,张鹏,方宗义等.应用卫星遥感技术监测大气痕量气体的研究进展[J].气象,2007,33(7):3-14.
    [26]KRUEGER A J. Sighting of El Chichon Sulfur Dioxide Clouds with the Nimbus 7 Total Ozone Mapping Spectrometer [J]. Science,1983,220(4604):1377-1379.
    [27]CARN S A, KRUEGER A J, KROTKOV N A, et al. Fire at Iraqi sulfur plant emits SO2 clouds detected by Earth Probe TOMS [J]. Geophys Res Lett,2004, 31(19):L19105.
    [28]BURROWS J P, WEBER M, BUCHWITZ M, et al. The Global Ozone Monitoring Experiment (GOME):Mission Concept and First Scientific Results [J]. Journal of the Atmospheric Sciences,1999,56(2):151-175.
    [29]DRUMMOND J, MAND G. The Measurements of Pollution in the Troposphere (MOPITT) instrument:Overall performance and calibration requirements [J]. Journal of Atmospheric and Oceanic Technology,1996,13(2):314-320.
    [30]BOVENSMANN H, BURROWS J P, BUCHWITZ M, et al. SCIAMACHY: Mission Objectives and Measurement Modes [J]. Journal of the Atmospheric Sciences,1999,56(2):127-150.
    [31]CARLSON T, WENDLING P. Reflected radiance measured by NOAA-3 VHRR as a function of optical depth for Saharan dust [J]. Journal of Applied Meteorology,1977,16(12):1368-1371.
    [32]FRASER R. Satellite measurement of mass of Sahara dust in the atmosphere [J]. Applied Optics,1976,15(10):2471-2479.
    [33]MEKLER Y, OHRING G, MARCUS I, et al. Relative atmospheric aerosol content from ERTS observations [J]. Journal of Geophysical Research,1977, 82:967-970.
    [34]STOWE L, CAREY R, PELLEGRINO P. Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data [J]. Geophysical Research Letters,1992,19(2): 159-162.
    [35]LYONS W, HUSAR R. SMS/GOES visible images detect a synoptic-scale air pollution episode [J]. Monthly Weather Review,1976,104(12):1623-1626.
    [36]TODD W, GEORGE J A, BRYANT N. Satellite-aided evaluation of population exposure to air pollution [J]. Environmental Science & Technology,1979,13(8): 970-974.
    [37]FRASER R S, KAUFMAN Y J, MAHONEY R L. Satellite measurements of aerosol mass and transport [J]. Atmospheric Environment (1967),1984,18(12): 2577-2584.
    [38]F1SHMAN J, VUKOVICH F M, CAHOON D R, et al. The Characterization of an Air Pollution Episode Using Satellite Total Ozone Measurements [J]. Journal of Climate and Applied Meteorology,1987,26(12):1638-1654.
    [39]ZIEMKE J, CHANDRA S, BHARTIA P. Two new methods for deriving tropospheric column ozone from TOMS measurements:Assimilated UARS MLS/HALOE and convective-cloud differential techniques[J]. Journal of Geophysical Research,1998,103(D 17),22115-22127.
    [40]KIM J, HUDSON R, THOMPSON A. A new method of deriving time-averaged tropospheric column ozone over the tropics using total ozone mapping spectrometer (TOMS) radiances:Intercomparison and analysis using TRACE A data [J]. Journal of Geophysical Research,1996,101(D19):24317-24330.
    [41]FISHMAN J, BRACKETT V G, BROWELL E V, et al. Tropospheric ozone derived from TOMS/SBUV measurements during TRACE A [J]. J Geophys Res, 1996,101(D19):24069-24082.
    [42]FISHMAN J, WOZNIAK A, CREILSON J. Global distribution of tropospheric ozone from satellite measurements using the empirically corrected tropospheric ozone residual technique:Identification of the regional aspects of air pollution [J]. Atmospheric Chemistry and Physics,2003,3(4):893-907.
    [43]CREILSON J, FISHMAN J, WOZNIAK A. Intercontinental transport of tropospheric ozone:a study of its seasonal variability across the North Atlantic utilizing tropospheric ozone residuals and its relationship to the North Atlantic Oscillation [J]. Atmospheric Chemistry and Physics,2003,3(6):2053-2066.
    [44]MARTIN R, CHANCE K, JACOB D, et al. An improved retrieval of tropospheric nitrogen dioxide from GOME [J]. J Geophys Res,2002,107(D20): 4437, doi:10.1029/2001JD001027.
    [45]RICHTER A, BURROWS J. Tropospheric NO2 from GOME measurements [J]. Advances in Space Research,2002,29(11):1673-1683.
    [46]BOERSMA K, ESKES H, BRINKSMA E. Error analysis for tropospheric NO2 retrieval from space [J]. Journal of Geophysical Research,2004,109(D4): D04311, doi:10.1029/2003jd003962.
    [47]BRACHER A, SINNHUBER M, ROZANOV A, et al. Using a photochemical model for the validation of NO2 satellite measurements at different solar zenith angles [J]. Atmos Chem Phys,2005,5(2):393-408.
    [48]HEUE K P, RICHTER A, BRUNS M, et al. Validation of SCIAMACHY tropospheric NO2-columns with AMAXDOAS measurements [J]. Atmos Chem Phys,2005,5(4):1039-1051.
    [49]MARTIN R V, JACOB D J, CHANCE K, et al. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns [J]. J Geophys Res,2003,108(D17):4537-4548.
    [50]VELDERS G, GRANIER C, PORTMANN R, et al. Global tropospheric NO 2 column distributions-Comparing three-dimensional model calculations with GOME measurements[J]. Journal of Geophysical Research,2001,106(12): 12643-12660.
    [51]JAEGL L, MARTIN R V, CHANCE K, et al. Satellite mapping of rain-induced nitric oxide emissions from soils [J]. J Geophys Res,2004,109(D21):D21310.
    [52]BOERSMA K F, ESKES H J, MEIJER E W, et al. Estimates of lightning NOx production from GOME satellite observations [J]. Atmos Chem Phys,2005,5(9): 2311-2331.
    [53]RICHTER A, BURROWS J P, NUSZ H, et al. Increase in tropospheric nitrogen dioxide over China observed from space [J]. Nature,2005,437(7055):129-132.
    [54]VAN DER A R J, PETERS D H M U, ESKES H, et al. Detection of the trend and seasonal variation in tropospheric NO2 over China [J]. J Geophys Res,2006, 111(D12):D12317, doi:10.1029/2005jd006594.
    [55]EISINGER M, BURROWS J P. Tropospheric sulfur dioxide observed by the ERS-2 GOME Instrument [M]. Washington, DC, ETATS-UNIS:American Geophysical Union,1998.
    [56]CARN S A, STROW L L, DE SOUZA-MACHADO S, et al. Quantifying tropospheric volcanic emissions with AIRS:The 2002 eruption of Mt. Etna (Italy) [J]. Geophys Res Lett,2005,32(2):L02301.
    [57]KHOKHAR M, FRANKENBERG C, VAN ROOZENDAEL M, et al. Satellite observations of atmospheric SO2 from volcanic eruptions during the time-period of 1996-2002 [J]. Advances in Space Research,2005,36(5):879-887.
    [58]KROTKOV N A, CARN S A, KRUEGER A J, et al. Band residual difference algorithm for retrieval of SO2 from the aura Ozone Monitoring Instrument (OMI) [M]. IEEE Transactions on Geoscience and Remote Sensing.2006,44(5): 1259-1266.
    [59]CARN S A, KRUEGER A J, KROTKOV N A, et al. Sulfur dioxide emissions from Peruvian copper smelters detected by the Ozone Monitoring Instrument [J]. Geophys Res Lett,2007,34(9):L09801.
    [60]YANG K, KROTKOV N A, KRUEGER A J, et al. Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument:Comparison and limitations[J]. Journal of Geophysical Research-Atmospheres,2007,112(D24): D24S43, doi:10.1029/2007JD008825.
    [61]CARN S A, KRUEGER A J, ARELLANO S, et al. Daily monitoring of Ecuadorian volcanic degassing from space [J]. Journal of Volcanology and Geothermal Research,2008,176(1):141-150.
    [62]ECKHARDT S, PRATA A J, SEIBERT P, et al. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling [J]. Atmos Chem Phys,2008,8(14):3881-3897.
    [63]WITTE J C, SCHOEBERL M R, DOUGLASS A R, et al. Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics [J]. Geophys Res Lett,2009,36(17):L17803.
    [64]LI C, ZHANG Q, KROTKOV N A, et al. Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument [J]. Geophys Res Lett,2010,37(8):L08807.
    [65]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002.
    [66]姚增权.国外空气质量模式研究现状及展望[J].电力环境保护,1999,15(3):27-31.
    [67]刘烽,吴增茂.城市大气质量模式研究进展[J].环境科学进展,1999,7(2):22-30.
    [68]胡泳涛,张远航,谢绍东等.利用轨迹模式模拟近地层臭氧日变化[J].环境科学学报,1999,19(4):346-351.
    [69]韩志伟,杜世勇,雷孝恩等.城市空气污染数值预报模式系统及其应用[J].中国环境科学,2002,22(3):202-206.
    [70]PETERS L, BERKOWITZ C, CARMICHAEL G, et al. The current state and future direction of Eulerian models in simulating the tropospheric chemistry and transport of trace species:a review [J]. Atmospheric Environment,1995,29(2): 189-222.
    [71]程兴宏.空气质量模式“源同化”模型及排放源影响效应研究[D].北京:中国科学院研究生院,2008.
    [72][86]BYUN D, CHING J. Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling system [M]. NERL, Research Triangle Park,NC.1999.
    [73]张艳.陆源大气含氮物质的传输与海域沉降[D].上海:复旦大学,2007.
    [74]1CHIKAWA Y, AMANN M, CARMICHAEL G R. International workshop on the transport of air pollutants in Asia:summary of the results of the MICS-ASIA (model-intercomparison study of long-range transport and sulfur deposition in East Asia) [J]. Atmospheric Environment,2001,35(26):4527-4529.
    [75]WANG Z, XIE F, SAKURAI T, et al. MICS-Asia Ⅱ:Model inter-comparison and evaluation of acid deposition [J]. Atmospheric Environment,2008,42(15): 3528-3542.
    [76]HAYAMI H, SAKURAI T, HAN Z, et al. MICS-Asia Ⅱ:Model intercomparison and evaluation of particulate sulfate, nitrate and ammonium [J]. Atmospheric Environment,2008,42(15):3510-3527.
    [77]CARMICHAEL G R, UEDA H. MICS-Asia II:The model intercomparison study for Asia phase II [J]. Atmospheric Environment,2008,42(15):3465-3467.
    [78]CARMICHAEL G R, CALORI G, HAYAMI H, et al. The MICS-Asia study: model intercomparison of long-range transport and sulfur deposition in East Asia [J]. Atmospheric Environment,2002,36(2):175-199.
    [79]KIM B, HAN J, PARK S. Transport of SO2 and aerosol over the Yellow sea [J]. Atmospheric Environment,2001,35(4):727-737.
    [80]PARK S, LEE E. Long-range transport contribution to dry deposition of acid pollutants in South Korea [J]. Atmospheric Environment,2003,37(28): 3967-3980.
    [81]ENGARDT M, SINIAROVINA U, KHAIRUL N I, et al. Country to country transport of anthropogenic sulphur in Southeast Asia [J]. Atmospheric Environment,2005,39(28):5137-5148.
    [82]LIN M, OKI T, BENGTSSON M, et al. Long-range transport of acidifying substances in east Asia-Part Ⅱ-Source-receptor relationships [J]. Atmospheric Environment,2008,42(24):5956-5967.
    [83]LIN M, OKI T, HOLLOWAY T, et al. Long-range transport of acidifying substances in East Asia-Part Ⅰ:Model evaluation and sensitivity studies [J]. Atmospheric Environment,2008,42(24):5939-5955.
    [84]LIU J, MAUZERALL D L, HOROWITZ L W. Source-receptor relationships between East Asian sulfur dioxide emissions and Northern Hemisphere sulfate concentrations [J]. Atmos Chem Phys,2008,8(13):3721-3733.
    [85]SHIMADERA H, KONDO A, KAGA A, et al. Contribution of transboundary air pollution to ionic concentrations in fog in the Kinki Region of Japan [J]. Atmospheric Environment,2009,43(37):5894-5907.
    [86]王体健,李宗恺.中国东半部地区SO2输送规律的研究[J].电力环境保护,1994,10(4):1-5.
    [87]高会旺,黄美元,安峻岭.东亚地区硫污染物的空间分布特征[J].环境科学学报,1999,19(1):47-51.
    [88]吴涧,王卫国,郭世昌等.中国地区大气硫化物分布和输送基本特征的模拟研究[J].云南大学学报,2002,24(3):204-210.
    [89]颜鹏,黄健,DRAXLER R.周边地区对北京地面SO2影响的初步研究[J].应用气象学报,2002,(S1):144-152.
    [90]盛立芳,高会旺,张英娟等.夏季渤海NOx、O3、SO2和CO浓度观测特征[J].环境科学,2002,23(6):31-35.
    [91]张美根,韩志伟.TRACE-P期间硫酸盐、硝酸盐和铵盐气溶胶的模拟研究[J].高原气象,2003,22(1):1-6.
    [92][106]钟昌琴,张美根,朱凌云.东亚地区春季硫氧化物浓度分布及其收支研究[J].高原气象,2008,27(1):122-7.
    [93]张美根.多尺度空气质量模式系统及其验证Ⅰ.模式系统介绍与气象要素模拟[J].大气科学,2005,29(5):805-813.
    [94]张美根,徐永福,UNO I等.东亚地区春季二氧化硫的输送与转化过程研究1.模式及其验证[J].大气科学,2004,28(3):321-329.
    [95]安兴琴,左洪超,吕世华等.Models-3空气质量模式对兰州市污染物输送的模拟[J].高原气象,2005,24(5):748-756.
    [96]张强,ZBIGNIEWKLIMONT, DAVIDG. STREETS, et al.中国人为源颗粒物 排放模型及2001年排放清单估算[J].自然科学进展,2006,16(2):223-231.
    [97]JACOB D J, CRAWFORD J H, KLEB M M, et al. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission:Design, execution, and first results[J]. J Geophys Res,2003,108(D20),9000, doi:10.1029/2002J D003276.
    [98]AKIMOTO H, NARITA H. Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in Asia with 1°×1° resolution [J]. Atmospheric Environment,1994,28(2):213-225.
    [99]SMITH S J, PITCHER H, WIGLEY T M L. Global and regional anthropogenic sulfur dioxide emissions [J]. Global and Planetary Change,2001,29(1-2): 99-119.
    [100]KLIMONT Z, COFALA J, SCHOEPP W, et al. Projections of SO2, NOx, NH3 and VOC emissions in East Asia up to 2030 [J]. Water, Air,& Soil Pollution, 2001,130(1):193-198.
    [101]KLIMONT Z, STREETS D G, GUPTA S, et al. Anthropogenic emissions of non-methane volatile organic compounds in China [J]. Atmospheric Environment,2002,36(8):1309-1322.
    [102]STREETS D G, BOND T C, CARMICHAEL G R, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000 [J]. J Geophys Res,2003,108(D21),8809, doi:10.1029/2002JD003093.
    [103]JACOB D, CRAWFORD J, KLEB M, et al. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission:Design, execution, and first results[J]. J Geophys Res,2003,108(D20),9000, doi:10.1029/2002JD003276.
    [104]ZHANG Q, STREETS D G, CARMICHAEL G R, et al. Asian emissions in 2006 for the NASA INTEX-B mission [J]. Atmos Chem Phys,2009,9(14): 5131-5153.
    [105]SINGH H, BRUNE W, CRAWFORD J, et al. The Intercontinental Chemical Transport Experiment-Phase B (INTEX-B):An update [Z]. NASA Earth Science Project Office,2006.
    [106]OHARAT, AKIMOTO H, KUROKAWA J, et al. An Asian emission inventory of anthropogenic emission sources for the period 1980-2020 [J]. Atmospheric Chemistry and Physics,2007,7(16):4419-4444.
    [107]KATO N, AKIMOTO H. Anthropogenic emissions of SO2 and NOx in Asia: Emission inventories [J]. Atmospheric Environment,2007,41 (Supplement 1): 171-191.
    [108]白乃彬.中国大陆CO2、SO2和NOx 1°×1°网格排放估计[M].北京:气象出版社,2006.
    [109]田贺忠,郝吉明,陆永琪等.中国氮氧化物排放清单及分布特征[J].中国环境科学,2001,21(6):493-497.
    [110]WANG X, MAUZERALL D L, HU Y, et al. A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020 [J]. Atmospheric Environment,2005,39(32):5917-5933.
    [111]虞江萍,崔萍,王五一.我国农村生活能源中SO2, NOx及TSP的排放量估算[J].地理研究,2008,27(3):547-555.
    [112]林云萍,赵春生,彭丽等.利用MOPITT卫星资料计算CO源排放的新方法[J].科学通报,2007,52(9):1050-1057.
    [113]STAVRAKOU T, M LLER J F. Grid-based versus big region approach for inverting CO emissions using Measurement of Pollution in the Troposphere (MOPITT) data [J]. J Geophys Res,2006,111(D15):D15304.
    [114]P TRON G, GRANIER C, KHATTATOV B, et al. Monthly CO surface sources inventory based on the 2000-2001 MOPITT satellite data [J]. Geophys Res Lett, 2004,31(21):L21107.
    [115]LIN Y, ZHAO C, PENG L, et al. A new method to calculate monthly CO emissions using MOPITT satellite data [J]. Chinese Science Bulletin,2007, 52(18):2551-2558.
    [116]KOPACZ M, JACOB D J, HENZE D K, et al. Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns [J]. J Geophys Res,2009,114(D4):D04305.
    [117]ARELLANO A F, JR., KASIBHATLA P S, GIGLIO L, et al. Time-dependent inversion estimates of global biomass-burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements [J]. J Geophys Res, 2006, 111(D9):D09303.
    [118]ARELLANO A F, JR., KASIBHATLA P S, GIGLIO L, et al. Top-down estimates of global CO sources using MOPITT measurements [J]. Geophys Res Lett,2004,31(1):L01104.
    [119]ZHANG Q, STREETS D G, HE K, et al. NOx emission trends for China, 1995-2004:The view from the ground and the view from space [J]. J Geophys Res,2007,112(D22):D22306.
    [120]ZHAO C, WANG Y. Assimilated inversion of NOx emissions over east Asia using OMI NO2 column measurements [J]. Geophys Res Lett,2009,36(6): L06805.
    [121]LIN J T, MCELROY M B, BOERSMA K F. Constraint of anthropogenic NOx emissions in China from different sectors:a new methodology using multiple satellite retrievals [J]. Atmos Chem Phys,2010,10(1):63-78.
    [122]国家环境总局.主要污染物总量减排统计办法[EB/OL].2007.
    [123]KROTKOV N A, MCCLURE B, DICKERSON R R, et al. Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China [J]. Journal of Geophysical Research-Atmospheres,2008,113(D16):D16S40, doi:10.1029/2007JD008818.
    [124]LEE C, MARTIN R V, VAN DONKELAAR A, et al. Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI:Air mass factor algorithm development, validation, and error analysis [J]. J Geophys Res,2009, 114(D22):D22303.
    [125]National Aeronautics and Space Administration Goddard Space Flight Center. Instruments [EB/OL]. http://aura.gsfc.nasa.gov/instruments/index.html.
    [126]HIROYUKI K, ANDREW C, JIMY D, et al. Comparison of the WRF and MM5 Models for Simulation of Heavy Rainfall along the Baiu Front[J]. SOLA,2005. 1:197-200.
    [127]孙健,赵平.用WRF与MM5模拟1998年三次暴雨过程的对比分析[J].气象学报,2003,61(06):692-701.
    [128]赵洪,杨学联,邢建勇等.WRF与MM5对2007年3月初强冷空气数值预报结果的对比分析[J].海洋预报,2007.24(2):1-8.
    [129]程兴宏,徐祥德,丁国安等.MM5/WRF气象场模拟差异对CMAQ空气质量预报效果的影响[J].环境科学研究,2009,22(12):1411-1419.
    [130]APPEL K W, ROSELLE S J, GILLIAM R C, et al. Sensitivity of the Community Multiscale Air Quality (CMAQ) model v4.7 results for the eastern United States to MM5 and WRF meteorological drivers[J]. Geosci. Model Dev.,2010.3(1): 169-188.
    [131]王颖.复杂下垫面下空气污染数值模拟研究[D].兰州:兰州大学,2010.
    [132]SKAMAEOCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3[M]. NCAR TECHNICAL NOTE. Note TN-475+STR,2008.
    [133]赵瑜.WRF中尺度数值模拟预报及模式降水预报产品释用[D].南京:南京信息工程大学,2009.
    [134]PFANZ H, MAERINOIA E, LANGE O, et al. Mesophyll Resistances to SO2 Fluxes into Leaves[J]. Plant Physiol.,1987.85(4):922-927.
    [135]SORIMACHIA A, SAKAMOTO K, ISHIHARAB H, et al. Measurements of sulfur dioxide and ozone dry deposition over short vegetation in northern China-a preliminary study[J]. Atmospheric Environment,2003.37(22): 3157-3166.
    [136]孟晓艳,王普才,王庚辰等.北京夏季SO2、NO2、O3的DOAS观测结果及变化特征[J].环境科学与技术,2009.32(5):96-99.
    [137]刘洁,张小玲,徐晓峰等.北京地区SO2、NOx、O3和PM25变化特征的城郊对比分析[J].环境科学,2008.29(4):1059-1065.
    [138]林艺辉,谢品华,秦敏等.北京冬季大气SO2、NO2与03的监测与分析[J].大气与环境光学学报,2007.2(1):55-59.
    [139]杨书申,邵龙义,杨园园.北京、上海两地2004和2005年大气污染特征对比分析[J].长江流域资源与环境,2008.17(2):323-327.
    [140]洪燕峰,刘凡,窦燕生.北京地区采暖期SO2熏烟型污染及评估[J].重庆环境科学,1995.17(4):18-20.
    [141]章树荣.上海能源消费对环境污染程度的探析[J].能源技术,1998.(3):5-8.
    [142]LEE C, MARTIN R V, VAN DONKELAAR A, et al. SO2 emissions and lifetimes:Estimates from inverse modeling using in situ and global, space-based (SCIAMACHY and OMI) observations [J]. J. Geophys. Res,2011,116:D06304, doi:10.1029/2010JD014758.
    [143]曹国良,张小曳,龚山陵等.中国区域主要颗粒物及污染气体的排放源清单[J].科学通报,2011.56(56):261-268.
    [144]LU Z, STREETS D G, ZHANF Q, et al. Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000[J]. Atmos Chem Phys Discuss,2010, 10(13):8657-8715.
    [145]KLIMONT Z, STREETS D G, GUPTA S, et al. Anthropogenic emissions of non-methane volatile organic compounds in China[J]. Atmospheric Environment, 2002,33(8):1309-1322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700