用户名: 密码: 验证码:
紫金山铜矿生物堆浸工业案例分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物堆浸-萃取-电积提铜技术是上世纪80年代发展的低品位铜资源短流程提取技术,目前在全球得到广泛应用,已有20个以上生物提铜矿山在运行。我国第一座万吨级生物提铜矿山紫金山铜矿于2005年底投入运行,由于矿石性质、当地气候和工程措施等原因,紫金山铜矿生物堆浸系统形成有别于国外同类实践的温度高、铁浓度高和pH值低等特点的浸出体系,并获得良好的技术经济指标。本论文以紫金山铜矿生物堆浸实践为背景,在硫化矿物溶解、亚铁氧化和铁矾生成动力学研究基础上,通过多因素匹配的柱浸实验验证,揭示了紫金山铜矿中铜矿物高效溶解和低成本酸铁平衡的关键控制因素,为次生硫化铜矿生物堆浸实践的优化提供系统的理论依据。
     紫金山铜矿中主要铜矿物为蓝辉铜矿和铜蓝。在硫酸高铁介质中,蓝辉铜矿第二阶段和铜蓝的活化能较高,因此升温可显著促进其溶解;Fe3+浓度在达到0.1M后,对铜矿物溶解速率的促进作用很小;高温(60℃)下,氧化还原电位对铜矿物溶解速率影响亦很小。因此,在较高的Fe3+浓度下,尽可能提高浸出体系的温度是促进铜矿物溶解的关键路径。紫金山铜矿中黄铁矿含量较高,黄铁矿是浸出体系中酸、铁主要来源,黄铁矿在硫酸高铁介质中的溶解速率与氧化还原电位强相关,氧化还原电位较低时,提高温度对铁矿溶解的促进作用有限。因此,在较高温度下,降低氧化还原电位是紫金山铜矿实现选择性浸出的关键。生物浸出体系中氧化还原电位受浸矿微生物亚铁氧化能力的控制,紫金山铜矿浸矿微生物亚铁氧化动力学研究结果表明,铁浓度、pH值和温度均为浸矿微生物亚铁氧化能力的重要影响因素,高温、高铁浓度和低pH值抑制微生物亚铁氧化活性是紫金铜矿实现低电位的生物学基础;成矾热力学分析和动力学研究结果表明,温度是促进草铁矾生成的关键因素,在紫金山铜矿浸出体系,通过成矾可以将黄铁矿溶解的铁全部转移至矿堆,草铁矾除铁是生物提铜低成本的铁平衡法;柱浸实验结果表明,通过合理匹配温度、铁浓度和pH值,可以实现铜的高效浸出和低成本酸铁平衡。
Bioheapleaching-SX-EW process was developed for copper recovery from low grade copper sulfide including more than20mines all over the world since80's of the last century. In China, the first commercial plant of bioheapleaching-SX-EW with a capacity of10,000t Cu/a in Zijinshan Copper Mine commissioned by the end of2005. Based on mineralogy of the ore and local geography of the mine, distinct engineering operations such as multi-lift permanent stacking in coarse particle size (P80=40mm) without agglomeration and aeration were applied in Zijinshan bioheapleaching practice. Copper was leached efficiently, pyrite dissolution was inhibited and jarosite was formed in the heap by taking advantages of high acidity, high iron concentration, and elevated temperature in the leaching system. The distinct operations and excellent performance probably make Zijinshan copper bioheapleaching practice the first one in the world in which copper was recovered at high efficiency with low activity of microorganism. To reveal key factors which effected the operation in Zijinshan bioheaps, this paper focused on dissolution kinetics of copper sulfides and pyrite, bio-oxidation kinetics of ferrous and kinetics of jarosite formation. The results of kinetics may provide theoretical basis to understand distinct bioehapleaching operation of Zijinshan, and some implication for optimization of similar bioheapleaching practice.
     The main copper sulfides in Zijinshan were digenite and covellite. In aqueous ferric sulfate the activation energy of copper sulfide dissolution were relative high (covellite96kJ/mol and digenite72kJ/mol), thus elevated temperature was key factor to accelerate the dissolution of copper sulfides; Ferric concentration and redox potential only have a litte positive effect on the dissolution kinetics of copper sulfides. As a result, under high concentration of ferric ion, to increase temperature of the leaching system is the critical path for the copper sulfides dissolution. Relative high content of pyrite (6%) were within Zijinshan copper ores, which was the source of the excessive acid and iron in leaching system. In ferric sulfate solution, the dissolution rate of pyrite has significant correlation with redox potential in order of2.68. Under low redox potential, the dissolution of pyrite was limited even at high temperature. Thus at high leaching temperature, to keep leaching system at low redox potential was the key path for copper competitive bioleaching from pyrite by ferrous oxidation inhibition. Elevated temperature, low pH and high iron concentration could inhibit the iron bio-oxidation, thus lower the redox potential. The analysis of thermodynamics and kinetic experiments showed that temperature was the key factor for jarosite formation. In Zijinshan bioheapleaching system, hydronium jarosite could be readily formed to remove iron inside the heap. Column leaching tests indicated, proper match of temperature, iron concentration and pH, high copper recovery and acid and iron balance at low cost could be achieved.
引文
[1]Amend J P, Shock E L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria[J]. FEMS Microbiol Rev,2001,25:175-243
    [2]Arbiter N and Fletcher A W. Copper hydrometallurgy-evolution and milestones [J]. Mining Engineering,1994,118-123
    [3]Bagdigian R M and Meyerson A S. The adsorption of Thiobacillus ferrooxidans on coal surfaces[J]. Biotechnol Bioeng,1986,28:467-479
    [4]Baron D and Palmer C D. Solubility of jarosite at 4-35℃[J]. Geochimica et Cosmochimica Acta,1996,60(2):185-195
    [5]Basolo F and Pearson R G. Oxidation-reduction reactions. In Mechanisms of Inorganic Reactions:A Study of Metal Complexes in Solution[M]. John Wiley, New York.1967, pp454-525
    [6]Bennett J C, Tributsch H, Bacteriol J.1978, (134):310
    [7]Bestamin, Pauliina N, Erkan S et al.. Temperature effects on the iron oxidation kinetics of a Leptospirillum ferriphilum dominated culture at pH below one[J]. Advanced Materials Research,2007,20-21:465-468
    [8]Bevilaqua D, Leite ALLC, Garcia O Jr et al.. Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks[J]. Process Biochem,2002,38:587-592
    [9]Blake RC Ⅱ, Shute E A, Howard G T. Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur[J]. Appl Environ Microbiol,1994,60:3349-3357
    [10]Bogdanova T Y I et al.. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium[J]. Int J Syst Evol Microbiol,2006,56(5): 1039-1042
    [11]Bolorunduro S A. Kinetics of leaching of chalcocite in acid ferric sulfate media:Chemical and bacterial leaching[D]. Canada:The University of British Columbia,1999
    [12]Bond P L, Druschel, G K, Banfield J F. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems[J]. Applied and Environmental Microbiology,2000,66:4962-4971
    [13]Boogerd F C, Beemd C, Stoelwinder T, Bos P, Kuenen J G. Relative contribution of biological and chemical reaction to the overall rate of pyrite oxidation at temperatures between 30℃ and 70 ℃[J]. Biotechnol. Bioeng,1991, 38:109-115
    [14]Boon M, Hansford G S and Heijnen J J. "The role of bacterial ferrous iron oxidation in the bio-oxidation of pyrite" in BiohydrometallurgicaI Processing, Vol. I. Proceedings of International Biohydrometallurgy Symposium[M]. Vina del Mar, Chile (November 1995) T. Vargas, C. A. Jerez, J. V. Wiertz and H. Toledo (Eds.), University of Chile, Santiago,1995,153-163
    [15]Boon M, Heijnen J J, Hansford G S. The Mechanism and Kinetics of Bioleaching Sulphide Minerals[J]. Min. Pro. Ext. Met. Rev.,1998,19:107-115
    [16]Boon M. Theoretical and Experimental Methods in the Modelling of Biooxidation Kinetics of Sulphide Minerals [PhD Thesis]. Technische Universiteit Delft, The Netherlands (October 1996)
    [17]Bouffard S C, Rivera-Vasquez B F. Dixon D.G. Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media[J]. Hydrometallurgy,2006, (84):225-238
    [18]Breed A W and Hansford G S. Effect of pH on ferrous-iron oxidation kinetics of Leptospirillum ferrooxidans in continuous culture. Biochemical Engineering Journal [J].1999,3(3):193-201
    [19]Brierley J Newmont. Salt Lake City UT. USA, personal communication,1994
    [20]Brierley C L. Biohydrometallurgical prospects [J]. Hydrometallurgy,2010, 104(3-4):324-328
    [21]Brierley J A and Brierley C L. Present and future commercial applications of biohydrometallurgy[J]. Hydrometallurgy,2001,59(2-3):233-239
    [22]Brown J B. Jarosite-Goethite stabilities at 25℃[J],1ATM. Mineral Deposita (Berl.) 1971,(6):245-252
    [23]Cabral T, Ignatiadis I. Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite (FeS2) by using electrochemical techniques [J]. Proceedings of the International Biohydrometallurgy Symposium IBS'99. Elsevier, Amsterdam,1999,357-366
    [24]Cavallotti P and SalvagoG. Electrodic Behavior of Copper Sulfides in Aqueous Solutions, Electrochimica Metallorum,1969,4(3):181-210
    [25]Chen B, Liu X, Liu W and Wen J. Application of clone library analysis and real-time PCR for comparison of microbial communities in a low-grade copper sulfide ore bioheap leachate[J]. Journal of Industrial Microbiology& Biotechnology,2009,36(11):1409-1416
    [26]Chilean Copper Commission T C S, R N Acid Market Estimations through 2015 and De/05/2009, P.30
    [27]Colmer A R and M E Hinkle. The Role of Microorganisms in Acid Mine Drainage[J]. Science,1947,106(2751):253-256
    [28]Colombo A F and Frommer D W. Leaching Michigan Copper Ore & Mill Tailings with Acidified Ferric Sulfate[J]. U.S Bureau of Mines, Tech. RI-5924, 1962
    [29]Coram N J and Rawlings D E. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates in South African commercial biooxidation tanks that operate at 40℃[J]. Appl Environ Microbio,2002,68(2):838-845
    [30]Crundwell F K. The infuence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals [J]. Hydrometallurgy,1988,21:155-190
    [31]Daoud J and Karamanev D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans[J]. Minerals Engineering,2006, (19):960-967
    [32]Das G K, Acharya S, Anand S et al.. Jarosites:a review[J]. Mineral Processing and Extractive Metallurgy Review.1996,16:185-210
    [33]Demergasso C S et al.. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap[J]. Hydrometallurgy,2005,80(4): 241-253
    [34]Demergasso C S. Microbial Succession during a Heap Bioleaching Cycle of Low Grade Copper Sulphides. Does this Knowledge Mean a Real Input for Industrial Process Design and Control[J]? Advanced Materials Research,2009, 71-73:21-27
    [35]Descostes M, Vitorge P and Beaucaire C. Pyrite dissolution in acidic media[J]. Geochim. Cosmochim. Acta.,2004,68:4559-4569
    [36]DiSpirito A A, Dugan P R, Tuovinen O H. Sorption of Thiobacillus ferrooxidans to particulate material[J]. Biotechnol Bioeng,1983,25:1163-1168
    [37]Dixon D G. Analysis of heat conservation during copper sulfide heap leaching[J]. Hydrometallurgy,2000,58:27-41
    [38]Domic E M. A Review of the Development and Current Status of Copper Bioleaching Operations in Chile:25 Years of Successful Commercial Implementation[M]. In:Biomining ISBN-10 3-540-34909-X Springer-Verlag Berlin Heidelberg New York:2007, pp 81-96
    [39]Dopson M, Baker-Austin C, Hind A et al.. Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments [J]. Appl Environ Microbiol,2004,70:2079-2088
    [40]Drouet C and Navrotsky A. Synthesis, characterization and thermochemistry of K-Na-H3O jarosites. Geochimica et Cosmochimica Acta,2003,67(11): 2063-2076
    [41]Dutrizac J E and MacDonald R J C. The Kinetics of Dissolution of Covellite in Acidified Ferric Sulfate Solutions[J]. Canadian Metallurgical Quarterly,1974, 13(3):423-433
    [42]Dutrizac J E and MacDonald R J C. Ferric Ion as a Leaching medium [J], Minerals Science Engineering,1974,6 (2):59-100
    [43]董李孝,马秀盘.紫金山铜矿西北矿段物质组成研究报告.北京有色金属研究总院,1995-07
    [44]Edwards K J, Gihring T M and Banfield J F. Seasonal variations in microbial populations and environmental conditions in anextreme acid mine drainage environment[J]. Applied and Environ-mentalMicrobiology,1999,65:3627-3632
    [45]Ehrlich H L. Geomicrobiology. Marcel Dekker, Inc., New York, N.Y.,1996
    [46]Emergasso C D et al.. Microbial succession during a heap bioleaching cycle of low grade copper sulphides Does this knowledge mean a real input for industrial process design and control[J]? Hydrometallurgy,2010,104:382-390
    [47]Evans H T. The Crystal Structure of Low Chalcocite and Djurlite[J]. Nature Physical Science,1971,232:69-70
    [48]Evans Jr H T and Konnert J. Crystal Structure of refinement of Covellite[J]. American Mineralogist,1976,61:996-1000
    [49]Evans Jr H T, Copper Coordination In Low Chalcocite and Djurleite and Other Copper-rich Sulfides[J]. American Mineralogist,1981,66:807-811
    [50]Fisher W W, Flores F A and Henderson J A. Comparison of chalcocite dissolution in the oxygenated, aqueous sulfate and chloride systems[J]. Minerals Engineering,1992,7(5):817-834
    [51]Folmer J C W and Jellinek F. The valence of Copper in Sulfides and Selenides: an X -ray Photoelectron Spectroscopy study[M]. J. Less Common Metals,1980, 76:153-162
    [52]Fornasiero D, EIJT V and Ralston J. An electrokinetic study of pyrite oxidation[J]. Colloids Surf.,1992,62:63-73
    [53]Fowler T A and Crundwell F K. Leaching of zinc sulfide by Thiobacillus ferrooxidans:bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions[J]. Appl Environ Microbiol,1999,65:5285-5292
    [54]Fowler T A and Crundwell F K. Leaching of zinc sulfide by Thiobacillus ferrooxidans:experiments with a controlled redox potential indicate no direct bacterial mechanism[J]. Appl Environ Microbiol,1998,64:3570-3575
    [55]Fowler T A, Holmes P R and Crundwell FK. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans [J]. Appl Environ Microbiol,1999,65: 2987-2993
    [56]Franzmann P D, Haddad C M, Hawkes R B et al.. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: Application of the Ratkowsky equation[J]. Minerals Engineering,2005, 18(13-14):1304-1314
    [57]Frost R L, Wills R A, Kloprogge J T et al.. Thermal decomposition of hydronium jarosite (H3O)Fe3(SO4)2(OH)6 [J]. Journal of Thermal Analysis and Calorimetry,2006,83(1):213-218
    [58]Garcia O, Bigham J M and Tuovinen O H. Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans[J]. Can. J. Microbiol.,1995,41: 578-584
    [59]Garrels R M and Thompson M E. Oxidation of pyrite by iron sulfate solutions[J]. American Journal of Science, Bradley Volume,1960,258 A:57-67
    [60]Gehrke T, Hallmann R, Kinzler K, Sand W.2001. The EPS of Acidithiobacillus ferrooxidans-a model for structure-function relationships of attached bacteria and their physiology.WaterSciTechnol43:159-167.
    [61]Gehrke T, Telegdi J, Thierry D, Sand W. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching[J]. Appl Environ Microbiol,1998,64:2743-2747
    [62]Gehrke T. Bedeutung extrazellularer polymerer Substanzen von Thiobacillus ferrooxidans fur die mikrobielle Besiedelung und Laugung von Pyrit und Schwefel:[PhD thesis]. University of Hamburg, Hamburg.1998
    [63]Goebel B M and Stackebrandt E. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments[J]. Appl. Environ. Microbiol,1994,60(5):1614-1621
    [64]Golyshina O et al.. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea[J]. Int J Syst Evol Microbiol,2000,50(3):997-1006
    [65]Gomez J and D Cantero. Modelling of ferrous sulphate oxidation by Thiobacillus ferrooxidans in discontinuous culture:Influence of temperature, pH and agitation rate. Journal of Fermentation and Bioengineering [J].1998,86(1): 79-83
    [66]葛广福.紫金山铜矿75个样品岩矿鉴定报告.紫金矿冶研究院,2005-06
    [67]Hallberg K B and Lindstrom E B. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile[J]. Microbiology,1994,140(12): 3451-3456
    [68]Hallberg K B, Dopson M and Lindstrom E B. Reduced sulfur compound oxidation by Thiobacillus caldus[J]. J Bacteriol 1996,178:6-11
    [69]Hallberg K, Gonzalez-Toril E and Johnson D. Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments [J]. Extremophiles, 2010,14(1):9-19
    [70]Hansford G S. Recent developments in modelling the kinetics of bioleaching sulphide minerals[J]. In:Rawlings DE, ed. Biomining:Theory, Microbes and Industrial Processes, Springer-Verlag, Berlin,1997,153-175
    [71]Hansford G S and Vargas T. Chemical and electrochemical basis of bioleaching processes[J]. Hydrometallurgy,2001,59:135
    [72]Harneit K, Goksel A, Kock D et al.. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans [J]. In:Harrison STL, Rawlings DE, Petersen J, eds. Proceedings of the 16th International Biohydrometallurgy Symposium, September 25-29, Cape Town, South Africa. Produced by Compress www.compress. co.za,2005,635-645
    [73]Harrison A P, Jr. Acidiphilium cryptum gen. nov., sp. nov., Heterotrophic Bacterium From Acidic Mineral Environments[J]. Int J Syst Bacteriol,1981, 31(3):327-332
    [74]Harrison A P. Genomic and physiological diversity amongst strains of <i>Thiobacillus ferrooxidans</i>, and genomic comparison with <i>Thiobacillus thiooxidans</i>[J]. Archives of Microbiology, 1982,131(1):68-76
    [75]Hawkes R B, Franzmann P D and Plumb J J. Moderate thermophiles including "Ferroplasma cupricu-mulans" sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation[J]. Hydrometallurgy,2006a,83:229-236
    [76]Hawkes R B, Franzmann P D and Plumb J J. Moderate thermophiles including Ferroplasma cyprexacervatum sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation[C]. In:Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the 16th international biohydrometallurgy symposium,2005, pp 657-666
    [77]Herbert R B. Properties of goethite and jarosite precipitated from acidic groundwater, Dalarna Sweden [J]. Clays and Clay Minerals,1997,45(2): 261-273
    [78]Hippe H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al..1992)[J]. Int J Syst Evol Microbiol,2000,50(2):501-503
    [79]Hiraishi A et al.. Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria:its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb[J]. nov. Int J Syst Bacteriol. 1998,48(4):1389-1398
    [80]Hiroyoshi N, Kuroiwa S, Miki H, Tsunekawa M, Hirajima T. Hydrometallurgy, 2004,74:103-116
    [81]Holmes P R and Crundwell F K. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen:An electrochemical study[J]. Geochim. Cosmochim. Acta,2000,64:263-274
    [82]Holmes P R, Fowler T A and Crundwell F K. The mechanism of bacterial action in the leaching of pyrite by Thiobacillus ferrooxidans [J]. J. Electrochem. Soc.1999, (146):2906-2912
    [83]Hubert W A, Leduc L G and Ferroni G D. Heat and cold shock responses in different strains of < i> Thiobacillus ferrooxidans</i>[J]. Current Microbiology,1995,31(1):10-14
    [84]黄旭.紫金山铜矿2006、2007、2008年度主要财务指标明细表专项审计(闽辰所专审字[2009]第071号).福建辰星有限责任会计师事务,2009
    [85]黄旭.紫金山铜矿2007、2008、2009年度主要财务指标明细表及主要资源和能源耗费明细表专项审计(闽辰所专审字[2010]第004号).福建辰星有限责任会计师事务,2010
    [86]Ibacetea, D, Juan G, et al.. SX Development at Dos Amigos in Northern ChilepC]. ALTA Conference, Perth, WA, Australia,2005, ppl7
    [87]Ingledew W J. "Thiobaciflus ferroo.riduns; The bioenergetics of an acidophilic chemolithotroph"[J]. Biochimica Biophysico Acto,1982,683:89-117
    [88]Jochen P and David G D. Competitive bioleaching of pyrite and chalcopyrite[C]. Proceedings of the 16th International Biohydrometallurgy Symposium,2005, 25-29
    [89]Jochen P and Tunde V O. The effect of total iron concentration and iron speciation on the rate of ferrous iron oxidation kinetics of Leptospirillum ferriphilum in continuous tank systems[J]. Advanced Materials Research,2007, 20-21:447-451
    [90]Johnson D B, Bacelar-Nicolau P, Okibe N et al.. Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria[J]. Int J Syst Evol Microbiol,2009,59(5):1082-1089
    [91]Johnson D B. Selective solid media for isolating and enumerating acidophilic bacteria[J]. Journal of Microbiological Methods,1995,23(2):205-218
    [92]Johnson D, Joulian C, hugues P D et al.. Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations [J]. Extremophiles,2008,12(6):789-798
    [93]Jones C A and Kelly B D. Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture:influence of product and substrate inhibition [J]. J. Chem. Technol. Biotechnol.,1983,33B(4):241-261
    [94]Jost W. Diffusion. Academic Press. New York,1952,87-168
    [95]Kametani H, Aoki A. Effect of suspension potential on the oxidation rate of copper concentrate in a sulfuric acid solution[J]. Metall. Trans.,1985, (16B): 695-705
    [96]Kawakami K, Sato J et al.. Kinetic study of oxidation of pyrite slurry by ferric chloride[J].Ind. Eng. Chem. Res.,1988, (27):571-576
    [97]Kelly D and Wood A. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov[J]. Int J Syst Evol Microbiol,2000,50(2):511-516
    [98]Kelsall G H, Yin Q, Vaughan D J et al.. Electrochemical oxidation of pyrite (FeS2) in acidic aqueous electrolytes I. In Electrochemistry in Mineral and Metal Processing IV (eds. F. M. Doyle, P. E. Richardson, and R. Woods) The Electrochemical Society.1996,131-142
    [99]King W E, Perlmutter D D. Pyrite oxidation in aqueous ferricchloride[J]. AIChE J.,1977, (23):679-685
    [100]Kinzler K, Gehrke T,et al.. Bioleaching-a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy,2003, 71:83-88
    [101]Kopylov G A and Orlov A I. Rates of Bornite and Chalcocite Dissolution in Ferric Sulfate[J]. Jr. Irkutsk Politckh. Inst.,1969,46:127-132
    [102]Leahy MJ, Davidson MR, Schwarz MP. A model for heap bioleaching of chalcocite with heat balance:bacterial temperature dependence [J]. Miner Eng, 2005,18:1239-1252
    [103]Lima-de-Faria J. Structural Mineralogy [M], An Introduction, Kluwer Academic Publishers, London,1994,7:304
    [104]Liu X Y, Chen B W, Ruan R M et al.. Leptospirillum forms a minor portion of the population in Zijinshan commercial non-aeration copper bioleaching heap identified by 16S rRNA clone libraries and real-time PCR[J]. Hydrometallurgy, 2010,104(3-4):399-403
    [105]Liu X Y, Shu R B, Chen B W et al.. Bacterial community structure change during pyrite bioleaching process:Effect of pH and aeration[J]. Hydrometallurgy,2009,95:267-272
    [106]Lobos J H, Chisolm T E, Bopp L H and Holmes D S. Acidiphilium organovorum sp. nov., an Acidophilic Heterotroph Isolated from a Thiobacillus ferrooxidans Culture [J]. Int J Syst Bacteriol,1986,36(2): 139-144
    [107]Logan T C, Seal, Brierley J A. Whole-Ore Heap Biooxidation of Sulfidic Gold-Bearing Ores[M]. In:D.E.Rawlings B.D.Johnson (Eds.) Biomining: 2007,113-138
    [108]Lowe D F. The Kinetics of the Dissolution Reaction of Copper& Copper-Iron Sulfide Minerals Using Ferric Sulfate Solutions:[Unpublished Ph.D.Thesis]. University of Arizona, U S A,1970
    [109]Lowson R T. Aqueous pyrite oxidation by molecular oxygen[J].Chem.,1982, Rev.82:461-497
    [110]Luther G W III. Comment on "Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(III) ions around pH 2" by K. Sasaki, M. Tsunekawa, S. Tanaka, and H. Konno[J]. Geochim. Cosmochim. Acta,1997, 61:3269-3271
    [111]Luther G. W. Pyrite oxidation and reduction:molecular orbital theory considerations. Geochim[J]. Cosmochim. Acta,1987,51:3193-3199
    [112]李洪桂.冶金原理[M].北京:科学出版社,2005,308~309
    [113]李梦龙.分析化学数据速查手册.北京:化学工业出版社,2009
    [114]梁冬云.紫金山铜矿原矿与浸出渣矿物学鉴定报告.广州有色金属研究院,2010-10
    [115]林传仙,白正华,张哲儒,著.矿物及有关化合物热力学数据手册.科学出版社,1985
    [116]Majzlan J, Stevens R et al. Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6[J]. Phys Chem Minerals,2004,31:518-531
    [117]Marcantonio P. Kinetics of Dissolution of Chalcocite in Ferric Sulfate Solutions:[Ph.D. Thesis]. University of Utah,1975
    [118]MarjaRiekkola-Vanhanen. Talvivaara black schist bioheapleaching demonstration plant[J]. Advanced Materials Research,2007,20-21:30-33
    [119]Mathews C T, Robins R G.. The oxidation of iron disulphide by ferric sulphate. Aust. Chem. Eng.1972, (8):21-25
    [120]May N, Ralph D E and Hansford G S. Dynamic Redox Potential Measurement For Determining The Ferric Leach Kinetics Of Pyrite[J]. Minerals Engineering, 1997,10:1279-1290
    [121]McGuirre M M, Jallad K N, Ben-Amotz D and Hamers R J. Chemical mapping of elemental sulfur on pyrite and arsenopyrite surfaces using near-infrared Raman imaging microscopy[J]. Appl. Surf. Sci.,2001,178: 105-115
    [122]Mckibben M A and Barnes H I. Oxidation of pyrite in low temperature acidic solutions:rate laws and surface textures[J]. Geochim. Cosmochim. Acta.,1986, 50:1509-1520
    [123]McKibben M A. Kinetics of aqueous oxidation of pyrite by ferric iron,oxygen and hydrogen peroxide from pH 1-4 and 20-40℃:[Ph.D. thesis]. Pennsylvania State Univ.,1984
    [124]Melamud V S et al.. Sulfobacillus sibiricus sp. nov., a New Moderately Thermophilic Bacterium [J]. Microbiology,2003,72(5):605-612
    [125]Meruane G, Salhe C, Wiertz J et al.. Novel electrochemical-enzymatic model which quantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Biotechnology and Bioengineering,2002,80(3):280-288
    [126]Modak J M, Natarajan K A and Mukhopadhyay S. Development of temperature-tolerant strains of Thiobacillus ferrooxidans to improve bioleaching kinetics [J]. Hydrometallurgy,1996,42(1):51-61
    [127]Moh G. H. Blue Remaining Covellite & Its Relations to Phases in the Sulfur Rich Portion of the Copper-Sulfur System at Low Temperatures[J], Mineral. Soc. Japan, Spec. Paper1, (P r o c. IMA-IAGOD Meetings 70, Im Vo 1),1971, 180-188
    [128]Moses C O and Herman J S. Pyrite oxidation at circumneutral pH[J]. Geochim. Cosmochim. Acta.,1991,55:471-482
    [129]Moses C O, Nordstrom D K et al.. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron[J]. Geochim. Cosmochim. Acta,1987,51: 1561-1571
    [130]Mulak W. Kinetics of Cuprous Sulfide Dissolution in Acidic Solutions of Ferric Sulfate[J]. Roczn. Chem.,1969,43:1387-1394
    [131]Mulak W. Kinetics of Dissolving Polydispersed Covellite in Acid Solutions of Ferric Sulfate[J]. Roczn.Chem.,1971,45:1417-1424
    [132]Mustin C, de Donato P, Berthelin J, Marion P. Surface sulphur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans [J]. FEMS Microbiol Rev, 1993,11:71-78
    [133]Mutch L A, Watling H R, Watkin E L J. Microbial population dynamics of inoculated low-grade chalcopyrite bioleaching columns[J]. Hydrometallurgy, 2010,104:391-398
    [134]Nakai I, Sugitani Y and Nagashima K. X-ray photoelectron Spectroscopic Study of Copper minerals[J]. J.Inorganic.Nucl.Chem.,1978,40:789-791
    [135]Nemati M and Webb C. A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans. Biotechnology and Bioengineering [J].1997, 53(5):478-486
    [136]Nicholson R V et al... Pyrite oxidation in carbonate-buffered solution:I. Experimental kinetics[J]. Geochim. Cosmochim. Acta.,1988,52:1077-1085
    [137]Norris P R, Barr D W, Hinson D. Iron and mineral oxidation by acidophilic bacteria:affinities for iron and attachment to pyrite[M]. In:Norris PR, Kelly DP, eds. Biohydrometallurgy, Proceedings of the International Symposium, Warwick, Antony Rowe Ltd. Chippenham, Wiltshire, UK,1988:43-59
    [138]Norris P R, Clark D A, Owen J P and Waterhouse S. Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria[J]. Microbiology,1996,142(4):775-783
    [139]Nurmi P, Ozkaya B, Kaksonen A H, Tuovinen O H et al.. Inhibition kinetics of iron oxidation by Leptospirillum ferriphilum in the presence of ferric, nickel and zinc ions[J]. Hydrometallurgy,2009,97:137-145
    [140]Ojumu T V, Petersen J, Hansford G. S. The effect of dissolved cations on microbial ferrous-iron oxidation by Leptospirillum ferriphilum in continuous culture[J]. Hydrometallurgy,2008,94 (1-4):69-76
    [141]Okibe N, Gericke M, Hallberg K B et al.. Enumeration and characterization of acidophilic microorganismsisolated from a pilot plant stirred-tank bioleaching operation. Applied and Environmental Microbiology,2003,69:1936-1943
    [142]Oved T, Shaviv A, Goldrath T et al.. Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil[J]. Appl Environ Microbiol,2001,67(8):3426-33
    [143]Pa"ivi H M K, Jaakko A P. High-rate iron oxidation at below pH 1 and at elevated iron and copper concentrations by a Leptospirillum ferriphilum dominated biofilm[J]. Process Biochemistry,2005,40:3536-3541
    [144]Pace DL, Mielke R E, Southham G, Porter T L. Scanning force microscopy studies of the colonization and growth of A ferrooxidans on the surface of pyrite minerals[J]. Scanning,2005,27:136-140
    [145]Pantelis G and Ritchie AIM. Optimising oxidation rates in heaps of pyritic material[M]. In:Torma E, Wey JE, Lackshmanan, (eds) Biohydrometallurgy technologies, bioleaching processes, voll. The Minerals, Metals and Materials Society, Warrendale,1993, pp 731-738
    [146]Penev K and Karamaneva D. Kinetics of ferrous iron oxidation by Leptospirillum ferriphilum at moderate to high total iron concentrations [J]. Advanced Materials Research,2009,71-73:255-258
    [147]Plumb J J, Hawkes R B, Franzmann P D. The Microbiology of Moderately Thermophilic and Transiently Thermophilic Ore Heaps[M]. In:D.E. Rawlings B.D. Johnson (Eds.) Biomining:2007,217-235
    [148]Plumb J J, Muddle R and Franzmann P D. Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms [J]. Minerals Engineering,2008, 21(1):76-82
    [149]彭容秋.锌冶金.长沙:中南大学出版社,2005
    [150]Ratkowsky D A, Lowry R K, Mcmeekin T A, Stokes A N and Chandler R E. Model for bacterial culture growth rate throughout the entire biokinetic temperature range[J]. J. Bacteriol,1983,154(3):1222-1226
    [151]Rawlings D E C N J, Gardner M N, et al.. Thiobacillus caldus and Leptospirillum ferrooxidans are widely distributed in continuous flow biooxidation tanks used to treat a variety of metal containing ores and concentrates[C]. In:A.R.B. A (Editor), Biohydrometallurgy and the environment towards the 21st Century Part A. Elsevier, Amsterdam,1999, 777-786
    [152]Rawlings D E, Tributsch H and Hansford G S. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores [J]. Microbiology,1999,145(1):5-13
    [153]Rawlings D E. "Restriction enzyme analysis of 16s rDNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments" in Biohydrometallurgical Processing[M], Vol.11, Proceedings of International Biohydrometallurgy Symposium, viria del Mar, Chile (November 1995). C. A. Jerez, T. V. Vargas and H. Toledo J. V. Wiertz(Eds.), University of Chile, Santiago,1995,9-18
    [154]Rawlings D E. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories (via www.unipotsdam.de-PDF-402 KB), 2005
    [155]Rawlings D E. Heavy Metal Mining Using Microbes[J]. Annu. Rev. Microbiol, 2002,56:65-91
    [156]Rawlings D E and Johnson D B. The microbiology of biomining:development and optimization of mineral-oxidizing microbial consortia[J]. Microbiology, 2007,153(2):315-324
    [157]Readett D, Sylwestrzak L, Franzmann P D et al.. The life cycle of a chalcocite heap bioleach system[C]. In:Young C A, Alfantazi A M, Anderson C G, Dreisinger D B, Harris B, James A (eds) Hydrometallurgy 2003-5th international conference in honour of Professor Ian Ritchie, vol 1. Leaching and solution purification. The Minerals, Metals and Materials Society, Warrendale,2003, pp 365-374
    [158]Readett D and Townson B. Practical aspects of copper solvent extraction from acidic leach liquors. Unpublished paper presented at ALTA Copper 1997: Copper Hydrometallurgy Forum (Brisbane,Qld.)[C], ALTA Metallurgical Services, Melbourne,1997, pp 37
    [159]Ream B P and Schlitt W J. Kennecott's Bingham Canyon heap leach program, part 1:the test heap and SX-EW pilot plant[C]. paper presented at ALTA 1997, copper hydrometallurgy forum, Brisbane,1997
    [160]Reedy B J, Beattie J K and Lowson R T. A vibrational spectroscopic 18O tracer study of pyrite oxidation[J]. Geochim. Cosmochim. Acta.,1991,55:1609-1614
    [161]Rimstidt J D and Vaughan D J. Pyrite oxidation:A state-of-the-art assessment of the reaction mechanism[J]. Geochim. Cosmochim. Acta,2003,67:873-880
    [162]Rittmann B and Mccarty P, Environmental Biotechnology:Principal and Applications. McGraw-Hill International Editions, New York.2001
    [163]Robertson L and J Kuenen. The Genus Thiobacillus. In:M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt (Editors), The Prokaryotes. Springer New York, pp.812-827.2006
    [164]Rodriguez Y, Ballester A, Blazquez M L et al.. New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy [J]. 2003,71(1-2):37-46
    [165]Rodriguez-Leiva M, Tributsch H. Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite[J]. Arch Microbiol,1988,149: 401-405
    [166]Rohwerder T and Sand W. Mechanisms And Biochemical Fundamentals Of Bacterial Metal Sulfide Oxidation[J]. Microbial Processing of Metal Sulfides, 2007,35-58
    [167]Rohwerder T, Gehrke T, Kinzler K et al.. Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Appl Microbiol Biotechnol,2003,63:239-248
    [168]Rohwerder T, Schippers A, Sand W. Determination of reaction energy values for biological pyrite oxidation by calorimetry. Thermochim Acta,1998,309: 79-85
    [169]Rossi G. Biohydrometallurgy, McGraw-Hill, Hamburg,1990
    [170]Ruan R M, Liu X Y, Zou G et al... Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide [J]. Hydrometallurgy.2011(In Press)
    [171]Ruan R M, Wen J K, Chen J H. Bacterial heap-leaching:Practice in Zijinshan Copper mine [J]. Hydrometallurgy,2006,83:77-82
    [172]阮仁满,温建康,武彪等.次生硫化铜矿生物浸出过程黄铁矿选择性抑制工艺.中国专利,ZL200610144129.5,2008-06-04
    [173]阮仁满,温建康.紫金山铜矿生物浸出小型试验报告.北京有色金属研究总院,1999-07
    [174]阮仁满,温建康.紫金山铜矿生物浸出柱浸扩大试验报告.北京有色金属研究总院,2000-12
    [175]阮仁满,温建康等.紫金山铜矿1000吨级生物提铜半工业试验总结报告.北京有色金属研究总院,2003-12
    [176]阮仁满,温建康等.紫金山铜矿300吨级生物提铜半工业试验报告.北京有色金属研究总院,2001-12
    [177]阮仁满,衷水平,王淀佐.生物提铜与火法炼铜过程生命周期评价.矿产资源综合利用,2010,3:33-37
    [178]阮仁满.“973"项目“微生物冶金的基础研究”课题六中期验收总结报告.北京有色金属研究总院,2006-12
    [179]S G R and K G I. Sulfobacillus, a new genus of thermophilic sporeforming bacteria[J]. Mikrobiologiya,1978,47:815-822
    [180]Sakaguchi H, Torma A E and Silver M. Microbiological oxidation of synthetic chalcocite and covellite by Thiobacillus ferrooxidans[J]. Appl. Environ. Microbiol.,1976,31:7-10
    [181]Sand W, Gehrke T, Jozsa P-G et al.. (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching[J]. Hydrometallurgy,2001,59:159-175
    [182]Sand W, Hallmann R, Rohde K et al.. Controlled microbiological in-situ stope leaching of a sulphidic ore[J]. Appl. Microbiol. Biotechnol.,1993,40:421-426
    [183]Sasaki K, Tsunekawa M, Tanaka S et al.. Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(III) ions around pH 2[J]. Geochim. Cosmochim. Act,1995,59:3155-3158
    [184]Sasaki K, Tsunekawa M, Tanaka S et al.. Reply to the comment by G. W. Luther III on "Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(III) ions around pH 2"[J]. Geochim. Cosmochim. Acta,1997, 61:3273-3274
    [185]Schippers A, Jozsa P-G, Sand W. Sulfur chemistry in bacterial leaching of pyrite[J]. Appl Environ Microbiol,1996,62:3424-3431
    [186]Schippers A, Rohwerder T, Sand W. Intermediary sulfur compounds in pyrite oxidation:implications for bioleaching and biodepyritization of coal[J]. Appl Microbiol Biotechno,1999,152:104-110
    [187]Schippers A, Sand W. Bacterial leaching of metal sulfide proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur[J]. Appl Environ Microbiol,1999,65:319-321
    [188]Schippers A. Biogeochmistry of metal sulfide oxidation in mining environments, sediments and soils[C]. In:Amend JP, Edwards KJ, Lyons TW, eds. Sulfur biogeochemistry-Past and present. Special Paper 379, Geological Society of America, Boulder, Colorado,2004,49-62
    [189]Schippers A. Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification[M]. In:Edgardo R. Donati, Wolfgang Sand(eds) Microbial Processing of Metal Sulfides. Springer, Berlin,2007, pp 3-34
    [190]Shutey-McCann M L, Sawyer F P, Logan T et al.. Operation of Newmont's biooxidation demonstration facility [C]. In:Hausen DM (ed) Global exploitation of heap leachable gold deposits. The Minerals, Metals and Materials Society, Warrendale,1997, pp 75-82
    [191]Silverman M P, Ehrlich H L. Microbial formation and deg-radation of metals[J].Adv. Appl. Microbiol.,1964, (6):153-206
    [192]Singer P C and Stumm W. Acid mine drainage:The rate-determining step[J]. Science,1970,167:1121-1123
    [193]Smith E E, Shumate K S. Sulfide to sulfate reaction mechanism:A study of the sulfide to sulfate reaction mechanism as it relates to the formation of acid mine waters[M]. In:U.S. Federal Water Quality Administration,1970, p111-114
    [194]Solari J A, Huerta G, Escobar B, Vargas T, Badilla-Ohlbaum R, Rubio J. Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surfaces[J]. Colloids Surfaces,1992,69:159-166
    [195]Steudel R G, Holdt T GoEbel, and Hazeu W. Chromatographic separation of higher polythionates SnO62- (n=3...22) and their detection in cultures of Thiobacillus ferrooxidans; molecular composition of bacterial sul-fur excretions [J]. Angew. Chem. Int. Ed. Engl.,1987,26:151-153
    [196]Steudel R. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes[J]. Ind. Eng. Chem. Res.,1996,35:1417-1423
    [197]Sugio T and Akhter F. Solubilization of Cu2+ from copper ore by iron-oxidizing bacteria isolated from the natural environment and identification of the enzyme that determines Cu2+ solubilization activity [J]. J. Ferment. Bioeng.,1996,82:346±350
    [198]Sullivan J D. Chemistry of Leaching Chalcocite[J]. U.S. Bur. Mines Tech. Paper,1930,24:473
    [199]Sylvie C Bouffard, Berny F R-V and David G D. Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media[J]. Hydrometallurgy,2006,84:225-238
    [200]TAYLOR B E, WHEELER M C and NORDSTROM D K. Oxygen and sulfur compositions of sulfate in acid mine drainage:Evidence for oxidation mechanisms[J]. Nature,1984a,308:538-541
    [201]TAYLOR B E. WHEELER M C and NORDSTROM D K. Stable isotope geochemistry of acid mine drainage:Experimental oxidation of pyrite [J]. Geochim. Cosmochim. Acta,1984b,48:2669-2678
    [202]Telegdi J, Keresztes Z, Palinkas G et al.. Microbially influenced corrosion visualized by atomic force microscopy [J]. Appl Phys A,1998,66:S639-S642
    [203]Tempel K. Commercial biooxidation challenges at Newmont's Nevada operations[C]. In:2003 SME annual meeting, preprint 03-067, Society of Mining, Metallurgy and Exploration, Littleton,2003
    [204]Temple K L and Delchamps E W. Appl. Microbil.,1953,1:255
    [205]Thomas G and Ingraham T R. Kinetics of Dissolution of Syntbetic Covellite in Aqueous Acidic Ferric Sulphate Solutions, Canadian Metallurgical Quarterly, 1967,6(2):153-165
    [206]Thomas G and Ingraham T R. Kinetics of Dissolution of Synthetic Digenite & Chalcocite in Aqueous Acidic Ferric Sulfate Solutions[J]. Canadian Metallurgical Quarterly,1967,6(3):281-292
    [207]Toniazzo V, Mustin C, Portal J M, Humbert B and Erre R. Elemental sulfur at the pyrite surfaces:Speciation and quantification[J]. Appl. Surf. Sci.,1999,143: 229-237
    [208]Torma A E and Sakaguchi H. Relation between the solubility product and the rate of metal sulfide oxidation by Thiobacillus ferrooxidans[J]. J. Ferment. Technol.,1978,56:173-178
    [209]Tributsch H and Bennett J C. Semiconductor-electrochemical aspects of bacterial leaching. Part 1. Oxidation of metal sulphides with large energy gaps[J]. J. Chem. Technol. Biotechnol.,1981,31:565-577
    [210]Tributsch H. Direct versus indirect bioleaching[J]. Hydrometallurgy,2001,59: 177-185
    [211]Tributsch H and Bennett J C. Semiconductor-electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties[J]. J. Chem. Technol. Biotechnol.,1981,31:627-635
    [212]Tsaplinaa I A, Zhuravleva A E, Egorova M A et al.. Response to Oxygen Limitation in Bacteria of the Genus Sulfobacillus[M]. Microbiology,2010, 79(1):13-22
    [213]Tunde V O, Jochen P. The kinetics of ferrous ion oxidation by Leptospirillum ferriphilum in continuous culture:The effect of pH[J]. Hydrometallurgy,2011, 106:5-11
    [214]Tunde V O, Jochen P and Geoffrey S H. The effect of aluminium and magnesium sulphate on the rate of ferrous iron oxidation by Leptospirillum ferriphilum in continuous culture[J]. Advanced Materials Research,2007, 21-22:156-159
    [215]Tyson G W et al.. Genome-Directed Isolation of the Key Nitrogen Fixer Leptospirillum ferrodiazotrophum sp. nov. from an Acidophilic Microbial Community [J]. Appl. Environ. Microbiol.,2005,71(10):6319-6324
    [216]Vandevivere P, Kirchman D L. Attachment stimulates exopolysaccharide synthesis by a bacterium[J]. Appl Environ Microbiol,1993,59:3280-3286
    [217]Wakao et al.. Acidiphilium multivorum sp. nov., an acidophilic chemoorganotrophic bacterium from pyritic acid mine drainage,40. Microbiology Research Foundation, Tokyo, JAPON,1994
    [218]Waksman S A and Joffe J S. Microorganisms concerned in the oxidation of sulfur in the soil II. Thiobacillus thiooxidans, A new sulfur-oxidizing organism isolated from the soil[J]. J. Bacteriol.,1922,7(2):239-256
    [219]王淑兰,梁英教.物理化学[M].北京:冶金工业出版社,2010:211~212
    [220]Watling H R, Watkin E L J and Ralph D E. The resilience and versatility of acidophiles that contribute to the bio-assisted extraction of metals from mineral sulphides[J]. Environmental Technology,2010,31(8):915-933
    [221]Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review[J]. Hydrometallurgy,2006.84:81-108
    [222]Wentzien S, Sand W, Albertsen A and Steudel R. Thiosulfate and tetrathionate degradation as well as biofilm generation by Thiobacillus intermedius and Thiobacillus versutus studied by microcalorimetry, HPLC, and ion-pair chromatography[J]. Arch. Microbiol,1994,161:116-125
    [223]Whiteside L S and Goble R J. Structural and Compositional Changes in Copper Sulfides During Leaching and Dissolution[J], Canadian Mineralogist, 1986,24:247-258
    [224]Wichlacz P L, Unz R F and Langworthy T A. Acidiphilium angustum sp. nov., Acidiphilium facilis sp. nov., and Acidiphilium rubrum sp. nov.:Acidophilic Heterotrophic Bacteria Isolated from Acidic Coal Mine Drainage [J]. Int J Syst Bacteriol,1986,36(2):197-201
    [225]Williamson M A and Rimstidt J D. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation[J]. Geochim. Cosmochim. Acta,1994,58:5443-5454
    [226]Williamson M A and Rimstidt J D. The rate of decomposition of the ferric-thiosulfate complex in acidic aqueous solutions [J]. Geochim. Cosmochim. Acta,1993,57:3555-3561
    [227]温建康,阮仁满等.生物冶金过程的酸平衡方法.中国专利,ZL02128838.0,2004-02-18
    [228]武彪.黄铁矿在生物浸铜过程中的氧化行为:[硕士学位论文].北京:北京有色金属研究总院,2007
    [229]武名麟.紫金山浸矿微生物的鉴定:[硕士学位论文].北京:北京有色金属研究总院,2004
    [230]Liu X Y, Shu R B, Chen B W et al.. Bacterial community structure change during pyrite bioleaching process:Effect of pH and aeration [J]. Hydrometallurgy,2009,95(3-4):267-272
    [231]徐采栋,林蓉,汪大成,著.锌冶金物理化学.上海科学技术出版社,1979
    [232]Yahya A and Johnson D B. Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic Gram-positive bacteria[J]. Hydrometallurgy, 2002,63(2):181-188
    [233]Zheng C Q, Allen C C and Bautista R G. Kinetic study of the oxidation of pyrite in aqueous ferric sulfate[J]. Ind. Eng. Process Des.Dev.,1986,25: 308-317
    [234]Zhou H et al.. Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite[J]. Journal of Applied Microbiology,2008, 105(2):591-601
    [235]Zkaya B, Sahinkaya E, Nurmi P et al.. Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one[J]. Biotechnology and Bioengineering,2007,97(5):1121-1127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700