用户名: 密码: 验证码:
镁锂合金微弧氧化膜抗腐蚀及摩擦磨损性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超轻金属材料镁锂合金具有低密度、高比强度、良好的机械性能、电磁屏蔽效果和可循环利用的特点,在汽车、宇航、电子通讯领域有广泛的应用前景,但较弱的抗腐蚀性能、摩擦磨损性能限制其进一步的发展和工业应用。本文通过微弧氧化膜的制备与浸渍后处理大大改善了镁锂合金的抗腐蚀性能和摩擦磨损性能。利用SEM、XRD、TF-XRD、EDS、XPS技术对微弧氧化膜结构、物相组成、化学组成及其形成机制进行了表征,利用动电位极化曲线、电化学阻抗谱、浸泡实验研究了覆膜合金的抗腐蚀性能,利用球-盘摩擦磨损机、磨痕轮廓仪、纳米压痕仪、SEM和OM等对覆膜镁锂合金的摩擦学行为及磨损机制进行了测试和研究。
     通过碱性硅酸盐电解液添加钨酸盐或钼酸盐,用先恒流后恒压电控方式在不同镁锂合金上制备了抗腐蚀性能较好的微弧氧化膜,发现了阳极氧化阶段速度和终电压对微弧氧化膜孔径的影响。镁锂合金基体中锂含量的降低以及电解液钨酸盐或钼酸盐的添加都加快了微弧氧化膜钝化的速度,抑制了合金基体的溶解。
     采用碱性高锰酸盐、钼酸盐对微弧氧化膜浸渍处理时,由于H_2O、OH–等渗透到微弧氧化膜微孔,膜层更加致密,阻抗增大。表面生成Mn_2O_3、MnO_2、MgO·MoO_2、MoO_3、MgF_2和NaF等微/纳米粒子状化合物。氯化钠中性盐短暂浸渍后含钨膜表面水化、软化、疏松。
     微弧氧化膜对Si_3N_4球作干滑动摩擦实验时发现,上述微/纳米粒子或软化物质作为微弧氧化膜表面固体润滑剂,缓解了膜层表面的应力分布,避免了陶瓷质地氧化膜的脆性断裂。同时,Si_3N_4球自身硬度高,不易被磨损,对微弧氧化膜剪切作用小,大大降低了微弧氧化膜的摩擦和磨损。动电位极化实验后产生的少量腐蚀产物有益于摩擦学行为的改善,局部腐蚀微裂纹不影响摩擦磨损性能。高粗糙度、低厚度、表面无润滑粒子或大量硬脆陶瓷粒子增大了摩擦和磨损。微弧氧化膜的磨损形貌显示,Si_3N_4球对不同陶瓷氧化膜产生刮擦、微抛光、抛光、断裂和剥离磨损。微弧氧化膜对硬度低于Si_3N_4的CCr15钢球作干滑动摩擦实验时发现,钢球在摩擦过程中自身被磨损,磨屑粘着在氧化膜上,钢球粗糙度逐渐增大,不断剪切微弧氧化膜,产生大量硬磨屑,虽然微弧氧化膜上面的润滑层及粘着的铁润滑层保持对磨面稳定摩擦和磨损,但随着接触面和粗糙度继续增大或者摩擦应力超过断裂应力,膜层断裂,微弧氧化膜/钢球系统由低而稳定的摩擦转向高摩擦。CCr15球对不同微弧氧化膜除产生抛光、切削、断裂磨损外还产生粘着和氧化磨损。质量磨损率和磨痕形貌显示,高硬度微弧氧化膜造成对磨试料高磨损率。
     磷酸盐、含氟锆酸钾硅酸盐电解液以及添加钛溶胶后微弧氧化膜摩擦磨损实验研究发现,微弧氧化膜含磷非晶化合物有利于减摩,钛溶胶的添加增大了微弧氧化膜的硬度和弹性模量,表面更加平滑,抗摩擦磨损性能增强。高硬度含锆硅酸盐膜有利于磨损率降低,钛溶胶的添加降低了表面粗糙度,增大了弹性模量,低转速下发生低摩擦熔融磨损。
     浸渍微弧氧化膜的长期腐蚀行为研究结果表明,中性盐长时间浸泡,浸渍含钨膜表面生成更多的腐蚀产物,封闭了表面微孔,外层阻抗增大,内层阻抗减小。非含钨浸渍微弧氧化膜由于微孔较大,容易渗透腐蚀液,内层有大量腐蚀产物堆积。
Mg-Li alloys as the lightest structural materials have wide application prospect in thefields of aerospace, electronic communication and automobile due to their inherent superiorproperties such as low density, high strength to weight ratio, good machining property,electromagnetic shielding and recyclability. However, the main factors hindering furtherdevelopment and industrial application of Mg-Li alloys are very poor corrosion and wearresistance. Micro-arc oxidation (MAO) coatings have been successfully fabricated on thesurface of Mg-Li alloys, followed by post-treatment of solution immersion, and theremarkable improvement in corrosion and wear resistance were obtained in the present paper.The surface morphology, microstructure, phase composition, chemical composition andformation mechanism of the coatings were characterized by means of SEM, XRD, TF-XRD,EDS and XPS techniques. The corrosion resistance was investigated by potentiodynamicpolarization curves, EIS and immersion test. The tribological properties and wear mechanismof the coatings were measured and analyzed using ball-on-disc configuration sliding frictiontest, talysurf, nanoindentation, SEM and OM.
     MAO coatings with high corrosion resistance were prepared on the different Mg-Lialloys by the addition of tungstate or molybdate into the alkaline silicate, using a modeinvolving an initially constant current mode, followed by a constant voltage mode. The size ofmicropores on MAO coatings was mostly found to be influenced by the speed of anodizedphase and final voltage. With the decrease in Li content of Mg-Li alloy substrate and theaddition of tungstate or molybdate into the alkaline silicate the fast speed of passivationoccurs and the dissolution of Li the is suppressed.
     It was demonstrated that MAO coatings have more compact microstructural features andthe impedance increases due to the penetration of H_2O and OH–into the pores and holes onMAO coatings after the immersion into alkaline permanganate or molybdate.Micro/nanoparticles containing Mn_2O_3, MnO_2(or MgO·MoO_2, MoO_3), MgF_2and NaFcompounds are generated on the surface of the coatings. The outer layer appears to behydrated, intenerated and loosened after the immersion of the immersed coatingsW-containing into neutral NaCl for short time.
     By the dry sliding friction test of MAO coatings against the countermaterial Si_3N_4it wasfound that above described micro/nanoparticles or intenerated substance, which is chieflyresponsible for moderating the stress distribution and avoiding the brittle fracture of ceramiccoatings are regarded as solid lubricant. At the same time, Si_3N_4ball is insusceptible to beabraded due to its high hardness and the shear effect on MAO coating is small, which leads toreduce the friction and wear. After potentiodynamic polarization test a small amount ofcorrosion products generated on the surface of MAO coatings is favourable for improving thetribological behavior, which is independent of the partial corrosion microcracks formed in thepolarization test. The high roughness, low thickness, the surface without lubricative layer andhard ceramic particle may bring about more serious friction and wear of the coatings. Thewear morphologies of MAO coatings suggest that Si_3N_4ball results in micro-polishing,polishing, fracturation and detaching wear of the coating. By the dry sliding friction test ofMAO coatings against the countermaterial CCr15ball with lower hardness as compared withSi_3N_4ball it was found that CCr15ball is abraded and debris is transferred into the coating.With the increase of the roughness of CCr15ball, the MAO coatings are continuously shearedand a large amount of debris is generated. Although micro/nanoparticles and Fe-containingtransferred layer as solid lubricant may keep stable friction and wear, MAO coating isfractured and MAO coating/CCr15ball friction system is transferred from low friction to highfriction when the contact area and the surface roughness get higher or the friction stressexceeds the fracture stress. CCr15ball results in the adhesion wear and oxidation wear,besides the polishing, the flaking and fracturation wear of MAO coating. The wear rate andwear morphologies show that the high hardness of MAO coating results in high wear of thecountermaterials.
     We examined the friction and wear properties of MAO coatings before and after theaddition of titania-sol into the alkaline phosphate or silicate containing K2ZrF6electrolyte. Itwas found that the amorphous P-containing compound imparts the beneficial effect on thereducing friction of MAO coating, and the addition of titania-sol into alkaline phosphateincreases the hardness and elastic modulus of MAO coating and gets surface flat and smooth,leading to enhancing the antifriction and wear resistance. The high hardness of MAO coatingcontaining ZrO2and Mg2SiO4is beneficial for reducing wear. The addition of titania-sol intoalkaline silicate electrolyte reduces roughness and increases elastic modulus of MAO coating, it was demonstrated that the melted wear reducing friction and wear occurs at low rotatespeed.
     The corrosion behavior of immersed MAO coating was investigated under theimmersion into neutral NaCl for long-term, the results show that for immersed W-containingcoating more corrosive products are accumulated on the surface and micropores are sealed,hence the outer impedance rises and inner one falls. For the immersed coating without W thecorrosion solution enters inner layer due to the large pores and a large amount of corrosionproducts are accumulated in inner layer.
引文
[1]蒋斌,张丁非,彭建等.Mg-Li超轻合金的研究与应用[J].材料导报,2005,19:39–43页
    [2] M. L. Zhang, Z. Chen, W. Chen, et al. Electrochemical formation and phase control ofMg–Li alloys [J]. Chemical Letters, China.2007,18:1124–1128P
    [3] T. Wang, M. L. Zhang, R. Z. Wu. Microstructure and properties of Mg-8Li-1Al-1Cealloy [J]. Materials Letters,2008,62:1846–1848P
    [4] P. Crawford, R. Barrosa, J. Mendez, et al. On the transformation characteristics ofLA141A (Mg-Li-Al) alloy [J]. Journal of Materials Processing Technology,1996,56:108–118P
    [5] J. M. Song, T. X. Wen, J. Y. Wang. Vibration fracture properties of a lightweightMg-Li-Zn alloy [J]. Scripta Materialia,2007,56:529–532P
    [6]王建军,王智民,白杉.日本镁合金的应用与研究现状[J].中国铸造装备与技术,2005,4:7–10页
    [7] D. X. Cao, L. Wu, Y. Sun. Electrochemical behavior of Mg-Li, Mg-Li-Al andMg-Li-Al-Ce in sodium chloride solution [J]. Journal of Power Sources,2008,177:624–630P
    [8] C. H. Zhang, X. M. Huang, M. L. Zhang, et al. Electrochemical characterization of thecorrosion of a Mg-Li Alloy [J]. Materials Letters,2008,62:2177–2180P
    [9]杨黎晕,李峻青,姜巍巍等.镁锂合金化学镀镍工艺[J].中国腐蚀与防护学报,2008,28(3):177–180页
    [10]宋光铃编.镁合金腐蚀与防护[M].北京:化学工业出版社,2006:32–33页
    [11] G. Sabatini, L. Ceschini, C. Martini, et al. Improving sliding and abrasive wearbehaviour of cast A356and wrought AA7075aluminium alloys by plasma electrolyticoxidation [J]. Materials and Design,2010,31:816–828P
    [12] K. J. Kato. Wear in relation to friction-a review [J]. Wear,2000,24:151–157P
    [13] E. Mohammad, F. Karimzadeh, M. H. Enayati. Fabrication and evaluation ofmechanical and tribological properties of boron carbide reinforced aluminum matrixnanocomposites [J]. Materials and Design,2011,32:3263–3271P
    [14] A. J. López, A. Urena, J. Rams. Wear improvement of sol–gel silica coatings onA380/SiCp aluminium composite substrate by diode laser sintering [J]. Materials andDesign,2011,32:3865–3875P
    [15] F. Liu, J. L. Xu, D. Z. Yu, et al. Wear resistance of micro-arc oxidation coatings onbiomedical NiTi alloy [J]. Journal of Alloys and Compounds,2009,487:391–394P
    [16] G. Straffelini, A. Molinari. Dry sliding wear of Ti–6Al–4V alloy as influenced by thecounterface and sliding conditions [J]. Wear,1999,236:328–338P
    [17] L. Ceschini, E. Lanzoni, C. Martini, et al. Comparison of dry sliding friction and wearof Ti6Al4V alloy treated by plasma electrolytic oxidation and PVD coating [J]. Wear,2008,264:86–95P
    [18] C. X. Li, J. Xia, H. Dong. Sliding wear of TiAl intermetallics against steel andceramics of Al2O3, Si3N4and WC/Co [J]. Wear,2006,261:693–701P
    [19] P. Bala Srinivasan, C. Blawert, W. Dietzel. Dry sliding wear behaviour of plasmaelectrolytic oxidation coated AZ91cast magnesium alloy [J]. Wear,2009,266:1241–1247P
    [20] P. Bala Srinivasan, J. Liang, C. Blawert, et al. Dry sliding wear behaviour ofmagnesium oxide and zirconium oxide plasma electrolytic oxidation coated magnesiumalloy [J]. Applied Surface Science,2010,256:3265–3273P
    [21] K.–H. Zum Gahr, Ch. Bogdanow, J. Schneider. Friction and wear reduction of A12O3ceramics by laser-induced surface alloying [J]. Wear,1995,181-183:118–128P
    [22] Y. S. Wang, M. Hsu. Stephen. Wear and wear transition mechanisms of ceramics [J].Wear,1996,195:112–122P
    [23] H. Ardelean, C. Fiaud, P. Marcus. Enhanced corrosion resistance of magnesium and itsalloys through the formation of cerium (and aluminium) oxide surface films [J].Materials and Corrosion,2001,52:889–895P
    [24]高福麒,高斌,高翔.镁锂合金表面镍磷合金化处理的研究[J].表面技术,2007,36(6):59–60页
    [25] A. K. Sharma. Chromate conversion coatings for magnesium-lithium alloys [J]. MetalFinishing,1989,87(2):173–174P
    [26]张华,姚广春,王淑兰等.Mg-Li合金无铬转化膜的制备工艺研究[J].特种铸造及有色合金,2007,27:918–920P
    [27] H. Zhang, G. C. Yao, S. L. Wang, et al. A chrome-free conversion coating formagnesium–lithium alloy by a phosphate–permanganate solution [J]. Surface andCoatings Technology,2008,202:1825–1830P
    [28] L. H. Yang, M. L. Zhang, J. Q. Li, et al. Stannate conversion coatings on Mg–8Li alloy[J]. Journal of Alloys and Compounds,2009,47:1197–200P
    [29] A. K. Sharma. Electrodeposition of Gold on Magnesium–Lithium Alloys [J]. MetalFinishing,1988,86(12):33234–33239P
    [30] T. Nickchi, M. Ghorbani, A. Alfantazi. Fabrication of low friction bronze–graphitenano-composite coatings [J]. Materials and Design,2011,32:3548–3553P
    [31] C. A. Huang, T. H. Wang, T. Weirich. Electrodeposition of a protective copper/nickeldeposit on the magnesium alloy (AZ31)[J]. Corrosion Science,2008,50:1385–1390P
    [32] L. H. Yang, J. Q. Li, Y. Z. Zheng, et al. Electroless Ni–P plating with molybdatepretreatment on Mg–8Li alloy [J]. Journal of Alloys and Compounds,2009,467:562–566.
    [33] H. J. Luo, B. N. Song, Y. H. Liu, et al. Electroless Ni-P plating on Mg-Li alloy bytwo-step method [J]. Transactions of Nonferrous Metals Society of China,2011,21(10):2225–2230P
    [34] A. K. Sharma, M. R. Suresh, H. Bhojraj, et al. Electroless Nickel Plating onMagnesium Alloy [J]. Metal Finishing,1998,96(3):10-18P
    [35] Y. L. Liu, Z. F. Yu, S. X. Zhou, et al. Self-assembled monolayers on magnesium alloysurfaces from carboxylate ions [J]. Applied Surface Science,2006,252:3818–3827P
    [36]李卫平,朱立群.镁及其合金表面防护性涂层国外研究进展[J].材料保护,2005,38(2):41–46P
    [37] A. R. Phani, F. J. Gammel, T. Hack. Structural, mechanical and corrosion resistanceproperties of Al2O3–CeO2nanocomposites in silica matrix on Mg alloys by a sol–gel dipcoating technique [J]. Surface and Coatings Technolog,2006,201:3299–3306P
    [38] M. Tsujikawa, S. Adachi, Y. Abe. Corrosion Protection of Mg-Li Alloy by PlasmaThermal Spraying of Aluminum [J]. Plasma Processes and Polymers,2007,4(S1):S593–S596P
    [39] J. E. Fernanciez, R. Rodlciguez, Y. L. Wang, et al. Sliding wear of a plasma-sprayedAl2O3coating [J]. Wear,1995,181–183:417–425P
    [40] S. Bahadur, C. N. Yang. Friction and wear behavior of tungsten and titanium carbidecoatings [J]. Wear,1996,196:156–163P
    [41] P. Hanna, W. Bernhard, L. Thomas. Post-treatment of thermal spray coatings onmagnesium [J]. Surface and Coatings Technology,2008,202:4515–4524P
    [42] B. H. Kear, Z. Kailman, R, K. Sadangi, et al. Plasma sprayed nanostructured powdersand coatings [J]. Journal of Thermal Spray Technology,2000,9(4):483–487P
    [43]梁春林,刘宜汉,韩华等.镁合金表面处理研究现状及发展趋势[J].表面技术,2006,35(6):57–60P
    [44] U. Kutschera, R. Galun. Wear behaviour of laser surface treated magnesium alloys [J].The Minerals, Metals and Materials Society,2000,330–335P
    [45] H. Hiraga, T. Inoue, Y. Kojima, et al. Surface modification by dispersion of hardparticles on magnesium alloy with laser [J]. Materials Science Forum,2000,350:253–258P
    [46] I. Shigematst, M. Nakamura, N. Siatou, et al. Surface treatment of AZ91D magnesiumalloy by aluminum diffusion coating [J]. Materials Science Letters,2000(19):473–475P
    [47] Y. Q. Yang, H. C. Man. Laser spray cladding of porous NiTi coatings on NiTisubstrates [J]. Surface and Coatings Technology,2007,201:6928–6932P
    [48] N. Yamauchi, N. Ueda, A. Okamoto, et al. DLC coating on Mg–Li alloy [J]. Surfaceand Coatings Technology,2007,201:4913–4918P
    [49] C. K. Lee. Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films onaluminum alloy [J]. Diamond and Related Materials,2008,17:306–312P
    [50] P. C. Wang, Y. P. Shih, M. C. Lin, et al. Improvement of wear and cavitation–erosionby ALD-deposited LiAlxOy films on an Mg–10Li–0.5Zn alloy [J]. Surface andCoatings Technology,2010,204:3707–3712P
    [51]高方圆,李光,夏原.PEO陶瓷层对铝基体上DLC薄膜承载特性的影响[J].中国有色金属学报,2010,20(9):1788–1794P
    [52] C. Carrasco, L. Segers, B. Benavente, et al. Titanium nitride coatings on copper alloyprepared by dc reactive magnetron sputtering [J]. Journal of Materials ProcessingTechnology,2004,145:371–376P
    [53] J. Creus, A. Billard, F. Sanchette. Corrosion behaviour of amorphous Al–Cr andAl–Cr–(N) coatings deposited by dc magnetron sputtering on mild steel substrate [J].Thin Solid Films,2004,466:1–9P
    [54] Y. Cheng, Y. F. Zheng. Surface characterization and electrochemical studies ofbiomedical NiTi alloy coated with TiN by PIIID [J]. Materials Science and EngineeringA,2006,438–440:1146–1149P
    [55] H. K. Altun, S. D. Sen. The effect of PVD coatings on the corrosion behaviour ofAZ91magnesium alloy [J]. Materials and Design,2006,27:1174–1179P
    [56] C. Blawert, W. Dietael, E. Ghali, et al. Anodizing treatments for magnesium alloys andtheir effect on corrosion resistance in various environments [J]. Advanced EngineeringMaterials,2006,8(6):511–533P
    [57] G. L. Song. Recent progress in corrosion and protection of magnesium alloys [J].Advanced Engineering Materials,2005,563–586
    [58] H. Fukuda, Y. Matsumoto. Effects of Na2SiO3on anodization of Mg-Al-Zn alloy in3M KOH solution [J]. Corrosion Science,2004,46(9):2135–2142P
    [59] T. F. Barton, C. B. Johnson. The Effect of Electrolyte on the Anodized Finish of aMagnesium Alloy [J]. Plating and Surface Finishing,1995,5:138–141P
    [60] J. F. Li, Z. Q. Zheng, S. C. Li, et al. Preparation and galvanic anodizing of a Mg–Lialloy [J]. Materials Science and Engineering A,2006, A433:233–240P
    [61] A. K. Sharma, R. U. Rani, H. Bhojaraj, et al. Galvanic black anodizing on Mg-Lialloys [J]. Journal of Applied Electrochemistry,1992,23(5):500–507P
    [62] S. Sun, J. G. Liu, C. W. Yan, et al. A novel process for electroless nickel plating onanodized magnesium alloy [J]. Applied Surface Science,2008,254:5016–5022P
    [63] A. L. Yerokhin, X. Nie, A. Leyland. Plasma electrolysis for surface engineering.Surface and Coatings Technology,1999,122:73–93P
    [64]李利群,袭建军,姚英学.钛合金微弧氧化技术的研究[J].焊接,2008,(5):15–18页
    [65]蒋百灵,张先锋,朱静.铝、镁合金微弧氧化技术研究现状和产业化前景[J].金属热处理,2004,29(1):23–25页
    [66] J. Liang, L. T. Hu, J. C. Hao. Characterization of microarc oxidation coatings formedon AM60B magnesium alloy in silicate and phosphate electrolytes [J]. Applied SurfaceScience,2007,253:4490–4496P
    [67] S. Ikonopisov. Theory of electrical breakdown during formation of barrier anodic films[J]. Electrochimica Acta,1977,22(10):1077–1082P
    [68] J. Yahalom, J. Zahavi. Experimental evaluation of some electrolytic breakdownhypotheses [J]. Electrochimica Acta,1971,16(5):603–607P
    [69] A. V. Nikolaev, G. A. Markov, B. I. Peshchevitsky. A new phenomenon in theelectrolysis [J]. Izv. AN USSR. Series of Chemical Sciences,1977,5:32–33P
    [70] T. B. Van, S D. Brown, G. P. Wirtz. Mechanism of anodic spark deposition [J].American Ceramic Society,1977,56(6):563–566P
    [71] A. K. Vijh. Sparking voltage and side reactions during anodization of valve metals interms of electron tunneling [J]. Corrosion Science,1971,11:411–417P
    [72] G. J. Ernst, A. G. Boer. Experimental determination of the electron-avalanche and theelectron-ion recombination coefficient [J]. Optics Communications,1980,34(2):235–239P
    [73] N. Klein, V. Moskovici, V. Kadary. Electrical Breakdown, II. During the AnodicGrowth of Aluminum Oxide [J]. Journal of The Electrochemical Society,1980,127,(1):152–155P
    [74] N. Klein. Electrical breakdown in thin dielectric films [J]. Journal of TheElectrochemical Society,1969,116(7):963-972P
    [75] S. R. Morrison. Electrochemistry at semiconductor and oxidized metal electrodes.Plenum Press, New York,1980:66P
    [76] J. M. Albella, I. Montero, J. M. Martínez-Duart. A theory of avalanche breakdownduring anodic oxidation [J]. Electrochimica Acta,1987,32:255–258P
    [77] A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, et al. Discharge characterization inplasma electrolytic oxidation of aluminium [J]. Journal of Physics D: Applied Physics,2003,36:2110–2120P
    [78] C. Clapp, P. A. Kilmartin, G. A. Wright. Anodisation of magnesium alloys [J].Proceeings-Corrosion and Prevention,2000,297-301P
    [79] H. P. Duan, C. W. Yan, F. H. Wang. Growth process of plasma electrolytic oxidationfilms formed on magnesium alloy AZ91D in silicate solution [J]. Electrochimica Acta,2007,52:5002–5009P
    [80] L. O. Snizhko, A. L. Yerokhin, A. Pilkington, et al. Anodic processes in plasmaelectrolytic oxidation of aluminium in alkaline solutions [J]. Electrochimica Acta,2004,49:2085–2095P
    [81] L. C. Zhao, C. X. Cui, Q. Z. Wang, et al. Growth characteristics and corrosionresistance of micro-arc oxidation coating on pure magnesium for biomedicalapplications [J]. Corrosion Science,2010,52:2228–2234P
    [82] O. Khaselev, D. Weiss, J. Yahalom. Anodizing of pure magnesium in KOH-aluminatesolutions under sparking [J]. Journal of The Electrochemical Society,1999,146(5):1757–1761P
    [83] O. Khaselev, J. Yahalom. Constant voltage anodizing of Mg-Al Alloys inKOH-Al(OH)3solutions [J]. Journal of The Electrochemical Society,1998,145(1):190–193P
    [84]薛文斌,蒋兴莉,杨卓等.6061铝合金微弧氧化陶瓷膜的生长动力学及性能分析[J].功能材料,2008,39(4):603–606页
    [85] Y. Wang, J. Wang, J. Zhang, et al. Characteristics of anodic coatings oxidized todifferent voltage on AZ91D Mg alloy by micro-arc oxidization technique [J]. Materialsand Corrosion,2005,56(2):88–92P
    [86] G. Goeminne, H. Terryn, J. Vereecken. Characterisation of conversion layers onaluminum by means of electrochemical impedance spectroscopy [J]. ElectrochimicaActa,1995,40:479–486P
    [87] T. Schram, G. Goeminne, H. Terryn, et al. Study of the composition of zirconium-based chromium free conversion layers on aluminum [J]. Transactions of the Institutionof Metal Finishing,1995,73:91–95P
    [88] C. Blawert, V. Heitmann, W. Dietzel, et al. Influence of process parameters on thecorrosion properties of electrolytic conversion plasma coated magnesium alloys [J].Surface and Coatings Technology,2005,200:68–72P
    [89]蒋奎胜,唐聿明,赵旭辉等.电流密度对AZ91D镁合金阳极氧化膜表面形貌及粘接性能的影响[J].材料研究学报,2010,24(3):305–310页
    [90] R. F. Zhang, D. Y. Shan, R. S. Chen, et al. Effects of electric parameters on propertiesof anodic coatings formed on magnesium alloys [J]. Materials Chemistry and Physics,2008,107:356–363P
    [91] P. Bala Srinivasan, J. Liang, R. G. Balajeee, et al. Effect of pulse frequency on themicrostructure, phase composition and corrosion performance of a phosphate-basedplasma electrolytic oxidation coated AM50magnesium alloy [J]. Applied SurfaceScience,2010,256:3928–3935P
    [92] A. V. Timoshenko, Y. V. Magurova. Investigation of plasma electrolytic oxidationprocesses of magnesium alloy MA2-1under pulse polarisation modes [J]. Surface andCoatings Technology,2005,199:135–140P
    [93] F. A. Bonilla, A. Berkani, Y. Liu, et al. Formation of anodic films on magnesium alloysin an alkaline phosphate electrolyte [J]. Journal of electrochemical society,2002,149(1):B4–B13P
    [94] Y. L. Song, Y. H. Liu, S. R. Yu, et al. Plasma electrolytic oxidation coating on AZ91magnesium alloy modified by neodymium and its corrosion resistance [J]. AppliedSurface Science,2008,254:3014–3020P
    [95] J. Liang, P. Bala Srinivasan, C. Blawert, et al. Influence of pH on the deterioration ofplasma electrolytic oxidation coated AM50magnesium alloy in NaCl solutions [J].Corrosion Science,2010,52:540–547P
    [96] Q. Z. Cai, L. S. Wang, B. K. Wei, et al. Electrochemical performance of microarcoxidation films formed on AZ91D magnesium alloy in silicate and phosphateelectrolytes [J]. Surface and Coatings Technology,2006,200:3727–3733P
    [97] J. Liang, B. G. Guo, J. Tian, et al. Effects of NaAlO2on structure and corrosionresistance of micro arc oxidation coatings formed on AM60B magnesium alloy inphosphate–KOH electrolyte [J]. Surface and Coatings Technology,2005,199:121–126P
    [98] W. Shang, B. Z. Chen, X. C. Shi, et al. Electrochemical corrosion behavior ofcomposite MAO/sol–gel coatings on magnesium alloy AZ91D using combinedmicro-arc oxidation and sol–gel technique [J]. Journal of Alloys and Compounds,2009,474:541–545P
    [99] Z. D. Wu, Z. P. Yao, Z. H. Jiang, et al. Preparation and structure of microarc oxidationceramic coatings containing ZrO2grown on LY12A1alloy [J]. Rare Metals,2008,27(1):55–58P
    [100] H. H. Luo, Q. Z. Cai, B. K. Wei, et al. Study on the microstructure and corrosionresistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasmaelectrolytic oxidation [J]. Journal of Alloys and Compounds,2009,474:551–556P
    [101] C. E. Barchiche, E. Rocca, J. Hazan. Corrosion behaviour of Sn-containing oxidelayer on AZ91D alloy formed by plasma electrolytic oxidation [J]. Surface and CoatingsTechnology,2008,202:4145–4152P
    [102] W. P. Li, L. Q. Zhu, Y. H. Li. Electrochemical oxidation characteristic of AZ91Dmagnesium alloy under the action of silica sol [J]. Surface and Coatings Technology,2006,201:1085–1092P
    [103] W. P. Li, L. Q. Zhu, H. C. Liu. Preparation of hydrophobic anodic film on AZ91Dmagnesium alloy in silicate solution containing silica sol [J]. Surface and CoatingsTechnology,2006,201:2573–2577P
    [104] J. Liu, Y. Lu, X. Jing, et al. Characterization of plasma electrolytic oxidation coatingsformed on Mg-Li alloy in an alkaline silicate electrolyte containing silica sol [J].Materials and Corrosion,2009,60(11):865–870P
    [105] M. Q. Tang, H. C. Liu, W. P. Li, et al. Effect of zirconia sol in electrolyte on thecharacteristics of microarc oxidation coating on AZ91D magnesium [J]. MaterialsLetters,2011,65:413–415P
    [106] M. Laleh, A. Sabour Rouhaghdam, T. Shahrabi, et al. Effect of alumina sol additionto micro-arc oxidation electrolyte on the properties of MAO coatings formed onmagnesium alloy AZ91D [J]. Journal of Alloys and Compounds,2010,496:548–552P
    [107] V. N. Malyshev, K. M. Zorin. Features of microarc oxidation coatings formationtechnology in slurry electrolytes [J]. Applied Surface Science,2007,254:1511–1516P
    [108] J. Ding, J. Ling, L. T. Hu, et al. Effects of sodium tungstate on characteristics ofmicro arc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte [J].Transactions of nonferrous metals society of China,2007,17:244–249P
    [109] F. Zhao, A. D. Liao, R. F. Zhang, et al. Effects of sodium tungstate on properties ofmicro-arc coatings on magnesium alloy [J]. Transactions of nonferrous metals society ofChina,2010,20:s683–687P
    [110]蒋百灵,赵仁兵,梁戈等.Na2WO4对铝合金微弧氧化陶瓷层形成过程及耐磨性的影响[J].材料导报,2006,20(9):155–157页
    [111] L. Wen, Y. M. Wang, Y. Zhou, et al. Corrosion evaluation of micro arc oxidationcoatings formed on2024aluminium alloy [J]. Corrosion Science.2010,52:2687–2696P
    [112] C. Z. Wang, D. Zhang, Y. F. Jiang. Growth process and wear resistance for ceramiccoatings formed on Al–Cu–Mg alloy by micro-arc oxidation [J]. Applied SurfaceScience,2006,253:674–678P
    [113] S. L. Sinebryukhov, A. S. Gnedenkov, D. V. Mashtalyar, et al. PEO-coating/substrateinterface investigation by localised electrochemical impedance spectroscopy [J]. Surfaceand Coatings Technology,2010,205:1697–1701P
    [114] R. Arrabal, A. Pardo, M. C. Merino, et al. Corrosion behaviour of a magnesiummatrix composite with a silicate plasma electrolytic oxidation coating [J]. CorrosionScience,2010,52:3738–3749P
    [115] R. Arrabal, E. Matykina, T. Hashimoto, et al. Characterization of AC PEO coatingson magnesium alloys [J]. Surface and Coatings Technology,2009,203:2207–2220P
    [116] S. J. Xia, R. Yue, R. G. Rateick, et al. Electrochemical studies of AC DC anodizedMg alloy in NaCl aolution [J]. Journal of The Electrochemical Society,2004,151(3):B179-B187P
    [117] Y. Chen, X. Nie, D. O. Northwood, Investigation of Plasma Electrolytic Oxidation(PEO) coatings on a Zr–2.5Nb alloy using high temperature/pressure autoclave andtribological tests [J]. Surface and Coatings Technology,2010,205:1774–1782P
    [118] A. L. Yerokhin, A. A. Voevodin, V. V. Lyubimov, et al. Plasma electrolyticfabrication of oxide ceramic surface layers for tribotechnical purposes on aluminiumalloys [J]. Surface and Coatings Technology,1998,110:140–146P
    [119] Z. J. Wang, L. Wu, Y. L. Qi, et al. In situ formation of Al2O3–SiO2–SnO2compositeceramic coating by microarc oxidation on Al–20%Sn alloy. Applied Surface Science,2010,256:3443–3447P
    [120] S. H. Cui, J. N. Han, Y. P. Du, et al. Corrosion resistance and wear resistance ofplasma electrolytic oxidation coatings on metal matrix composites [J]. Surface andCoatings Technology,2007,201:35306–5309P
    [121] X. Q. Wu, F. Q. Xie, Z. C. Hu, et al. Effects of additives on corrosion and wearresistance of micro-arc oxidation coatings on TiAl alloy [J]. Transactions of nonferrousmetals society of China,2010,20:1032–1036P
    [122] F. Y. Jin, K. Chu Paul, H. H. Tong, et al. Improvement of surface porosity andproperties of alumina films by incorporation of Fe micrograins in micro-arc oxidation[J]. Applied Surface Science,2006,253:863–868P
    [123] F. Chen, H. Zhou, C. Chen, et al. Study on the tribological performance of ceramiccoatings on titanium alloy surfaces obtained through microarc oxidation [J]. Progress inOrganic Coatings,2009,64:264–267P
    [124] Y. M. Wang, P. L. Jiang, L. X. Guo, et al. Tribological behavior of microarcoxidation coatings formed on titanium alloys against steel in dry and solid lubricationsliding [J]. Applied Surface Science,2006,252:2989–2998P
    [125] G. H. Lv, H. Chen, W. C. Gu, et al. Effects of graphite additives in electrolytes onthe microstructure and corrosion resistance of Alumina PEO coatings [J]. CurrentApplied Physics,2009,9:324–328P
    [126] X. H. Wu, W. Qin, Y. Guo, et al. Self-lubricative coating grown by micro-plasmaoxidation on aluminum alloys in the solution of aluminate–graphite [J]. Applied SurfaceScience,2008,254:6395–6399P
    [127] E. Arslan, Y. Totik, E. E. Demirci, et al. High temperature wear behavior ofaluminum oxide layers produced by AC micro arc oxidation [J]. Surface and CoatingsTechnology,2009,204:829–833P
    [128] J. Guo, L. P. Wang, J. Liang, et al. Tribological behavior of plasma electrolyticoxidation coating on magnesium alloy with oil lubrication at elevated temperature [J].Journal of Alloys and Compounds,2009,481:903–909P
    [129] Y. Y. Yan, Y. Han, J. J. Huang. Formation of Al2O3–ZrO2composite coating onzirconium by micro-arc oxidation [J]. Scripta Materialia,2008,59:203–206P
    [130] Z. J. Wang, L. N. Wu, Y. L. Qi, et al. Self-lubricating Al2O3/PTFE composite coatingformation on surface of aluminium alloy [J]. Surface and Coatings Technology,2010,204:3315–3318P
    [131]王远,周飞,张庆文等.Al2O3/CrNx复合膜的摩擦磨损特性[J].材料工程,2010,2:42–51页
    [132] F. Zhou, Y. Wang, H. Y. Ding, et al. Friction characteristic of micro-arc oxidativeAl2O3coatings sliding against Si3N4balls in various environments [J]. Surface andCoatings Technology,2008,202:3808–3814P
    [133] P. P. Sun, Y. Lu, Y. Yuan, et al. Preparation and characterization of duplex PEO/MoCcoatings on Mg–Li alloy [J]. Surface and Coatings Technology,2011,205:4500–4506P
    [134]孙蓬蓬.镁锂合金表面微弧氧化膜及复合涂层的制备与性能[D].哈尔滨工程大学硕士学位论文.2010,23–24页
    [135] L. Wen, Y. M. Wang, Y. Liu, et al. EIS study of a self-repairing microarc oxidationcoating [J]. Corrosion Science,2011,53:618–623P
    [136] J. H. Ouyang, Z. G. Yang, Z. G. Liu, et al. Friction and wear properties of reactivehot-pressed TiB2-TiN composites in sliding against Al2O3ball at elevated temperatures[J]. Wear,2011,271(9–10):1966–1973P
    [137] L. Kang, J. Gao, H. R. Xu, et al. WuEpitaxial Mg2SiO4thin films with a spinelstructure grown on Si substrates [J]. Journal of Crystal Growth,2006,297:100–104P
    [138]吴国松.镁合金表面PVD膜层的制备与腐蚀破坏[D].上海交通大学博士学位论文.2006,31–33P
    [139] L. F. Cheng, X. T. Zhang, B. Liu, et al. Template synthesis and characterization ofWO3/TiO2composite nanotubes [J]. Nanotechnology,2005,16:1343-1344P
    [140] Q. W. Li, G. A. Luo, J. Li, et al. Praparation of ultrafine MnO2powder by the solidstate method reaction of KMnO4with Mn(II) salts at room temperature [J]. Journal ofMaterials Processing Technology,2003,137:25–29P
    [141] D. Y. Hwang, Y. M. Kim, D. Y. Park, et al. Corrosion resistance of oxide layersformed on AZ91Mg alloy in KMnO4electrolyte by plasma electrolytic oxidation [J].Electrochimica Acta,2009,54:5479–5485P
    [142] Y. Q. Wang, M. Y. Zheng, K. Wu. Microarc oxidation coating formed on SiCw/AZ91magnesium matrix composite and its corrosion resistance [J]. Materials Letters,2005,59:1727–1731P
    [143] J. F. Moulder, W. F. Stickle, P. E. Sobol, et al. Handbook of X-ray PhotoelectronSpectroscopy [J]. Eden Prairie: Physical Electronics. Inc,1995:109P
    [144] J. F. Moulder, W. F. Stickle, P. E. Sobol, et al. Handbook of X-ray PhotoelectronSpectroscopy [J]. Eden Prairie: Physical Electronics. Inc,1995:73P
    [145]姚忠平.钛合金微等离子体氧化陶瓷膜的结构与耐腐蚀机制研究[D].哈尔滨工业大学博士学位论文2006,89-90P
    [146] C. L. Chang, C. W. Wu. Tribological and corrosion behaviors of TiSi(N,O) coatingsprepared by cathodic arc plasma deposition [J]. Thin Solid Films,2009,517:5219–5223
    [147] C. X. Ma, Y. Lu, P. P. Sun, et al. Characterization of plasma electrolytic oxidationcoatings formed on Mg–Li alloy in an alkaline polyphosphate electrolyte [J]. Surfaceand Coatings Technology,2011,206:287–294P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700