用户名: 密码: 验证码:
红景天苷对Aβ_(1~40)所致AD模型大鼠认知障碍的干预作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔兹海默病(Alzheimer’s disease, AD)是一种以渐进性记忆减退、认知障碍及人格改变为主要临床特征的中枢神经系统退行性变性疾病。AD的病因复杂,至今尚未完全明了。人们提出了诸多假说,如淀粉级联学说、tau蛋白异常修饰学说、胆碱能神经异常学说、代谢障碍学说、自由基与凋亡学说、兴奋性氨基酸毒性学说和基因突变学说等,但均不能完全解释AD的发病机理。随着研究的不断深入,人们逐渐意识到氧化应激、炎症这些人体内广泛存在的反应与AD的发病有着密不可分的联系。
     大量研究证实,β淀粉样蛋白(β-amyloid peptides, Aβ)在脑内的异常代谢和沉积是AD发病的中心环节。在Aβ刺激下小胶质细胞的活化、还原型烟酰胺腺嘌呤二核苷酸(reduced nicotinamide adenine dinucleotidephosphate,NADPH)氧化酶的激活、大量活性氧(reative oxygen species,ROS)的生成、有害自由基的产生、核因子-κB(nuclear factor-κB, NF-κB)的激活、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)及诱导型一氧化氮合酶(induced nitric oxide synthase, iNOS)等各种促炎因子的释放,都直接或间接导致了神经系统的损伤。越来越多的研究发现,在Aβ引起的一系列神经毒性作用导致神经细胞功能紊乱和死亡,并引发痴呆的进程中,脑内慢性炎症、氧化应激机制起着重要的作用。抗炎、抗氧化已成为防治AD的重要策略之一。
     高原红景天为景天科红景天属(Rhodiola)植物,为我国传统的名贵藏药材。现代研究表明红景天在抗氧化损伤、清除自由基和促进细胞代谢、增强细胞活力等方面有独特功效。近年来,红景天在增强脑功能、提高记忆力方面的作用逐渐受到重视。动物实验亦表明,其在痴呆相关领域的治疗上可能具有较好的应用前景。但红景天苷作为红景天的主要有效单体,其能否对抗Aβ产生的神经损伤,能否改善AD所致认知障碍以及通过何种具体机制发挥作用迄今尚无系统深入的研究。
     接受Aβ海马内注射的大鼠是较为成熟的AD模型,由于其较好地模拟了Aβ在脑内沉积的病理过程,较其它模型更为接近真实AD的进程。本研究通过建立Aβ诱导的AD动物模型,首次从行为学改变、代谢产物生成、酶学活性变化、蛋白表达激活、基因转录调控等多个层次上,较为系统地观察了红景天苷对Aβ1~40所致AD模型大鼠认知功能障碍的干预作用及其信号转导机制。
     1红景天苷对Aβ1~40所致AD模型大鼠认知障碍的干预作用
     目的:建立Aβ1~40诱导的AD动物模型,观察红景天苷对Aβ1~40所致认知障碍的干预作用。
     方法:Aβ1~40海马内注射制备AD大鼠模型,术后用不同剂量红景天苷(25mg·kg~(-1)、50mg·kg~(-1)、75mg·kg~(-1))及石杉碱甲(0.05mg·kg~(-1))分别灌胃治疗,每日1次共21日。自第17日开始,经Morris水迷宫评测大鼠学习记忆能力,历时5日。数据用xˉ±s表示,用SPSS统计分析软件进行统计学分析,组间资料应用重复测量的多因素方差分析,计数资料采用非参数的秩和检验,P<0.05为有显著性差异。
     结果:(1)定位航行实验中,在测试的5日(d1~d5)内所有大鼠的逃避潜伏期都呈缩短趋势。AD模型组较假手术组逃避潜伏期明显延长(P<0.01)。红景天苷25mg·kg~(-1)组逃避潜伏期均值较模型组有所下降,但d1、d2及d5差异均未达统计学显著性(P>0.05)。红景天苷50mg·kg~(-1)组及75mg·kg~(-1)组逃避潜伏期各d均较模型组明显缩短(P<0.05,P<0.01)。石杉碱甲组大鼠逃避潜伏期较模型组明显缩短(P<0.01),大致介于红景天苷50mg·kg~(-1)组及75mg·kg~(-1)组之间。从d5的定位航行轨迹图可看出:假手术组大鼠游泳路线清晰、目标明确,能在较短距离内找到平台。给予Aβ海马注射的大鼠寻找目标能力减弱,游泳路线繁乱、盲目、无序,需经较长距离才能找到平台。而给予红景天苷及石杉碱甲治疗的各组大鼠找到平台前的游泳距离缩短,寻找目标的能力得到改善,其中尤以红景天苷50mg·kg~(-1)组、75mg·kg~(-1)组及石杉碱甲组改善较为显著。(2)空间探索实验中,与假手术组相比,AD模型组大鼠在原平台所在象限搜索时间所占比值明显降低(P<0.01),搜索过程中跨过原平台所在位置的次数也显著减少(P<0.01),红景天苷25mg·kg~(-1)组大鼠在原平台所在象限搜索时间所占比值及跨平台次数均较模型组有所上升,但差异均未达统计学显著性(P>0.05)。红景天苷50mg·kg~(-1)组及、75mg·kg~(-1)组及石杉碱甲组大鼠在原平台所在象限搜索时间所占比值及跨平台次数均较模型组明显升高和增加(P<0.01,P<0.01),但未恢复至正常水平。
     结论:接受Aβ1~40双侧海马注射的大鼠,学习记忆能力明显下降,给予红景天苷治疗的AD大鼠,学习记忆能力的下降受到阻止。说明成功建立了Aβ1~40双侧海马注射诱导的AD大鼠模型。提示红景天苷对Aβ1~40诱导AD大鼠认知功能障碍具有改善作用。
     2红景天苷对Aβ1~40所致AD模型大鼠抗氧化能力的影响目的:氧化应激是不同原因诱发神经损伤及各种中枢神经系统功能退行性紊乱的共同通路。Aβ能够通过多种途径激发脑内的氧化应激,产生大量的ROS。本实验通过观察红景天苷对Aβ1~40所致AD模型大鼠海马组织总ROS生成、血清及海马SOD活性、血清及海马MDA含量来探讨红景天苷对Aβ1~40所致AD模型大鼠脑内氧化应激损伤的影响。同时测定海马AchE活性,对比红景天苷与石杉碱甲各自优势。
     方法:Aβ1~40海马内注射制备AD大鼠模型,术后给予红景天苷(50mg·kg~(-1))及石杉碱甲(0.05mg·kg~(-1))灌胃治疗,每日1次共21日。建模成功后,利用DCFH-DA作荧光探针,流式细胞技术测定AD模型大鼠海马组织总ROS生成,黄嘌呤氧化酶法测定大鼠血清及海马SOD活性,硫代巴比妥酸法测定大鼠血清及海马MDA含量,三硝基苯法测定大鼠海马AchE活性。数据用xˉ±s表示,用SPSS统计分析软件进行统计学分析,用ANOVA及LSD进行组间比较及两两比较,P<0.05为有显著性差异。
     结果:(1)与假手术组相比,AD模型组大鼠海马组织ROS含量明显增加(P<0.01)。给予红景天苷50mg·kg~(-1)·d-1治疗21日后,AD大鼠海马组织总ROS生成受到明显抑制(P<0.01),但未回到正常水平。给予石杉碱甲0.05mg·kg~(-1)·d-1治疗21日后,大鼠海马组织总ROS生成也受到明显抑制,与AD模型组相比差异达显著水平(P<0.01),但降低幅度不如红景天苷组。(2)与假手术组相比,AD模型组大鼠血清及海马SOD活性明显降低(P<0.01),给予红景天苷50mg·kg~(-1)·d-1治疗21日后,大鼠血清及海马SOD活性较AD模型组明显升高(P<0.01),但未回到正常水平。给予石杉碱甲0.05mg·kg~(-1)·d-1治疗21日后,大鼠血清SOD活性也较AD模型组明显升高,差异达显著水平(P<0.05),但升高幅度不如红景天苷组。(3)与假手术组相比,AD模型组大鼠血清及海马MDA含量明显升高(P<0.01),给予红景天苷50mg·kg~(-1)·d-1治疗21日后,大鼠血清及海马MDA含量较AD模型组明显降低(P<0.01),但未回到正常水平。给予石杉碱甲0.05mg·kg~(-1)·d-1治疗21日后,大鼠血清及海马MDA含量也较AD模型组明显降低,差异达显著水平(P<0.05),但降低幅度不如红景天苷组。(4)与假手术组相比,AD模型组大鼠海马AchE活性明显升高(P<0.01),给予石杉碱甲0.05mg·kg~(-1)·d-1治疗21日后,大鼠海马组织AchE活性较AD模型组明显降低(P<0.01),但未回到正常水平。给予红景天苷50mg·kg~(-1)·d-1治疗21日后,大鼠海马组织AchE活性也较AD模型组明显降低(P<0.05),但其降低幅度小于石杉碱甲组,只有石杉碱甲组的约50%。
     结论:红景天苷可能通过抑制Aβ1~40诱导的AD大鼠海马组织总ROS生成、提高血清及海马SOD活性、减少血清及海马MDA含量,从局部和整体提高了AD大鼠的抗氧化能力,减轻了神经组织氧化应激损伤。红景天苷与石杉碱甲在抗氧化损伤及抑制AchE活性能力方面各自具有不同的机制和优势。
     3红景天苷对Aβ1~40所致AD模型大鼠海马NADPH氧化酶-ROS通路的影响
     目的:NADPH氧化酶是细胞内ROS的主要来源。本实验通过观察NADPH氧化酶的表达与激活,对红景天苷抑制AD模型大鼠海马组织ROS产生的上游机制进行探讨。
     方法:Aβ1~40海马内注射制备AD大鼠模型,术后给予红景天苷(50mg·kg~(-1))灌胃治疗,每日1次共21日。建模成功后,用Westernblot检测大鼠海马组织中gp91phox及p47phox蛋白表达,用RT-PCR技术检测大鼠海马gp91phox及p47phoxmRNA水平,用免疫沉淀结合Westernblot分析检测大鼠海马组织中P47phox蛋白磷酸化水平。数据用xˉ±s表示,用SPSS统计分析软件进行统计学分析,用ANOVA及LSD进行组间比较及两两比较,P<0.05为有显著性差异。
     结果:(1)Western Bolt结果显示,Aβ1~40可诱导AD模型大鼠海马组织gp9lphox及p47phox蛋白表达,使其明显升高。AD模型组两种蛋白的含量分别是假手术组的2.39倍及2.71倍(P<0.01)。而给予红景天苷治疗后,大鼠海马组织gp9lphox及p47phox蛋白表达较AD模型组分别降低了32.6%及46.1%(P<0.01)。(2)RT-PCR结果显示,与假手术组相比,AD模型组大鼠海马组织gp9lphox及p47phoxmRNA表达明显升高,分别为假手术组mRNA水平的1.99倍及2.12倍(P<0.01)。而给予红景天苷治疗,能够明显抑制Aβ1~40的这种诱导效应。红景天苷组较AD模型组分别降低了36.5%及26.8%(P<0.01)。(3)IP-Western Bolt结果显示,假手术组p47phox的磷酸化水平相对较低,给予Aβ1~40刺激的AD模型组p47phox磷酸化水平较高,为假手术组的5.13倍,红景天苷治疗组p47phox的磷酸化水平明显降低,较AD模型组下降了44.5%,但未回到正常水平。
     结论:红景天苷能够抑制Aβphox1~40诱导的AD海马组织gp9l与p47phoxmRNA转录、蛋白表达及亚基活化。说明红景天苷抑制NADPH氧化酶产生ROS,可能是通过抑制其亚基表达和抑制其亚基激活,两者协同作用的结果。红景天苷通过对NADPH氧化酶-ROS通路的抑制,减轻了Aβ诱导的AD脑内氧化应激反应。
     4红景天苷对Aβ1~40所致AD模型大鼠海马ROS-NF-κB信号通路的影响
     目的:ROS的生成不但能够直接攻击神经元细胞,造成神经损伤,还可作为细胞内重要的信使,介导与活化多种信号转导通路,造成炎症反应,间接导致神经组织和细胞的损伤。NF-κB可由ROS激活,并促进多种炎性因子的转录。由Aβ-ROS-NF-κB再到下游炎性基因这条信号通路,在AD的炎性进程中具有重要的意义。本实验通过观察红景天苷对Aβ1~40所致AD模型大鼠海马ROS-NF-κB信号通路的影响,进一步揭示红景天苷抑制脑内炎性损伤的机制。
     方法:Aβ1~40海马内注射制备AD大鼠模型,术后给予红景天苷(50mg·kg~(-1))灌胃治疗,每日1次共21日。建模成功后,用免疫组化及Westernblot检测大鼠海马组织中NF-κB、IκBα蛋白表达,用RT-PCR技术检测大鼠海马NF-κB及IκBα mRNA水平,用Westernblot分析磷酸化NF-κB蛋白水平,用免疫沉淀结合Westernblot分析检测大鼠海马组织中IκBα蛋白磷酸化水平。数据用xˉ±s表示,用SPSS统计分析软件进行统计学分析,用ANOVA及LSD进行组间比较及两两比较,P<0.05为有显著性差异。
     结果:(1)免疫组化结果显示:假手术组大鼠海马组织内NF-κB染色阳性细胞少,着色浅。AD模型组海马组织细胞内NF-κB染色阳性细胞数明显增多,内含大量棕黄色阳性颗粒。红景天苷组阳性细胞数较AD模型组明显减少,着色变浅。Western Bolt结果亦显示,给予Aβ1~40海马注射后,AD模型组大鼠海马组织NF-κB蛋白表达较假手术组显著升高,为假手术组的2.43倍(P<0.01)。给予红景天苷治疗后,大鼠海马组织NF-κB蛋白表达较AD模型组降低了32.9%,差异显著(P<0.01)。(2)RT-PCR结果显示,与假手术组相比,AD模型组大鼠海马组织NF-κB mRNA表达明显升高,为假手术组的2.07倍(P<0.01)。给予红景天苷治疗后,大鼠海马组织NF-κB mRNA表达较AD模型组降低了35.9%(P<0.01)。(3)免疫组化对NF-κB蛋白的定位显示:假手术组大鼠海马组织仅有少数细胞胞浆内有NF-κB染色的棕黄色阳性颗粒,且着色浅,胞核内几乎未见染色。AD模型组海马细胞的胞浆与胞核中均可见大量棕黄色阳性颗粒分布,较假手术组明显增多,红景天苷组海马细胞的胞核中NF-κB阳性颗粒较AD模型组明显减少。IP-Western Bolt结果显示:假手术组大鼠海马组织中NF-κB的磷酸化水平相对较低,给予Aβ1~40的模型组大鼠海马组织中NF-κB磷酸化水平较高,为假手术组的4.91倍(P<0.01),红景天苷治疗组大鼠海马组织中NF-κB磷酸化水平明显降低,较AD模型组下降了53.5%(P<0.01),但未回到正常水平。(4)免疫组化结果显示:AD模型组大鼠海马组织细胞内IκBα阳性染色细胞数较假手术组明显减少,而红景天苷组IκBα阳性染色细胞数较AD模型组明显增多。Western blot结果亦显示给予Aβ1~40海马注射后,AD模型组大鼠海马组织内IκBα水平较假手术组明显下降,降幅达58.7%(P<0.01),给予红景天苷治疗后,大鼠海马组织IκBα水平明显回升,较AD模型组上升了99.2%(P<0.01)。(5)RT-PCR结果显示,与假手术组相比,AD模型组大鼠海马组织IκBα mRNA表达明显降低,降幅达62.7%(P<0.01)。给予红景天苷治疗后,大鼠海马IκBα mRNA表达较AD模型组升高了92.2%(P<0.01)。(6)IP-Western Bolt结果显示,假手术组IκBα的磷酸化水平相对较低,给予Aβ1~40的模型组大鼠海马组织中IκBα磷酸化水平较高,为假手术组的2.98倍,红景天苷治疗组大鼠海马IκBα的磷酸化水平明显降低,较AD模型组下降了33.4%。
     结论:一方面红景天苷通过抑制Aβ1~40诱导的NF-κB蛋白表达起到抑制ROS-NF-κB通路的作用,另一方面红景天苷通过抑制IκBα的磷酸化降解、增强IκBα的表达,起到抑制NF-κB激活进而抑制ROS-NF-κB通路的作用。这对于抑制Aβ介导的脑内炎症反应具有重要的意义。
     5红景天苷对Aβ1~40所致AD模型大鼠海马iNOS及RAGE表达的影响
     目的:iNOS及RAGE受到NF-κB的诱导表达后,不但自身能直接介导Aβ诱导的多种神经毒性作用,还能反过来再次激活NF-κB,放大炎性效应,造成恶性循环。本实验通过对iNOS及RAGE表达的观察,进一步探讨红景天苷对Aβ1~40所致AD模型大鼠脑内氧化应激及炎症反应的综合干预作用。
     方法:Aβ1~40海马内注射制备AD大鼠模型,术后给予红景天苷(50mg·kg~(-1))灌胃治疗,每日1次共21日。建模成功后,用免疫组化及Westernblot检测大鼠海马组织中iNOS及RAGE蛋白表达,用RT-PCR技术检测大鼠海马iNOS及RAGE mRNA水平。数据用ˉx±s表示,用SPSS统计分析软件进行统计学分析,用ANOVA及LSD进行组间比较及两两比较,P<0.05为有显著性差异。
     结果:(1)免疫组化结果显示:假手术组大鼠海马组织内iNOS染色阳性细胞少,着色浅。AD模型组海马组织细胞内iNOS染色阳性细胞数明显增多,内含大量棕黄色阳性颗粒。红景天苷组阳性细胞数较AD模型组明显减少,着色变浅。(2)Western Bolt结果亦显示,给予Aβ1~40海马注射后,AD模型大鼠海马组织iNOS蛋白表达较假手术组显著升高,为假手术组的3.72倍。(P<0.01)。给予红景天苷治疗后,大鼠海马组织iNOS蛋白表达较模型组降低了47.4%(P<0.01)。(3)RT-PCR结果显示,与假手术组相比,AD模型组大鼠海马组织内iNOS mRNA表达明显升高,为假手术组的2.08倍(P<0.01)。给予红景天苷治疗后,大鼠海马组织iNOS mRNA表达较模型组降低了37.0%(P<0.01)。(4)免疫组化结果显示:假手术组大鼠海马组织细胞内,几乎没有RAGE染色的棕黄色阳性颗粒。AD模型组海马细胞内RAGE染色阳性细胞数明显增多,红景天苷组RAGE染色阳性细胞数较AD模型组明显减少。(5)Western Bolt结果亦显示,给予Aβ1~40海马注射后,AD模型大鼠海马组织RAGE蛋白表达较假手术组显著升高,为假手术组的1.86倍。(P<0.01)。给予红景天苷治疗后,大鼠海马组织RAGE蛋白表达较模型组降低了31.4%(P<0.01)。(6)RT-PCR结果显示,与假手术组相比,AD模型组大鼠海马组织RAGE mRNA表达明显升高。为假手术组的1.65倍(P<0.01)。给予红景天苷治疗后,大鼠海马组织RAGEmRNA表达较模型组降低了23.8%(P<0.01)。
     结论:红景天苷通过抑制Aβ1~40诱导的大鼠海马组织内NF-κB-iNOS、NF-κB-RAGE信号通路及其反馈激活,遏制了氧化应激与炎性损伤相互作用、相互促进的恶性循环,对神经组织起到综合保护作用。
Alzheimer’s disease (AD) is a chronic progressive neurodegenerativedisorder. It is characterised clinically by progressive loss of memory,cognitive dysfunction and personality changes as the three primary groups ofsymptoms. Pathogenesis of AD is complex and not fully understood yet.People proposed various hypotheses with respect to etiology of AD,such asthe amyloid hypothesis, the tau proteins hypothesis, the cholinergic hypothesis,the dysmetabolism hypothesis, the free radicals and apoptosis hypothesis, theexcitatory amino acids hypothesis, the genic mutation hypothesis, et al.However, none of them can fully explain the pathogenesis of AD. With thedevelopment of research, people have come to realized that the oxidativestress, inflammation which are widespread reactions in the body haveinseparable connection with AD.
     Plenty of evidence shows that abnormal metabolism of β-amyloid (Aβ)peptides and accumulation of excessive Aβ plays a critical role in progress ofAD. Abnormal deposition of Aβ can activate microglia secreteproinflammatory molecules and cellular factors, induce nicotinamide adeninedinucleotide phosphate oxidase (NADPH oxidase) to generate reactive oxygenspecies (ROS), activate nuclear factor-κB (NF-κB), induce the expression oftumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS).These reactions exert direct or indirect injuries of nervous system. Increasingevidence demonstrates that Aβ caused a series of neurotoxic effect whichcause neuron disfunction, death and further lead to dementia. Chronicinflammation in the brain and oxidative stress played significant roles in thiscourse. Anti-inflammatory and anti-oxidative therapy has become one of themost important strategies for the prevention and treatment of AD.
     Plateau rhodiola is a perennial plant of Rhodiola family. It was a traditional famous Tibetan medicine. Researches show that rhodiola havespecial effects in preventing oxidative damage, scavenging free radicals,improving cell metabolism and enhancing cell vitality. Growing attention hasbeen received on it’s benefits of enhancing the brain function and improvingmemory, in the past few years. Animal experiments also showed that rhodiolamay have good prospects in the treatment of dementia and related fields.However, salidroside as the main effective component of rhodiola, its effectand mechanism on cognitive deficit of Alzheimer’s disease is still not clearand need systematic and profound researches.
     The rat received intrahippocampal injection of Aβ is a mature model forAD. This model is closer to the real pathological processes of AD than othermodels, because of its good simulation of Aβ deposition in the brain. Aim toexplore the potential effects of salidroside on cognitive impairment of AD andthe related molecular mechanism, this study established Aβ1~40induced ratsmodel of AD. Systematical investigations were first undertaken from theaspects of behavior changes, generation of metabolism products, enzymologychanges in activity, protein expression, transcriptional regulation and so on.
     1The effects of salidroside on cognitive deficits of AD model rats.
     Objective: To establish Aβ1~40induced rat models of AD and observethe effects of salidroside on cognitive deficits of these models.
     Methods: Male SD rats were randomly divided into6groups: shamcontrol group, AD model group, salidroside in small, medium and large dose(25mg·kg~(-1),50mg·kg~(-1),75mg·kg~(-1)) groups and huperzine A group(0.05mg·kg~(-1)). Aβ1~40was injected into bilateral hippocampus to create AD model.Rats were administered by gavage with salidroside for3weeks to determinethe protective and therapeutic effects on treatment rats. Morris water mazetesting system was undertaken to observe the changes of learning and memoryabilities in rats. Data were presented as xˉ±s and analyzed with multi-variatetest of repetitive measure ANOVA using SPSS statistical program.Enumeration data were analyzed with Rank sum test. A level of P<0.05wasconsidered statistically significant.
     Results:(1) The analysis of the place navigation trial showed that theescape latencies decreased from Day1to Day5in all groups. The AD modelrats displayed longer escape latencies than the rats of sham control group(P<0.01). The animals that treated with salidroside displayed significantlylower escape latencies than those in AD model group (P<0.01). But therewas no significant difference between salidroside(25mg·kg~(-1))-treated groupand AD model group at the day1,2and5(P>0.05). The animals inhuperzine A group displayed significantly lower escape latencies than those inAD model group (P<0.05). Representative navigation paths at day5oftraining demonstrated that spatial learning acquisition was impaired in theanimals of AD model group relative to animals of salidroside-treated groupand huperzine A group.(2) In the spatial probe trial, The AD model rats spentsignificantly less time in the quadrant where the platform was hidden thananimals in sham control group (P<0.01). The number of crossings to theprevious location of the platform was decreased in AD model group relative toanimals in sham control group (P<0.01). Animals treated with salidroside(25mg·kg~(-1)) spent more time in the target quadrant and showed moreplatform-passing times than animals in AD model group, but there was nosignificant difference between them (P>0.05). Animals in salidroside (50mg·kg~(-1),75mg·kg~(-1)) groups and huperzine A group spent more time in thetarget quadrant and showed statistically more platform-passing times thananimals in AD model group (P<0.01).
     Conclusions: The behavioural data obtained in the Morris water mazetest demonstrate that salidroside is able to protect animals from the memoryimpairments induced by intrahippocampal injection of Aβ1~40.
     2The effects of salidroside on anti-oxidative activities of AD modelrats.
     Objective: To observe the effects of salidroside on the generation of totalROS, the superoxide dismutase (SOD) activity, the malondialdehyde (MDA)level and the acetylcholinesterase (AChE) activity in serum and hippocampusof AD model rats.
     Methods: Male SD rats were randomly divided into4groups: sham control group, AD model group, salidroside (50mg·kg~(-1)) group and huperzineA group (0.05mg·kg~(-1)). Aβ1~40was injected into bilateral hippocampus tocreate AD model. Rats were administered by gavage with salidroside for3weeks. The generation of total ROS in hippocampus was determined by flowcytomertry technology, the superoxide dismutase (SOD) activity and themalondialdehyde (MDA) level in serum and hippocampus as well as theacetylcholinesterase (AChE) activity in serum were determined by separatebiochemical kit. Data were presented as xˉ±s and analyzed with ANOVA andLSD using SPSS statistical program. A level of P<0.05was consideredstatistically significant.
     Results:(1) The results showed animals received intrahippocampalinjection of Aβ1~40displayed a significantly enhancement of ROS productioncompared with the sham control group (P <0.01). The level of ROS wassignificantly inhibited after treated with salidroside or huperzine A incomparison with the AD model group (P <0.01, P <0.01). The inhibition ofROS by huperzine A was weaker than that by salidroside.(2) Animalsreceived intrahippocampal injection of Aβ1~40displayed a significantlydecrease of the SOD activity in serum and hippocampus compared with thesham control group (P <0.01). The SOD activity was significantly increasedafter treated with salidroside or huperzine A in comparison with the AD modelgroup (P <0.01, P <0.01). The increase of SOD activity by huperzine A wasweaker than that by salidroside.(3) Intrahippocampal injection of Aβ1~40induced significant increase of the MDA level in the serum and hippocampusof AD model group (P <0.01). On the other hand, we observed a significanttrend for decrease of the MDA level after salidroside or huperzine A treatmentin comparison with the AD model groups (P <0.01, P <0.05). The decrease ofthe MDA level by huperzine A was weaker than that by salidroside.(4) ADmodel group showed a significantly increase of the AChE activity inhippocampus compared with the sham control group (P <0.01). The AChEactivity was significantly inhibited after treated with salidroside or huperzineA in comparison with the AD model group (P <0.05, P <0.01). The inhibition of AChE activity by salidroside was weaker than that by huperzine A.
     Conclusions: Salidroside could significantly decrease the generation oftotal ROS in hippocampus, increase the SOD activity in serum andhippocampus, decrease the malondialdehyde (MDA) level in serum andhippocampus and inhibit the AChE activity in hippocampus of AD model rats.These effects enhanced the anti-oxidative activities and prevented the neuronaldamage from oxidative stress. There are different mechanisms and advantagesbetween salidroside and huperzine A on the effects of preventing oxidativedamage and suppressing AchE activity.
     3The effects of salidroside on NADPH oxidase-ROS signalpathway in hippocampus of AD model rats.
     Objective: NADPH oxidase is the main source of ROS in cells. In thepresent study, the expression and activation of NADPH oxidase inhippocampus of AD model rats were observed in order to elucidate the signalmechanism of salidroside on the suppressing generation of ROS.
     Methods: Male SD rats were randomly divided into3groups: shamcontrol group, AD model group, salidroside (50mg·kg~(-1)) group. Aβ1~40wasinjected into bilateral hippocampus to create AD model. Rats wereadministered by gavage with salidroside for3weeks. The expression level ofgp91phoxand p47phoxprotein in hippocampus of AD model rats weredetermined by Westernblot. The expression level of gp91phoxand p47phoxmRNA were assayed by means of RT-PCR. The phosphorylation level ofp47phoxprotein was detected by immuno precipitation analysis. Data werepresented as xˉ±s and analyzed with ANOVA and LSD using SPSS statisticalprogram. A level of P<0.05was considered statistically significant.
     Results:(1) Western blot analysis showed that the expression level ofgp91phoxand p47phoxprotein in hippocampus of AD model rats weresignificantly increased by2.39times and2.71times, compared with shamcontrol group (P<0.01). After treated with salidroside the expression levelof gp91phoxand p47phoxprotein in hippocampus of salidroside group weresignificantly inhibited by32.6%and46.1%respectively, in comparison with the AD model group (P<0.01).(2) RT-PCR analysis showed that theexpression level of gp91phoxand p47phoxmRNA in hippocampus of AD modelrats were significantly rosed by1.99times and2.12times, compared withsham control group (P<0.01). After treated with salidroside the expressionlevel of gp91phoxand p47phoxmRNA in hippocampus of salidroside group weresignificantly reduced by36.5%and26.8%respectively, in comparison withthe AD model group (P<0.01).(3) IP-Western Bolt analysis showed that thephosphorylation level of p47phoxprotein in hippocampus of AD model ratswere significantly increased by5.13times, compared with sham control group(P<0.01). After treated with salidroside the phosphorylation level of p47phoxprotein in hippocampus of salidroside group were significantly inhibited by44.5%respectively, in comparison with the AD model group (P<0.01).
     Conclusions: Salidroside could significantly decrease the genetranscription and protein expression as well as the subunit activation ofNADPH oxidase. The findings indicate that both the effects of suppressingsubunits expression and inhabiting subunit activation on NADPH oxidase,decreased the level of ROS in hippocampus, further reduced the oxidativedamage.
     4The effects of salidroside on ROS-NF-κB signal pathway inhippocampus of AD model rats.
     Objective: It has been demonstrated that activated microglia produceROS, which may induce or exacerbate neurotoxicity by causing oxidativestress to neurons. Studies also showed that ROS production was attributable tothe activation of NF-κB and consequent pro-inflammatory cytokines.Aβ-ROS-NF-κB signal pathway has been shown to play an important role inchronic inflammation during the onset and progression of AD. In the presentstudy, the activation of ROS-NF-κB signal pathway in hippocampus of ADmodel rats was observed in order to elucidate the signal mechanism ofsalidroside on the attenuation of inflammatory damage in the brain.
     Methods: Male SD rats were randomly divided into3groups: shamcontrol group, AD model group, salidroside (50mg·kg~(-1)) group. Aβ1~40was injected into bilateral hippocampus to create AD model. Rats wereadministered by gavage with salidroside for3weeks. The expression level ofNF-κB and IκBα protein in hippocampus of AD model rats were determinedby Westernblot and Immunohistochemical analysis. The expression level ofNF-κB and IκBα mRNA were assayed by means of RT-PCR. Thephosphorylation level of NF-κB protein was detected by Westernblot. Thephosphorylation level of IκBα protein was detected by immuno precipitationanalysis. Data were presented asˉx±s and analyzed with ANOVA and LSDusing SPSS statistical program. A level of P<0.05was consideredstatistically significant.
     Results:(1) Western blot analysis showed that the expression level ofNF-κB protein in hippocampus of AD model rats were significantly increasedby2.43times, compared with sham control group (P<0.01). After treatedwith salidroside the expression level of NF-κB protein in hippocampus ofsalidroside group were significantly inhibited by32.9%respectively, incomparison with the AD model group (P<0.01). Immunohistochemicalanalysis showed the same trend as shown in Western blot. The NF-κB positivecells were increased in AD Model group and decreased in salidroside group.(2) RT-PCR analysis showed that the expression level of NF-κB mRNA inhippocampus of AD model rats were significantly rosed by2.07timescompared with sham control group (P<0.01). After treated with salidrosidethe expression level of NF-κB mRNA in hippocampus of salidroside groupwere significantly reduced by35.9%respectively, in comparison with the ADmodel group (P<0.01).(3) Western Bolt analysis showed that thephosphorylation level of NF-κB protein in hippocampus of AD model ratswere significantly increased by4.91times, compared with sham control group(P<0.01). After treated with salidroside the phosphorylation level of NF-κBprotein in hippocampus of salidroside group were significantly inhibited by53.5%respectively, in comparison with the AD model group (P<0.01).(4)Western blot analysis showed that the expression level of IκBα protein inhippocampus of AD model rats were significantly decreased by58.7%, compared with sham control group (P<0.01). After treated with salidrosidethe expression level of IκBα protein in hippocampus of salidroside group weresignificantly rosed by99.2%respectively, in comparison with the AD modelgroup (P<0.01). Immunohistochemical analysis showed the same trend asshown in Western blot. The IκBα positive cells were decreased in AD Modelgroup and rosed in salidroside group.(5) RT-PCR analysis showed that theexpression level of IκBα mRNA in hippocampus of AD model rats weresignificantly reduced by62.7%compared with sham control group (P<0.01).After treated with salidroside the expression level of IκBα mRNA inhippocampus of salidroside group were significantly increased by92.2%respectively, in comparison with the AD model group (P<0.01).(6)IP-Western Bolt analysis showed that the phosphorylation level of IκBαprotein in hippocampus of AD model rats were significantly increased by2.98times, compared with sham control group (P<0.01). After treated withsalidroside the phosphorylation level of IκBα protein in hippocampus ofsalidroside group were significantly inhibited by33.4%respectively, incomparison with the AD model group (P<0.01).
     Conclusions: On the one hand salidroside could inhibit the ROS-NF-κBsignal pathway by reducing the NF-κB protein expression, on the other handsalidroside could inhibit the ROS-NF-κB signal pathway by reducing thephosphorylation level of IκBα protein and enhancing IκBα protein expression,both of which can inhibit the NF-κB activation. These effects have greatsignificance for attenuating Aβ-mediated inflammation in the brain.
     5The effects of salidroside on iNOS and RAGE expression inhippocampus of AD model rats.
     Objective: Excessive expression of iNOS and RAGE can be induced byNF-κB. These productions can not only mediate the neurotoxicity of Aβderectly by themselves, but also activate NF-κB again, which will amplify theinflammatory effects and resulted in vicious circles. In the present study, theexpression of iNOS and RAGE in hippocampus of AD model rats wereobserved in order to further elucidate the comprehensive intervention of salidroside on the oxidative stress and inflammation in the brain.
     Methods: Male SD rats were randomly divided into3groups: shamcontrol group, AD model group, salidroside (50mg·kg~(-1)) group. Aβ1~40wasinjected into bilateral hippocampus to create AD model. Rats wereadministered by gavage with salidroside for3weeks. The expression level ofiNOS and RAGE protein in hippocampus of AD model rats were determinedby Westernblot and Immunohistochemical analysis. The expression level ofiNOS and RAGE mRNA were assayed by means of RT-PCR. Data werepresented as xˉ±s and analyzed with ANOVA and LSD using SPSS statisticalprogram. A level of P<0.05was considered statistically significant.
     Results:(1) Western blot analysis showed that both the expression levelof iNOS and RAGE protein in hippocampus of AD model rats weresignificantly increased by3.72times and1.86times, compared with shamcontrol group (P<0.01). After treated with salidroside the expression levelof iNOS and RAGE protein in hippocampus of salidroside group weresignificantly inhibited by47.4%and31.4%respectively, in comparison withthe AD model group (P<0.01). Immunohistochemical analysis showed thesame trend as shown in Western blot. Both of the iNOS and RAGE positivecells were increased in AD Model group and decreased in salidroside group.(2) RT-PCR analysis showed that the expression level of iNOS and RAGEmRNA in hippocampus of AD model rats were significantly rosed by2.08times and1.65times compared with sham control group (P<0.01). Aftertreated with salidroside the expression level of iNOS and RAGE mRNA inhippocampus of salidroside group were significantly reduced by37.0%and23.8%respectively, in comparison with the AD model group (P<0.01).
     Conclusions: Salidroside could inhibit the activation of NF-κB-iNOSand NF-κB-RAGE signal pathways and their feedback loop in hippocampus ofAD model rats. All of these effects might suppress the interaction and thevicious cycle from mutual promotion between oxidative stress andinflammatory damage, that would give a comprehensive protection fornervous tissue.
引文
1Budson A E and Price B H. Memory dysfunction. N Engl J Med,2005.352(7):692-699
    2Katzman R. Alzheimer's disease. N Engl J Med,1986.314(15):964-973.
    3Hebert L E, Scherr P A, Bienias J L, et al. Alzheimer disease in the USpopulation: prevalence estimates using the2000census. Arch Neurol,2003.60:1119-1122
    4Wimo A, Jonsson L, and Winblad B. An estimate of the worldwideprevalence and direct costs of dementia in2003. Dement Geriatr CognDisord,2006.21:175-181
    5Francis P T, Palmer A M, Snape M, et al. The cholinergic hypothesis ofAlzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry,1999.66(2):137-147
    6Hardy J and Selkoe D J. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science,2002.297(5580):353-356
    7Maccioni R B, Farias G, Morales I, et al. The revitalized tau hypothesison Alzheimer's disease. Arch Med Res,2010.41(3):226-231
    8Rasgon N and Jarvik L. Insulin resistance, affective disorders, andAlzheimer's disease: review and hypothesis. J Gerontol A Biol Sci MedSci,2004.59(2):178-183; discussion184-192
    9Finch C E and Cohen D M. Aging, metabolism, and Alzheimer disease:review and hypotheses. Exp Neurol,1997.143(1):82-102
    10Volicer L and Crino P B. Involvement of free radicals in dementia of theAlzheimer type: a hypothesis. Neurobiol Aging,1990.11(5):567-571
    11Tatton W, Chen D, Chalmers-Redman R, et al. Hypothesis for a commonbasis for neuroprotection in glaucoma and Alzheimer's disease:anti-apoptosis by alpha-2-adrenergic receptor activation. SurvOphthalmol,2003.48Suppl1: S25-37
    12Csernansky J G, Bardgett M E, Sheline Y I, et al. CSF excitatory aminoacids and severity of illness in Alzheimer's disease. Neurology,1996.46(6):1715-1720
    13Squitti R and Polimanti R. Copper Hypothesis in the MissingHereditability of Sporadic Alzheimer's Disease: ATP7B Gene asPotential Harbor of Rare Variants. J Alzheimers Dis,2012.29(3):493-501
    14Varadarajan S, Yatin S, Aksenova M, et al. Review: Alzheimer's amyloidbeta-peptide-associated free radical oxidative stress and neurotoxicity. JStruct Biol,2000.130(2-3):184-208
    15Askarova S, Yang X, Sheng W, et al. Role of Abeta-receptor foradvanced glycation endproducts interaction in oxidative stress andcytosolic phospholipase A activation in astrocytes and cerebralendothelial cells. Neuroscience,2011.199:375-385
    16Choi S H, Aid S, Kim H W, et al. Inhibition of NADPH oxidasepromotes alternative and anti-inflammatory microglial activation duringneuroinflammation. J Neurochem,2012.120(2):292-301
    17Huang T C, Lu K T, Wo Y Y, et al. Resveratrol protects rats fromAbeta-induced neurotoxicity by the reduction of iNOS expression andlipid peroxidation. PLoS One,2011.6(12): e29102
    18Nam J H, Park K W, Park E S, et al. Interleukin-13/-4-Induced OxidativeStress Contributes to Death of Hippocampal Neurons inAbeta(1-42)-Treated Hippocampus in Vivo. Antioxid Redox Signal,2012
    19Smits H A, de Vos N M, Wat J W, et al. Intracellular pathways involvedin TNF-alpha and superoxide anion release by Abeta(1-42)-stimulatedprimary human macrophages. J Neuroimmunol,2001.115(1-2):144-151
    20Combs C K, Karlo J C, Kao S C, et al. beta-Amyloid stimulation ofmicroglia and monocytes results in TNFalpha-dependent expression ofinducible nitric oxide synthase and neuronal apoptosis. J Neurosci,2001.21(4):1179-1188
    21Schubert D, Behl C, Lesley R, et al. Amyloid peptides are toxic via acommon oxidative mechanism. Proc Natl Acad Sci U S A,1995.92(6):1989-1993
    22Markesbery W R. Oxidative stress hypothesis in Alzheimer's disease.Free Radic Biol Med,1997.23(1):134-147
    23Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation anddisease progression in Alzheimer disease. Neurology,2009.73(10):768-774
    24Wyss-Coray T and Rogers J. Inflammation in Alzheimer disease-a briefreview of the basic science and clinical literature. Cold Spring HarbPerspect Med,2012.2(1): a006346
    25Marchesi V T. Alzheimer's dementia begins as a disease of small bloodvessels, damaged by oxidative-induced inflammation and dysregulatedamyloid metabolism: implications for early detection and therapy.FASEB J,2011.25(1):5-13
    26李浩.藏药红景天药理学研究进展.海峡药学,2008(10):5-8
    27王晓梅,吴焕淦,赵琛,等.红景天抗衰老作用研究概况.江苏中医药,2006(04):60-62
    28朱爱琴,张鑫生,滕长青,等.红景天对阿尔茨海默病APP-C100转基因小鼠的影响.中国老年学杂志,2004(06):530-533
    29陈燕清,郝志红.红景天对血管性痴呆大鼠血清SOD、MDA及海马组织白细胞介素-1β影响的实验研究.世界中西医结合杂志,2010(10):846-848
    30曹娟,董联玲,冀俊虎,等.红景天对老年性痴呆大鼠行为学及海马区凋亡相关蛋白表达的影响.中国中医急症,2008(11):1567-1569
    31Frautschy S A, Baird A, and Cole G M. Effects of injected Alzheimerbeta-amyloid cores in rat brain. Proc Natl Acad Sci U S A,1991.88(19):8362-8366
    32Cancino G I, Toledo E M, Leal N R, et al. STI571prevents apoptosis, tauphosphorylation and behavioural impairments induced by Alzheimer'sbeta-amyloid deposits. Brain,2008.131(Pt9):2425-2442
    33Jorm A F, Korten A E, and Henderson A S. The prevalence of dementia:a quantitative integration of the literature. Acta Psychiatr Scand,1987.76(5):465-479
    34De Strooper B and Annaert W. Proteolytic processing and cell biologicalfunctions of the amyloid precursor protein. J Cell Sci,2000.113(Pt11):1857-1870
    35张晓丹,余自云,张茹.红景天属植物的化学成分研究进展.航空航天医药,2006(01):61-63
    36高明信,马维平.红景天药理作用研究进展.甘肃联合大学学报(自然科学版),2008(06):68-72
    37颜菡,唐希灿.石杉碱甲国内临床应用回顾.中国新药与临床杂志,2006(09):682-688
    38Morris R. Developments of a water-maze procedure for studying spatiallearning in the rat. J Neurosci Methods,1984.11(1):47-60
    39刘孟华,李沛波,苏薇薇.红景天化学成分及其药理作用研究进展.中南药学,2006(06):463-466
    40Maurice T, Lockhart B P, and Privat A. Amnesia induced in mice bycentrally administered beta-amyloid peptides involves cholinergicdysfunction. Brain Res,1996.706(2):181-193
    41Giovannelli L, Casamenti F, Scali C, et al. Differential effects of amyloidpeptides beta-(1-40) and beta-(25-35) injections into the rat nucleusbasalis. Neuroscience,1995.66(4):781-792
    42McLarnon J G and Ryu J K. Relevance of abeta1-42intrahippocampalinjection as an animal model of inflamed Alzheimer's disease brain. CurrAlzheimer Res,2008.5(5):475-480
    43Mattson M P. Pathways towards and away from Alzheimer's disease.Nature,2004.430(7000):631-639
    44Chromy B A, Nowak R J, Lambert M P, et al. Self-assembly ofAbeta(1-42) into globular neurotoxins. Biochemistry,2003.42(44):12749-12760
    45McDonald D R, Brunden K R, and Landreth G E. Amyloid fibrilsactivate tyrosine kinase-dependent signaling and superoxide productionin microglia. J Neurosci,1997.17:2284-2294
    46Bitting L, Naidu A, Cordell B, et al. Beta-amyloid peptide secretion by amicroglial cell line is induced by beta-amyloid-(25-35) andlipopolysaccharide. J Biol Chem,1996.271(27):16084-16089
    47Tamagno E, Parola M, Bardini P, et al. Beta-site APP cleaving enzymeup-regulation induced by4-hydroxynonenal is mediated bystress-activated protein kinases pathways. J Neurochem,2005.92(3):628-636
    1Markesbery W R. The role of oxidative stress in Alzheimer disease. ArchNeurol,1999.56(12):1449-1452
    2Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr,2000.71(2):621S-629S
    3Ding Q, Dimayuga E, and Keller J N. Oxidative damage, proteinsynthesis, and protein degradation in Alzheimer's disease. CurrAlzheimer Res,2007.4(1):73-79
    4Simpson J E, Ince P G, Haynes L J, et al. Population variation inoxidative stress and astrocyte DNA damage in relation to Alzheimer-typepathology in the ageing brain. Neuropathol Appl Neurobiol,2010.36(1):25-40
    5Cutler R G, Kelly J, Storie K, et al. Involvement of oxidativestress-induced abnormalities in ceramide and cholesterol metabolism inbrain aging and Alzheimer's disease. Proc Natl Acad Sci U S A,2004.101(7):2070-2075
    6Lovell M A, Ehmann W D, Butler S M, et al. Elevated thiobarbituricacid-reactive substances and antioxidant enzyme activity in the brain inAlzheimer's disease. Neurology,1995.45(8):1594-1601
    7Pamplona R, Dalfo E, Ayala V, et al. Proteins in human brain cortex aremodified by oxidation, glycoxidation, and lipoxidation. Effects ofAlzheimer disease and identification of lipoxidation targets. J Biol Chem,2005.280(22):21522-21530
    8Hensley K, Carney J M, Mattson M P, et al. A model for beta-amyloidaggregation and neurotoxicity based on free radical generation by thepeptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A,1994.91(8):3270-3274
    9Kadowaki H, Nishitoh H, Urano F, et al. Amyloid beta induces neuronalcell death through ROS-mediated ASK1activation. Cell Death Differ,2005.12(1):19-24
    10Hamel E, Nicolakakis N, Aboulkassim T, et al. Oxidative stress andcerebrovascular dysfunction in mouse models of Alzheimer's disease.Exp Physiol,2008.93(1):116-120
    11McLellan M E, Kajdasz S T, Hyman B T, et al. In vivo imaging ofreactive oxygen species specifically associated with thioflavineS-positive amyloid plaques by multiphoton microscopy. J Neurosci,2003.23(6):2212-2217
    12Aslan M and Ozben T. Reactive oxygen and nitrogen species inAlzheimer's disease. Curr Alzheimer Res,2004.1(2):111-119
    13Taupin P. A dual activity of ROS and oxidative stress on adultneurogenesis and Alzheimer's disease. Cent Nerv Syst Agents Med Chem,2010.10(1):16-21
    14Johnson D, Allman E, and Nehrke K. Regulation of acid-basetransporters by reactive oxygen species following mitochondrialfragmentation. Am J Physiol Cell Physiol,2012.302(7): C1045-1054
    15Knight J A. Reactive oxygen species and the neurodegenerative disorders.Ann Clin Lab Sci,1997.27(1):11-25
    16Zhou L J and Zhu X Z. Reactive oxygen species-induced apoptosis inPC12cells and protective effect of bilobalide. J Pharmacol Exp Ther,2000.293(3):982-988
    17Tsan M F. Superoxide dismutase and pulmonary oxygen toxicity. ProcSoc Exp Biol Med,1997.214(2):107-113
    18Cuzzocrea S, Riley D P, Caputi A P, et al. Antioxidant therapy: a newpharmacological approach in shock, inflammation, andischemia/reperfusion injury. Pharmacol Rev,2001.53(1):135-159
    19Burcham P C. Genotoxic lipid peroxidation products: their DNAdamaging properties and role in formation of endogenous DNA adducts.Mutagenesis,1998.13(3):287-305
    20Ahmad R, Tripathi A K, Tripathi P, et al. Malondialdehyde and proteincarbonyl as biomarkers for oxidative stress and disease progression inpatients with chronic myeloid leukemia. In Vivo,2008.22(4):525-528
    21Greilberger J, Koidl C, Greilberger M, et al. Malondialdehyde, carbonylproteins and albumin-disulphide as useful oxidative markers in mildcognitive impairment and Alzheimer's disease. Free Radic Res,2008.42(7):633-638
    22Du Y, Wooten M C, and Wooten M W. Oxidative damage to thepromoter region of SQSTM1/p62is common to neurodegenerativedisease. Neurobiol Dis,2009.35(2):302-310
    23Bennett S, Grant M M, and Aldred S. Oxidative stress in vasculardementia and Alzheimer's disease: a common pathology. J AlzheimersDis,2009.17(2):245-257
    24Thevenod F, Friedmann J M, Katsen A D, et al. Up-regulation ofmultidrug resistance P-glycoprotein via nuclear factor-kappaB activationprotects kidney proximal tubule cells from cadmium-and reactiveoxygen species-induced apoptosis. J Biol Chem,2000.275(3):1887-1896
    25Petroni D, Tsai J, Agrawal K, et al. Low-dose methylmercury-inducedoxidative stress, cytotoxicity, and tau-hyperphosphorylation in humanneuroblastoma (SH-SY5Y) cells. Environ Toxicol,2011
    26Perskvist N, Long M, Stendahl O, et al. Mycobacterium tuberculosispromotes apoptosis in human neutrophils by activating caspase-3andaltering expression of Bax/Bcl-xL via an oxygen-dependent pathway. JImmunol,2002.168(12):6358-6365
    27邹琛,吴翔,姜敏辉,等.红景天甙对乳鼠心肌细胞过氧化损伤的保护作用.南通医学院学报,2003(04):391-393
    28曲智威,吴胜东,王淑兰,等.红景天甙对老龄大鼠肝脏的抗衰老实验研究.吉林中医药,1996(01):39-40
    29Stone W L and Papas A M. Tocopherols and the etiology of colon cancer.J Natl Cancer Inst,1997.89(14):1006-1014
    30Kaemmerer E, Schutt F, Krohne T U, et al. Effects of lipidperoxidation-related protein modifications on RPE lysosomal functionsand POS phagocytosis. Invest Ophthalmol Vis Sci,2007.48(3):1342-1347
    31Berlett B S and Stadtman E R. Protein oxidation in aging, disease, andoxidative stress. J Biol Chem,1997.272(33):20313-20316
    32Zhang Y, Chen S Y, Hsu T, et al. Immunohistochemical detection ofmalondialdehyde-DNA adducts in human oral mucosa cells.Carcinogenesis,2002.23(1):207-211
    33Engelhardt J I, Le W D, Siklos L, et al. Stereotaxic injection of IgG frompatients with Alzheimer disease initiates injury of cholinergic neurons ofthe basal forebrain. Arch Neurol,2000.57(5):681-686
    34Mesulam M. The cholinergic lesion of Alzheimer's disease: pivotal factoror side show? Learn Mem,2004.11(1):43-49
    35章海燕,唐希灿.石杉碱甲:具有治疗神经退行性疾病的前景药物.上海医药,2003(03):112-120
    36Rubin L L. Increases in muscle Ca2+mediate changes inacetylcholinesterase and acetylcholine receptors caused by musclecontraction. Proc Natl Acad Sci U S A,1985.82(20):7121-7125
    37Mattson M P. Degenerative and protective signaling mechanisms in theneurofibrillary pathology of AD. Neurobiol Aging,1995.16(3):447-457;discussion458-463
    38Melo J B, Agostinho P, and Oliveira C R. Involvement of oxidative stressin the enhancement of acetylcholinesterase activity induced by amyloidbeta-peptide. Neurosci Res,2003.45(1):117-127
    1Satoh M, Fujimoto S, Haruna Y, et al. NAD(P)H oxidase and uncouplednitric oxide synthase are major sources of glomerular superoxide in ratswith experimental diabetic nephropathy. Am J Physiol Renal Physiol,2005.288(6): F1144-1152
    2Bianca V D, Dusi S, Bianchini E, et al. beta-amyloid activates the O-2forming NADPH oxidase in microglia, monocytes, and neutrophils. Apossible inflammatory mechanism of neuronal damage in Alzheimer'sdisease. J Biol Chem,1999.274(22):15493-15499
    3Brandes R P and Kreuzer J. Vascular NADPH oxidases: molecularmechanisms of activation. Cardiovasc Res,2005.65(1):16-27
    4Geiszt M. NADPH oxidases: new kids on the block. Cardiovasc Res,2006.71(2):289-299
    5Sheppard F R, Kelher M R, Moore E E, et al. Structural organization ofthe neutrophil NADPH oxidase: phosphorylation and translocation duringpriming and activation. J Leukoc Biol,2005.78(5):1025-1042
    6Heyworth P G, Curnutte J T, Nauseef W M, et al. Neutrophilnicotinamide adenine dinucleotide phosphate oxidase assembly.Translocation of p47-phox and p67-phox requires interaction betweenp47-phox and cytochrome b558. J Clin Invest,1991.87(1):352-356
    7Hordijk P L. Regulation of NADPH oxidases: the role of Rac proteins.Circ Res,2006.98(4):453-462
    8Van Heerebeek L, Meischl C, Stooker W, et al. NADPH oxidase(s): newsource(s) of reactive oxygen species in the vascular system? J Clin Pathol,2002.55(8):561-568
    9Han M, Li A Y, Meng F, et al. Synergistic co-operation of signaltransducer and activator of transcription5B with activator protein1inangiotensin II-induced angiotensinogen gene activation in vascularsmooth muscle cells. FEBS J,2009.276(6):1720-1728
    10Jiang F, Zhang Y, and Dusting G J. NADPH oxidase-mediated redoxsignaling: roles in cellular stress response, stress tolerance, and tissuerepair. Pharmacol Rev,2011.63(1):218-242
    11Gorlach A, Brandes R P, Nguyen K, et al. A gp91phox ContainingNADPH Oxidase Selectively Expressed in Endothelial Cells Is a MajorSource of Oxygen Radical Generation in the Arterial Wall. Circ. Res.,2000.87(1):26-32
    12Hou F F, Boyce J, Zhang Y, et al. Phenotypic and functionalcharacteristics of macrophage-like cells differentiated inpro-inflammatory cytokine-containing cultures. Immunol Cell Biol,2000.78(3):205-213
    13Kang J L, Pack I S, Hong S M, et al. Silica induces nuclear factor-kappaB activation through tyrosine phosphorylation of I kappa B-alpha inRAW264.7macrophages. Toxicol Appl Pharmacol,2000.169(1):59-65
    14Abramov A Y, Jacobson J, Wientjes F, et al. Expression and modulationof an NADPH oxidase in mammalian astrocytes. J Neurosci,2005.25(40):9176-9184
    15Abramov A Y, Canevari L, and Duchen M R. Beta-amyloid peptidesinduce mitochondrial dysfunction and oxidative stress in astrocytes anddeath of neurons through activation of NADPH oxidase. J Neurosci,2004.24(2):565-575
    16Wilkinson B L and Landreth G E. The microglial NADPH oxidasecomplex as a source of oxidative stress in Alzheimer's disease. JNeuroinflammation,2006.3:30
    17Zhou J, Zhang S, Zhao X, et al. Melatonin impairs NADPH oxidaseassembly and decreases superoxide anion production in microgliaexposed to amyloid-beta1-42. J Pineal Res,2008.45(2):157-165
    18Ma T, Hoeffer C A, Wong H, et al. Amyloid beta-induced impairments inhippocampal synaptic plasticity are rescued by decreasing mitochondrialsuperoxide. J Neurosci,2011.31(15):5589-5595
    19Costantini T W, Deree J, Peterson C Y, et al. Pentoxifylline modulatesp47phox activation and downregulates neutrophil oxidative burst throughPKA-dependent and-independent mechanisms. ImmunopharmacolImmunotoxicol,2010.32(1):82-91
    20Fontayne A, Dang P M, Gougerot-Pocidalo M A, et al. Phosphorylationof p47phox sites by PKC alpha, beta II, delta, and zeta: effect on bindingto p22phox and on NADPH oxidase activation. Biochemistry,2002.41(24):7743-7750
    21Sun C, Zubcevic J, Polson J W, et al. Shift to an involvement ofphosphatidylinositol3-kinase in angiotensin II actions on nucleus tractussolitarii neurons of the spontaneously hypertensive rat. Circ Res,2009.105(12):1248-1255
    22Zou T, Yang W, Hou Z, et al. Homocysteine enhances cell proliferationin vascular smooth muscle cells: role of p38MAPK and p47phox. ActaBiochim Biophys Sin (Shanghai),2010.42(12):908-915
    1Griffin W S. Inflammation and neurodegenerative diseases. Am J ClinNutr,2006.83(2):470S-474S
    2Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation anddisease progression in Alzheimer disease. Neurology,2009.73(10):768-774
    3Zandi E and Karin M. Bridging the gap: composition, regulation, andphysiological function of the IkappaB kinase complex. Mol Cell Biol,1999.19(7):4547-4551
    4Zhu H and Li Y R. Oxidative stress and redox signaling mechanisms ofinflammatory bowel disease: updated experimental and clinical evidence.Exp Biol Med (Maywood),2012
    5Berliner J A, Navab M, Fogelman A M, et al. Atherosclerosis: basicmechanisms. Oxidation, inflammation, and genetics. Circulation,1995.91(9):2488-2496
    6DangLi R, HeKong W, JiQin L, et al. ROS-induced ZNF580expression:a key role for H2O2/NF-kappaB signaling pathway in vascularendothelial inflammation. Mol Cell Biochem,2012.359(1-2):183-191
    7Shen S, Callaghan D, Juzwik C, et al. ABCG2reduces ROS-mediatedtoxicity and inflammation: a potential role in Alzheimer's disease. JNeurochem,2010.114(6):1590-1604
    8Israel A. The IKK complex: an integrator of all signals that activateNF-kappaB? Trends Cell Biol,2000.10(4):129-133
    9Karin M and Ben-Neriah Y. Phosphorylation meets ubiquitination: thecontrol of NF-[kappa]B activity. Annu Rev Immunol,2000.18:621-663
    10Behl C and Sagara Y. Mechanism of amyloid beta protein inducedneuronal cell death: current concepts and future perspectives. J NeuralTransm Suppl,1997.49:125-134
    11Kang J, Park E J, Jou I, et al. Reactive oxygen species mediate Abeta(25-35)-induced activation of BV-2microglia. Neuroreport,2001.12(7):1449-1452
    12Franciosi S, Ryu J K, Choi H B, et al. Broad-spectrum effects of4-aminopyridine to modulate amyloid beta1-42-induced cell signalingand functional responses in human microglia. J Neurosci,2006.26(45):11652-11664
    13Rah J C, Kim H S, Kim S S, et al. Effects of carboxyl-terminal fragmentof Alzheimer's amyloid precursor protein and amyloid beta-peptide onthe production of cytokines and nitric oxide in glial cells. FASEB J,2001.15(8):1463-1465
    14Pan X D, Chen X C, Zhu Y G, et al. Tripchlorolide protects neuronalcells from microglia-mediated beta-amyloid neurotoxicity throughinhibiting NF-kappaB and JNK signaling. Glia,2009.57(11):1227-1238
    15Giri R K, Rajagopal V, and Kalra V K. Curcumin, the active constituentof turmeric, inhibits amyloid peptide-induced cytochemokine geneexpression and CCR5-mediated chemotaxis of THP-1monocytes bymodulating early growth response-1transcription factor. J Neurochem,2004.91(5):1199-1210
    16Xanthoulea S, Curfs D M, Hofker M H, et al. Nuclear factor kappa Bsignaling in macrophage function and atherogenesis. Curr Opin Lipidol,2005.16(5):536-542
    17Baeuerle P A and Baltimore D. I kappa B: a specific inhibitor of theNF-kappa B transcription factor. Science,1988.242(4878):540-546
    18Chen C C, Rosenbloom C L, Anderson D C, et al. Selective inhibition ofE-selectin, vascular cell adhesion molecule-1, and intercellular adhesionmolecule-1expression by inhibitors of I kappa B-alpha phosphorylation.J Immunol,1995.155(7):3538-3545
    19Yates L L and Gorecki D C. The nuclear factor-kappaB (NF-kappaB):from a versatile transcription factor to a ubiquitous therapeutic target.Acta Biochim Pol,2006.53(4):651-662
    20Lezoualc'h F, Sagara Y, Holsboer F, et al. High constitutive NF-kappaBactivity mediates resistance to oxidative stress in neuronal cells. JNeurosci,1998.18(9):3224-3232
    21Shen J, Yang M, Ju D, et al. Disruption of SM22promotes inflammationafter artery injury via nuclear factor kappaB activation. Circ Res,2010.106(8):1351-1362
    22Baldwin A S, Jr. Series introduction: the transcription factor NF-kappaBand human disease. J Clin Invest,2001.107(1):3-6
    23Zhong H, SuYang H, Erdjument-Bromage H, et al. The transcriptionalactivity of NF-kappaB is regulated by the IkappaB-associated PKAcsubunit through a cyclic AMP-independent mechanism. Cell,1997.89(3):413-424
    24Bohuslav J, Chen L F, Kwon H, et al. p53induces NF-kappaB activationby an IkappaB kinase-independent mechanism involving phosphorylationof p65by ribosomal S6kinase1. J Biol Chem,2004.279(25):26115-26125
    25Wang D and Baldwin A S, Jr. Activation of nuclearfactor-kappaB-dependent transcription by tumor necrosis factor-alpha ismediated through phosphorylation of RelA/p65on serine529. J BiolChem,1998.273(45):29411-29416
    26Anest V, Hanson J L, Cogswell P C, et al. A nucleosomal function forIkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature,2003.423(6940):659-663
    27May M J and Ghosh S. Signal transduction through NF-kappa B.Immunol Today,1998.19(2):80-88
    28Shishodia S, Koul D, and Aggarwal B B. Cyclooxygenase (COX)-2inhibitor celecoxib abrogates TNF-induced NF-kappa B activationthrough inhibition of activation of I kappa B alpha kinase and Akt inhuman non-small cell lung carcinoma: correlation with suppression ofCOX-2synthesis. J Immunol,2004.173(3):2011-2022
    1Bogdan C. Nitric oxide and the immune response. Nat Immunol,2001.2(10):907-916
    2Nakanishi H, Zhang J, Koike M, et al. Involvement of nitric oxidereleased from microglia-macrophages in pathological changes ofcathepsin D-deficient mice. J Neurosci,2001.21(19):7526-7533
    3Crowell J A, Steele V E, Sigman C C, et al. Is inducible nitric oxidesynthase a target for chemoprevention? Mol Cancer Ther,2003.2(8):815-823
    4Bloodsworth A, O'Donnell V B, and Freeman B A. Nitric oxideregulation of free radical-and enzyme-mediated lipid and lipoproteinoxidation. Arterioscler Thromb Vasc Biol,2000.20(7):1707-1715
    5Min K J, Yang M S, Kim S U, et al. Astrocytes induce hemeoxygenase-1expression in microglia: a feasible mechanism for preventing excessivebrain inflammation. J Neurosci,2006.26(6):1880-1887
    6Lee H, Kim Y O, Kim H, et al. Flavonoid wogonin from medicinal herbis neuroprotective by inhibiting inflammatory activation of microglia.FASEB J,2003:03-0057fje
    7Xiong S, She H, Takeuchi H, et al. Signaling role of intracellular iron inNF-kappaB activation. J Biol Chem,2003.278(20):17646-17654
    8Medeiros R, Prediger R D, Passos G F, et al. Connecting TNF-alphasignaling pathways to iNOS expression in a mouse model of Alzheimer'sdisease: relevance for the behavioral and synaptic deficits induced byamyloid beta protein. J Neurosci,2007.27(20):5394-5404
    9Ramasamy R, Yan S F, and Schmidt A M. RAGE: therapeutic target andbiomarker of the inflammatory response--the evidence mounts. J LeukocBiol,2009.86(3):505-512
    10Yan S D, Chen X, Fu J, et al. RAGE and amyloid-beta peptideneurotoxicity in Alzheimer's disease. Nature,1996.382(6593):685-691
    11Yeh C H, Sturgis L, Haidacher J, et al. Requirement for p38and p44/p42mitogen-activated protein kinases in RAGE-mediated nuclearfactor-kappaB transcriptional activation and cytokine secretion. Diabetes,2001.50(6):1495-1504
    12Mukherjee T K, Mukhopadhyay S, and Hoidal J R. The role of reactiveoxygen species in TNFalpha-dependent expression of the receptor foradvanced glycation end products in human umbilical vein endothelialcells. Biochim Biophys Acta,2005.1744(2):213-223
    13Kobayashi Y. The regulatory role of nitric oxide in proinflammatorycytokine expression during the induction and resolution of inflammation.J Leukoc Biol,2010.88(6):1157-1162
    14Iwagaki A, Choe N, Li Y, et al. Asbestos inhalation induces tyrosinenitration associated with extracellular signal-regulated kinase1/2activation in the rat lung. Am J Respir Cell Mol Biol,2003.28(1):51-60.
    15Rubbo H, Darley-Usmar V, and Freeman B A. Nitric oxide regulation oftissue free radical injury. Chem Res Toxicol,1996.9(5):809-820
    16Sato K, Akaike T, Kohno M, et al. Hydroxyl radical production by H2O2plus Cu,Zn-superoxide dismutase reflects the activity of free copperreleased from the oxidatively damaged enzyme. J Biol Chem,1992.267(35):25371-25377
    17Beckman J S, Beckman T W, Chen J, et al. Apparent hydroxyl radicalproduction by peroxynitrite: implications for endothelial injury fromnitric oxide and superoxide. Proc Natl Acad Sci U S A,1990.87(4):1620-1624
    18Pryor W A and Squadrito G L. The chemistry of peroxynitrite: a productfrom the reaction of nitric oxide with superoxide. Am J Physiol,1995.268(5Pt1): L699-722
    19Beckman J S and Koppenol W H. Nitric oxide, superoxide, andperoxynitrite: the good, the bad, and ugly. Am J Physiol,1996.271(5Pt1): C1424-1437
    20Combs C K, Karlo J C, Kao S C, et al. beta-Amyloid stimulation ofmicroglia and monocytes results in TNFalpha-dependent expression ofinducible nitric oxide synthase and neuronal apoptosis. J Neurosci,2001.21(4):1179-1188
    21Wong A, Luth H J, Deuther-Conrad W, et al. Advanced glycationendproducts co-localize with inducible nitric oxide synthase inAlzheimer's disease. Brain Res,2001.920(1-2):32-40
    22Zandi E and Karin M. Bridging the gap: composition, regulation, andphysiological function of the IkappaB kinase complex. Mol Cell Biol,1999.19(7):4547-4551
    23Yates L L and Gorecki D C. The nuclear factor-kappaB (NF-kappaB):from a versatile transcription factor to a ubiquitous therapeutic target.Acta Biochim Pol,2006.53(4):651-662
    24Lezoualc'h F, Sagara Y, Holsboer F, et al. High constitutive NF-kappaBactivity mediates resistance to oxidative stress in neuronal cells. JNeurosci,1998.18(9):3224-3232
    25Baldwin A S, Jr. Series introduction: the transcription factor NF-kappaBand human disease. J Clin Invest,2001.107(1):3-6
    26De Vera M E, Taylor B S, Wang Q, et al. Dexamethasone suppressesiNOS gene expression by upregulating I-kappa B alpha and inhibitingNF-kappa B. Am J Physiol,1997.273(6Pt1): G1290-1296
    27N'Guessan P D, Hippenstiel S, Etouem M O, et al. Streptococcuspneumoniae induced p38MAPK-and NF-kappaB-dependent COX-2expression in human lung epithelium. Am J Physiol Lung Cell MolPhysiol,2006.290(6): L1131-1138
    28Teng X, Zhang H, Snead C, et al. Molecular mechanisms of iNOSinduction by IL-1beta and IFN-gamma in rat aortic smooth muscle cells.Am J Physiol Cell Physiol,2002.282(1): C144-152
    29Guo Z, Shao L, Du Q, et al. Identification of a classic cytokine-inducedenhancer upstream in the human iNOS promoter. FASEB J,2007.21(2):535-542
    30Schmidt A M, Vianna M, Gerlach M, et al. Isolation and characterizationof two binding proteins for advanced glycosylation end products frombovine lung which are present on the endothelial cell surface. J BiolChem,1992.267(21):14987-14997
    31Lue L F, Walker D G, Brachova L, et al. Involvement of microglialreceptor for advanced glycation endproducts (RAGE) in Alzheimer'sdisease: identification of a cellular activation mechanism. Exp Neurol,2001.171(1):29-45
    32Takuma K, Fang F, Zhang W, et al. RAGE-mediated signalingcontributes to intraneuronal transport of amyloid-beta and neuronaldysfunction. Proc Natl Acad Sci U S A,2009.106(47):20021-20026
    33Deane R, Wu Z, and Zlokovic B V. RAGE (yin) versus LRP (yang)balance regulates alzheimer amyloid beta-peptide clearance throughtransport across the blood-brain barrier. Stroke,2004.35(11Suppl1):2628-2631
    34Pertynska-Marczewska M, Kiriakidis S, Wait R, et al. Advancedglycation end products upregulate angiogenic and pro-inflammatorycytokine production in human monocyte/macrophages. Cytokine,2004.28(1):35-47
    35Fang F, Lue L F, Yan S, et al. RAGE-dependent signaling in microgliacontributes to neuroinflammation, Abeta accumulation, and impairedlearning/memory in a mouse model of Alzheimer's disease. FASEB J,2010.24(4):1043-1055
    36Giri R, Shen Y, Stins M, et al. beta-amyloid-induced migration ofmonocytes across human brain endothelial cells involves RAGE andPECAM-1. Am J Physiol Cell Physiol,2000.279(6): C1772-1781
    37Li M, Shang D S, Zhao W D, et al. Amyloid beta interaction withreceptor for advanced glycation end products up-regulates brainendothelial CCR5expression and promotes T cells crossing theblood-brain barrier. J Immunol,2009.182(9):5778-5788
    38Li J and Schmidt A M. Characterization and functional analysis of thepromoter of RAGE, the receptor for advanced glycation end products. JBiol Chem,1997.272(26):16498-16506
    39Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associatedsustained activation of the transcription factor nuclear factor-kappaB.Diabetes,2001.50(12):2792-2808
    40Huang J S, Guh J Y, Chen H C, et al. Role of receptor for advancedglycation end-product (RAGE) and the JAK/STAT-signaling pathway inAGE-induced collagen production in NRK-49F cells. J Cell Biochem,2001.81(1):102-113
    41Ido Y, Chang K C, Lejeune W S, et al. Vascular dysfunction induced byAGE is mediated by VEGF via mechanisms involving reactive oxygenspecies, guanylate cyclase, and protein kinase C. Microcirculation,2001.8(4):251-263
    42Schmidt A M and Stern D M. Hyperinsulinemia and vascular dysfunction:the role of nuclear factor-kappaB, yet again. Circ Res,2000.87(9):722-724
    43Bierhaus A, Illmer T, Kasper M, et al. Advanced Glycation End Product(AGE)-ediated Induction of Tissue Factor in Cultured Endothelial CellsIs Dependent on RAGE. Circulation,1997.96(7):2262-2271
    1Budson A E and Price B H. Memory dysfunction. N Engl J Med,2005.352(7):692-699
    2Katzman R. Alzheimer's disease. N Engl J Med,1986.314(15):964-973.
    3Hebert L E, Scherr P A, Bienias J L, et al. Alzheimer disease in the USpopulation: prevalence estimates using the2000census. Arch Neurol,2003.60:1119-1122
    4Wimo A, Jonsson L, and Winblad B. An estimate of the worldwideprevalence and direct costs of dementia in2003. Dement Geriatr CognDisord,2006.21:175-181
    5Markesbery W R. The role of oxidative stress in Alzheimer disease. ArchNeurol,1999.56(12):1449-1452
    6Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr,2000.71(2):621S-629S
    7Ding Q, Dimayuga E, and Keller J N. Oxidative damage, proteinsynthesis, and protein degradation in Alzheimer's disease. Curr AlzheimerRes,2007.4(1):73-79
    8Simpson J E, Ince P G, Haynes L J, et al. Population variation inoxidative stress and astrocyte DNA damage in relation to Alzheimer-typepathology in the ageing brain. Neuropathol Appl Neurobiol,2010.36(1):25-40
    9Cutler R G, Kelly J, Storie K, et al. Involvement of oxidativestress-induced abnormalities in ceramide and cholesterol metabolism inbrain aging and Alzheimer's disease. Proc Natl Acad Sci U S A,2004.101(7):2070-2075
    10Lovell M A, Ehmann W D, Butler S M, et al. Elevated thiobarbituricacid-reactive substances and antioxidant enzyme activity in the brain inAlzheimer's disease. Neurology,1995.45(8):1594-1601
    11Pamplona R, Dalfo E, Ayala V, et al. Proteins in human brain cortex aremodified by oxidation, glycoxidation, and lipoxidation. Effects ofAlzheimer disease and identification of lipoxidation targets. J Biol Chem,2005.280(22):21522-21530
    12Hensley K, Carney J M, Mattson M P, et al. A model for beta-amyloidaggregation and neurotoxicity based on free radical generation by thepeptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A,1994.91(8):3270-3274
    13Kadowaki H, Nishitoh H, Urano F, et al. Amyloid beta induces neuronalcell death through ROS-mediated ASK1activation. Cell Death Differ,2005.12(1):19-24
    14Hamel E, Nicolakakis N, Aboulkassim T, et al. Oxidative stress andcerebrovascular dysfunction in mouse models of Alzheimer's disease.Exp Physiol,2008.93(1):116-120
    15McLellan M E, Kajdasz S T, Hyman B T, et al. In vivo imaging ofreactive oxygen species specifically associated with thioflavineS-positive amyloid plaques by multiphoton microscopy. J Neurosci,2003.23(6):2212-2217
    16Aslan M and Ozben T. Reactive oxygen and nitrogen species inAlzheimer's disease. Curr Alzheimer Res,2004.1(2):111-119
    17Taupin P. A dual activity of ROS and oxidative stress on adultneurogenesis and Alzheimer's disease. Cent Nerv Syst Agents Med Chem,2010.10(1):16-21
    18Johnson D, Allman E, and Nehrke K. Regulation of acid-basetransporters by reactive oxygen species following mitochondrialfragmentation. Am J Physiol Cell Physiol,2012.302(7): C1045-1054
    19Knight J A. Reactive oxygen species and the neurodegenerative disorders.Ann Clin Lab Sci,1997.27(1):11-25
    20Zhou L J and Zhu X Z. Reactive oxygen species-induced apoptosis inPC12cells and protective effect of bilobalide. J Pharmacol Exp Ther,2000.293(3):982-988
    21Satoh M, Fujimoto S, Haruna Y, et al. NAD(P)H oxidase and uncouplednitric oxide synthase are major sources of glomerular superoxide in ratswith experimental diabetic nephropathy. Am J Physiol Renal Physiol,2005.288(6): F1144-1152
    22Bianca V D, Dusi S, Bianchini E, et al. beta-amyloid activates the O-2forming NADPH oxidase in microglia, monocytes, and neutrophils. Apossible inflammatory mechanism of neuronal damage in Alzheimer'sdisease. J Biol Chem,1999.274(22):15493-15499
    23Sbarra A J and Karnovsky M L. The biochemical basis of phagocytosis. I.Metabolic changes during the ingestion of particles bypolymorphonuclear leukocytes. J Biol Chem,1959.234(6):1355-1362
    24Ago T, Nunoi H, Ito T, et al. Mechanism for phosphorylation-inducedactivation of the phagocyte NADPH oxidase protein p47(phox). Triplereplacement of serines303,304, and328with aspartates disrupts the SH3domain-mediated intramolecular interaction in p47(phox), therebyactivating the oxidase. J Biol Chem,1999.274(47):33644-33653
    25Sheppard F R, Kelher M R, Moore E E, et al. Structural organization ofthe neutrophil NADPH oxidase: phosphorylation and translocation duringpriming and activation. J Leukoc Biol,2005.78(5):1025-1042
    26Brandes R P and Kreuzer J. Vascular NADPH oxidases: molecularmechanisms of activation. Cardiovasc Res,2005.65(1):16-27
    27Geiszt M. NADPH oxidases: new kids on the block. Cardiovasc Res,2006.71(2):289-299
    28Heyworth P G, Curnutte J T, Nauseef W M, et al. Neutrophilnicotinamide adenine dinucleotide phosphate oxidase assembly.Translocation of p47-phox and p67-phox requires interaction betweenp47-phox and cytochrome b558. J Clin Invest,1991.87(1):352-356
    29Sumimoto H, Kage Y, Nunoi H, et al. Role of Src homology3domains inassembly and activation of the phagocyte NADPH oxidase. Proc NatlAcad Sci U S A,1994.91(12):5345-5349
    30Shiose A and Sumimoto H. Arachidonic acid and phosphorylationsynergistically induce a conformational change of p47phox to activate thephagocyte NADPH oxidase. J Biol Chem,2000.275(18):13793-13801
    31Leto T L, Adams A G, and de Mendez I. Assembly of the phagocyteNADPH oxidase: binding of Src homology3domains to proline-richtargets. Proc Natl Acad Sci U S A,1994.91(22):10650-10654
    32Hordijk P L. Regulation of NADPH oxidases: the role of Rac proteins.Circ Res,2006.98(4):453-462
    33Van Heerebeek L, Meischl C, Stooker W, et al. NADPH oxidase(s): newsource(s) of reactive oxygen species in the vascular system? J Clin Pathol,2002.55(8):561-568
    34Lambeth J D. NOX enzymes and the biology of reactive oxygen. Nat RevImmunol,2004.4(3):181-189
    35Ago T, Kitazono T, Kuroda J, et al. NAD(P)H oxidases in rat basilararterial endothelial cells. Stroke,2005.36(5):1040-1046
    36Banfi B, Clark R A, Steger K, et al. Two novel proteins activatesuperoxide generation by the NADPH oxidase NOX1. J Biol Chem,2003.278(6):3510-3513
    37Cui X L, Brockman D, Campos B, et al. Expression of NADPH oxidaseisoform1(Nox1) in human placenta: involvement in preeclampsia.Placenta,2006.27(4-5):422-431
    38Kobayashi S, Nojima Y, Shibuya M, et al. Nox1regulates apoptosis andpotentially stimulates branching morphogenesis in sinusoidal endothelialcells. Exp Cell Res,2004.300(2):455-462
    39Banfi B, Maturana A, Jaconi S, et al. A Mammalian H+ChannelGenerated Through Alternative Splicing of the NADPH OxidaseHomolog NOH-1. Science,2000.287(5450):138-142
    40Lacy P, Abdel-Latif D, Steward M, et al. Divergence of mechanismsregulating respiratory burst in blood and sputum eosinophils andneutrophils from atopic subjects. J Immunol,2003.170(5):2670-2679
    41Lee N K, Choi Y G, Baik J Y, et al. A crucial role for reactive oxygenspecies in RANKL-induced osteoclast differentiation. Blood,2005.106(3):852-859
    42Manea A, Raicu M, and Simionescu M. Expression of functionallyphagocyte-type NAD(P)H oxidase in pericytes: effect of angiotensin IIand high glucose. Biol Cell,2005.97(9):723-734
    43Suh Y A, Arnold R S, Lassegue B, et al. Cell transformation by thesuperoxide-generating oxidase Mox1. Nature,1999.401(6748):79-82
    44Szanto I, Rubbia-Brandt L, Kiss P, et al. Expression of NOX1, asuperoxide-generating NADPH oxidase, in colon cancer andinflammatory bowel disease. J Pathol,2005.207(2):164-176
    45Cheng G, Cao Z, Xu X, et al. Homologs of gp91phox: cloning and tissueexpression of Nox3, Nox4, and Nox5. Gene,2001.269(1-2):131-140
    46Gorlach A, Brandes R P, Nguyen K, et al. A gp91phox containingNADPH oxidase selectively expressed in endothelial cells is a majorsource of oxygen radical generation in the arterial wall. Circ Res,2000.87(1):26-32
    47Heymes C, Bendall J K, Ratajczak P, et al. Increased myocardial NADPHoxidase activity in human heart failure. J Am Coll Cardiol,2003.41(12):2164-2171
    48Javesghani D, Magder S A, Barreiro E, et al. Molecular characterizationof a superoxide-generating NAD(P)H oxidase in the ventilatory muscles.Am J Respir Crit Care Med,2002.165(3):412-418
    49Jones S A, O'Donnell V B, Wood J D, et al. Expression of phagocyteNADPH oxidase components in human endothelial cells. Am J Physiol,1996.271(4Pt2): H1626-1634
    50Li J M and Shah A M. Intracellular localization and preassembly of theNADPH oxidase complex in cultured endothelial cells. J Biol Chem,2002.277(22):19952-19960
    51Piccoli C, Ria R, Scrima R, et al. Characterization of mitochondrial andextra-mitochondrial oxygen consuming reactions in human hematopoieticstem cells. Novel evidence of the occurrence of NAD(P)H oxidaseactivity. J Biol Chem,2005.280(28):26467-26476
    52Reinehr R, Becker S, Eberle A, et al. Involvement of NADPH oxidaseisoforms and Src family kinases in CD95-dependent hepatocyte apoptosis.J Biol Chem,2005.280(29):27179-27194
    53Serrano F, Kolluri N S, Wientjes F B, et al. NADPH oxidaseimmunoreactivity in the mouse brain. Brain Res,2003.988(1-2):193-198
    54Sumimoto H, Miyano K, and Takeya R. Molecular composition andregulation of the Nox family NAD(P)H oxidases. Biochem Biophys ResCommun,2005.338(1):677-686
    55Banfi B, Malgrange B, Knisz J, et al. NOX3, a superoxide-generatingNADPH oxidase of the inner ear. J Biol Chem,2004.279(44):46065-46072
    56Kikuchi H, Hikage M, Miyashita H, et al. NADPH oxidase subunit,gp91(phox) homologue, preferentially expressed in human colonepithelial cells. Gene,2000.254(1-2):237-243
    57Paffenholz R, Bergstrom R A, Pasutto F, et al. Vestibular defects inhead-tilt mice result from mutations in Nox3, encoding an NADPHoxidase. Genes Dev,2004.18(5):486-491
    58Brar S S, Kennedy T P, Sturrock A B, et al. An NAD(P)H oxidaseregulates growth and transcription in melanoma cells. Am J Physiol CellPhysiol,2002.282(6): C1212-1224
    59Chamulitrat W, Stremmel W, Kawahara T, et al. A constitutive NADPHoxidase-like system containing gp91phox homologs in humankeratinocytes. J Invest Dermatol,2004.122(4):1000-1009
    60Colston J T, de la Rosa S D, Strader J R, et al. H2O2activates Nox4through PLA2-dependent arachidonic acid production in adult cardiacfibroblasts. FEBS Lett,2005.579(11):2533-2540
    61Cucoranu I, Clempus R, Dikalova A, et al. NAD(P)H oxidase4mediatestransforming growth factor-beta1-induced differentiation of cardiacfibroblasts into myofibroblasts. Circ Res,2005.97(9):900-907
    62Dhaunsi G S, Paintlia M K, Kaur J, et al. NADPH oxidase in human lungfibroblasts. J Biomed Sci,2004.11(5):617-622
    63Ellmark S H, Dusting G J, Fui M N, et al. The contribution of Nox4toNADPH oxidase activity in mouse vascular smooth muscle. CardiovascRes,2005.65(2):495-504
    64Geiszt M, Kopp J B, Varnai P, et al. Identification of renox, an NAD(P)Hoxidase in kidney. Proc Natl Acad Sci U S A,2000.97(14):8010-8014
    65Hu T, Ramachandrarao S P, Siva S, et al. Reactive oxygen speciesproduction via NADPH oxidase mediates TGF-beta-induced cytoskeletalalterations in endothelial cells. Am J Physiol Renal Physiol,2005.289(4):F816-825
    66Hoidal J R, Brar S S, Sturrock A B, et al. The role of endogenousNADPH oxidases in airway and pulmonary vascular smooth musclefunction. Antioxid Redox Signal,2003.5(6):751-758
    67Janiszewski M, Lopes L R, Carmo A O, et al. Regulation of NAD(P)Hoxidase by associated protein disulfide isomerase in vascular smoothmuscle cells. J Biol Chem,2005.280(49):40813-40819
    68Lassegue B, Sorescu D, Szocs K, et al. Novel gp91(phox) homologues invascular smooth muscle cells: nox1mediates angiotensin II-inducedsuperoxide formation and redox-sensitive signaling pathways. Circ Res,2001.88(9):888-894
    69Pedruzzi E, Guichard C, Ollivier V, et al. NAD(P)H oxidase Nox-4mediates7-ketocholesterol-induced endoplasmic reticulum stress andapoptosis in human aortic smooth muscle cells. Mol Cell Biol,2004.24(24):10703-10717
    70Shiose A, Kuroda J, Tsuruya K, et al. A novel superoxide-producingNAD(P)H oxidase in kidney. J Biol Chem,2001.276(2):1417-1423
    71Sturrock A, Cahill B, Norman K, et al. Transforming growth factor-beta1induces Nox4NAD(P)H oxidase and reactive oxygen species-dependentproliferation in human pulmonary artery smooth muscle cells. Am JPhysiol Lung Cell Mol Physiol,2005.290(4): L661-L673
    72Vallet P, Charnay Y, Steger K, et al. Neuronal expression of the NADPHoxidase NOX4, and its regulation in mouse experimental brain ischemia.Neuroscience,2005.132(2):233-238
    73Van Buul J D, Fernandez-Borja M, Anthony E C, et al. Expression andlocalization of NOX2and NOX4in primary human endothelial cells.Antioxid Redox Signal,2005.7(3-4):308-317
    74Yang S, Madyastha P, Bingel S, et al. A new superoxide-generatingoxidase in murine osteoclasts. J Biol Chem,2001.276(8):5452-5458
    75Yang S, Zhang Y, Ries W, et al. Expression of Nox4in osteoclasts. J CellBiochem,2004.92(2):238-248
    76Banfi B, Molnar G, Maturana A, et al. A Ca(2+)-activated NADPHoxidase in testis, spleen, and lymph nodes. J Biol Chem,2001.276(40):37594-37601
    77Salles N, Szanto I, Herrmann F, et al. Expression of mRNA forROS-generating NADPH oxidases in the aging stomach. Exp Gerontol,2005.40(4):353-357
    78De Deken X, Wang D, Many M C, et al. Cloning of two human thyroidcDNAs encoding new members of the NADPH oxidase family. J BiolChem,2000.275(30):23227-23233
    79Forteza R, Salathe M, Miot F, et al. Regulated hydrogen peroxideproduction by Duox in human airway epithelial cells. Am J Respir CellMol Biol,2005.32(5):462-469
    80Geiszt M, Witta J, Baffi J, et al. Dual oxidases represent novel hydrogenperoxide sources supporting mucosal surface host defense. FASEB J,2003.17(11):1502-1504
    81Dupuy C, Pomerance M, Ohayon R, et al. Thyroid oxidase (THOX2)gene expression in the rat thyroid cell line FRTL-5. Biochem BiophysRes Commun,2000.277(2):287-292
    82Schwarzer C, Machen T E, Illek B, et al. NADPH oxidase-dependentacid production in airway epithelial cells. J Biol Chem,2004.279(35):36454-36461
    83Wang D, De Deken X, Milenkovic M, et al. Identification of a novelpartner of duox: EFP1, a thioredoxin-related protein. J Biol Chem,2005.280(4):3096-3103
    84Vallet P, Charnay Y, Steger K, et al. Neuronal expression of the NADPHoxidase NOX4, and its regulation in mouse experimental brain ischemia.Neuroscience,2005.132:233-238
    85Coyoy A, Valencia A, Guemez-Gamboa A, et al. Role of NADPH oxidasein the apoptotic death of cultured cerebellar granule neurons. Free RadicBiol Med,2008.45(8):1056-1064
    86Choi D H, Cristovao A C, Guhathakurta S, et al. NADPH oxidase1-mediated oxidative stress leads to dopamine neuron death inParkinson's disease. Antioxid Redox Signal,2012.16(10):1033-1045
    87Ibi M, Katsuyama M, Fan C, et al. NOX1/NADPH oxidase negativelyregulates nerve growth factor-induced neurite outgrowth. Free Radic BiolMed,2006.40(10):1785-1795
    88Zimmerman M C, Dunlay R P, Lazartigues E, et al. Requirement forRac1-dependent NADPH oxidase in the cardiovascular and dipsogenicactions of angiotensin II in the brain. Circ Res,2004.95(5):532-539
    89Zimmerman M C, Lazartigues E, Lang J A, et al. Superoxide mediatesthe actions of angiotensin II in the central nervous system. Circ Res,2002.91(11):1038-1045
    90Kamsler A and Segal M. Hydrogen peroxide as a diffusible signalmolecule in synaptic plasticity. Mol Neurobiol,2004.29(2):167-178
    91Knapp L T and Klann E. Role of reactive oxygen species in hippocampallong-term potentiation: contributory or inhibitory? J Neurosci Res,2002.70(1):1-7
    92Noh K M and Koh J Y. Induction and activation by zinc of NADPHoxidase in cultured cortical neurons and astrocytes. J Neurosci,2000.20:RC111
    93Qin L, Liu Y, Cooper C, et al. Microglia enhance beta-amyloidpeptide-induced toxicity in cortical and mesencephalic neurons byproducing reactive oxygen species. J Neurochem,2002.83:973-983
    94Qin L, Liu Y, Wang T, et al. NADPH oxidase mediateslipopolysaccharide-induced neurotoxicity and proinflammatory geneexpression in activated microglia. J Biol Chem,2004.279(2):1415-1421.
    95Savchenko V L, McKanna J A, Nikonenko I R, et al. Microglia andastrocytes in the adult rat brain: comparative immunocytochemicalanalysis demonstrates the efficacy of lipocortin1immunoreactivity.Neuroscience,2000.96:195-203
    96Johnstone M, Gearing A J, and Miller K M. A central role for astrocytesin the inflammatory response to beta-amyloid; chemokines, cytokines andreactive oxygen species are produced. J Neuroimmunol,1999.93:182-193
    97Abramov A Y, Jacobson J, Wientjes F, et al. Expression and modulationof an NADPH oxidase in mammalian astrocytes. J Neurosci,2005.25(40):9176-9184
    98Pawate S, Shen Q, Fan F, et al. Redox regulation of glial inflammatoryresponse to lipopolysaccharide and interferongamma. J Neurosci Res,2004.77(4):540-551
    99Abramov A Y, Canevari L, and Duchen M R. Beta-amyloid peptidesinduce mitochondrial dysfunction and oxidative stress in astrocytes anddeath of neurons through activation of NADPH oxidase. J Neurosci,2004.24(2):565-575
    100Abramov A Y, Canevari L, and Duchen M R. Beta-amyloid peptidesinduce mitochondrial dysfunction and oxidative stress in astrocytes anddeath of neurons through activation of NADPH oxidase. J Neurosci,2004.24:565-575
    101McDonald D R, Brunden K R, and Landreth G E. Amyloid fibrilsactivate tyrosine kinase-dependent signaling and superoxide productionin microglia. J Neurosci,1997.17:2284-2294
    102Bamberger M E, Harris M E, McDonald D R, et al. A cell surfacereceptor complex for fibrillar beta-amyloid mediates microglial activation.J Neurosci,2003.23:2665-2674
    103Combs C K, Johnson D E, Cannady S B, et al. Identification ofmicroglial signal transduction pathways mediating a neurotoxic responseto amyloidogenic fragments of beta-amyloid and prion proteins. JNeurosci,1999.19:928-939
    104Clark R A and Valente A J. Nuclear factor kappa B activation by NADPHoxidases. Mech Ageing Dev,2004.125:799-810
    105Myers T J, Brennaman L H, Stevenson M, et al. Mitochondrial reactiveoxygen species mediate GPCR-induced TACE/ADAM17-dependenttransforming growth factor-alpha shedding. Mol Biol Cell,2009.20(24):5236-5249
    106Li P F, Maasch C, Haller H, et al. Requirement for protein kinase C inreactive oxygen species-induced apoptosis of vascular smooth musclecells. Circulation,1999.100(9):967-973
    107Dong J, Ramachandiran S, Tikoo K, et al. EGFR-independent activationof p38MAPK and EGFR-dependent activation of ERK1/2are requiredfor ROS-induced renal cell death. Am J Physiol Renal Physiol,2004.287(5): F1049-1058
    108Feng R, Lu Y, Bowman L L, et al. Inhibition of activator protein-1,NF-kappaB, and MAPKs and induction of phase2detoxifying enzymeactivity by chlorogenic acid. J Biol Chem,2005.280(30):27888-27895
    109Hou Z, Falcone D J, Subbaramaiah K, et al. Macrophages induce COX-2expression in breast cancer cells: role of IL-1beta autoamplification.Carcinogenesis,2011.32(5):695-702
    110Kim H S, Loughran P A, Rao J, et al. Carbon monoxide activatesNF-kappaB via ROS generation and Akt pathways to protect against celldeath of hepatocytes. Am J Physiol Gastrointest Liver Physiol,2008.295(1): G146-G152
    111Forman H J and Torres M. Reactive oxygen species and cell signaling:respiratory burst in macrophage signaling. Am J Respir Crit Care Med,2002.166: S4-8
    112Franciosi S, Ryu J K, Choi H B, et al. Broad-spectrum effects of4-aminopyridine to modulate amyloid beta1-42-induced cell signalingand functional responses in human microglia. J Neurosci,2006.26(45):11652-11664
    113Rah J C, Kim H S, Kim S S, et al. Effects of carboxyl-terminal fragmentof Alzheimer's amyloid precursor protein and amyloid beta-peptide onthe production of cytokines and nitric oxide in glial cells. FASEB J,2001.15(8):1463-1465
    114Pan X D, Chen X C, Zhu Y G, et al. Tripchlorolide protects neuronal cellsfrom microglia-mediated beta-amyloid neurotoxicity through inhibitingNF-kappaB and JNK signaling. Glia,2009.57(11):1227-1238
    115Giri R K, Rajagopal V, and Kalra V K. Curcumin, the active constituentof turmeric, inhibits amyloid peptide-induced cytochemokine geneexpression and CCR5-mediated chemotaxis of THP-1monocytes bymodulating early growth response-1transcription factor. J Neurochem,2004.91(5):1199-1210
    116Kim H, Rhee S H, Kokkotou E, et al. Clostridium difficile toxin Aregulates inducible cyclooxygenase-2and prostaglandin E2synthesis incolonocytes via reactive oxygen species and activation of p38MAPK. JBiol Chem,2005.280(22):21237-21245
    117Pawate S, Shen Q, Fan F, et al. Redox regulation of glial inflammatoryresponse to lipopolysaccharide and interferongamma. J Neurosci Res,2004.77:540-551
    118Jekabsone A, Mander P K, Tickler A, et al. Fibrillar beta-amyloid peptideAbeta1-40activates microglial proliferation via stimulating TNF-alpharelease and H2O2derived from NADPH oxidase: a cell culture study. JNeuroinflammation,2006.3:24
    119Gao H M, Hong J S, Zhang W, et al. Synergistic dopaminergicneurotoxicity of the pesticide rotenone and inflammogenlipopolysaccharide: relevance to the etiology of Parkinson's disease. JNeurosci,2003.23:1228-1236
    120Gao H M, Liu B, Zhang W, et al. Synergistic dopaminergic neurotoxicityof MPTP and inflammogen lipopolysaccharide: relevance to the etiologyof Parkinson's disease. Faseb J,2003.17:1957-1959
    121McGeer P L and Rogers J. Anti-inflammatory agents as a therapeuticapproach to Alzheimer's disease. Neurology,1992.42:447-449
    122Etminan M, Gill S, and Samii A. Effect of non-steroidalanti-inflammatory drugs on risk of Alzheimer's disease: systematicreview and meta-analysis of observational studies. BMJ,2003.327(7407):128123. McGeer P L and McGeer E G. NSAIDs and Alzheimer disease:epidemiological, animal model and clinical studies. Neurobiol Aging,2007.28:639-647
    124Rogers J, Kirby L C, Hempelman S R, et al. Clinical trial ofindomethacin in Alzheimer's disease. Neurology,1993.43:1609-1611
    125Block M L and Hong J S. Microglia and inflammation-mediatedneurodegeneration: multiple triggers with a common mechanism. ProgNeurobiol,2005.76:77-98
    126Sano M, Ernesto C, Thomas R G, et al. A controlled trial of selegiline,alpha-tocopherol, or both as treatment for Alzheimer's disease. TheAlzheimer's Disease Cooperative Study. N Engl J Med,1997.336:1216-1222
    127Morris M C, Evans D A, Tangney C C, et al. Relation of the tocopherolforms to incident Alzheimer disease and to cognitive change. Am J ClinNutr,2005.81(2):508-514
    128Petersen R C, Thomas R G, Grundman M, et al. Vitamin E and donepezilfor the treatment of mild cognitive impairment. N Engl J Med,2005.352:
    2379-2388
    129Grundman M. Vitamin E and Alzheimer disease: the basis for additionalclinical trials. Am J Clin Nutr,2000.71(2):630S-636S
    130Li Y, Liu L, Barger S W, et al. Vitamin E suppression of microglialactivation is neuroprotective. J Neurosci Res,2001.66:163-170
    131Cachia O, Benna J E, Pedruzzi E, et al. alpha-tocopherol inhibits therespiratory burst in human monocytes. Attenuation of p47(phox)membrane translocation and phosphorylation. J Biol Chem,1998.273:32801-32805
    132Sung S, Yao Y, Uryu K, et al. Early vitamin E supplementation in youngbut not aged mice reduces Abeta levels and amyloid deposition in atransgenic model of Alzheimer's disease. Faseb J,2004.18:323-325
    133Akhter H, Katre A, Li L, et al. Therapeutic potential and anti-amyloidosismechanisms of tert-butylhydroquinone for Alzheimer's disease. JAlzheimers Dis,2011.26(4):767-778
    134Zhou J, Zhang S, Zhao X, et al. Melatonin impairs NADPH oxidaseassembly and decreases superoxide anion production in microgliaexposed to amyloid-beta1-42. J Pineal Res,2008.45(2):157-165
    135Britton P, Lu X C, Laskosky M S, et al. Dextromethorphan protectsagainst cerebral injury following transient, but not permanent, focalischemia in rats. Life Sci,1997.60:1729-1740
    136Li G, Cui G, Tzeng N S, et al. Femtomolar concentrations ofdextromethorphan protect mesencephalic dopaminergic neurons frominflammatory damage. Faseb J,2005.19:489-496
    137Liu Y, Qin L, Li G, et al. Dextromethorphan protects dopaminergicneurons against inflammation-mediated degeneration through inhibitionof microglial activation. J Pharmacol Exp Ther,2003.305:212-218
    138Zhang W, Wang T, Qin L, et al. Neuroprotective effect ofdextromethorphan in the MPTP Parkinson's disease model: role ofNADPH oxidase. Faseb J,2004.18:589-591
    139Li G, Liu Y, Tzeng N S, et al. Protective effect of dextromethorphanagainst endotoxic shock in mice. Biochem Pharmacol,2005.69:233-240
    140Klimas J, Kmecova J, Jankyova S, et al. Pycnogenol improves leftventricular function in streptozotocin-induced diabetic cardiomyopathy inrats. Phytother Res,2010.24(7):969-974
    141Ansari M A, Keller J N, and Scheff S W. Protective effect of Pycnogenolin human neuroblastoma SH-SY5Y cells following acrolein-inducedcytotoxicity. Free Radic Biol Med,2008.45(11):1510-1519
    142Choi D Y, Lee Y J, Hong J T, et al. Antioxidant properties of naturalpolyphenols and their therapeutic potentials for Alzheimer's disease.Brain Res Bull,2012.87(2-3):144-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700