用户名: 密码: 验证码:
早熟禾(Poa annua L.)生物学生态学特性及对精噁唑禾草灵耐药性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以长江中下游地区小麦田、油菜田恶性杂草早熟禾(Poa annua L)为主要对象,研究其相关生物学生态学特性,特别就其对精嗯唑禾草灵的耐药性进行了较为系统的研究,初步明确了早熟禾发生日益严重的原因,丰富了早熟禾耐药性方面的有关理论,为早熟禾的防除提供了技术基础。本文具体研究了早熟禾籽实休眠及萌发出苗特性;调查了早熟禾的结实特性、田间发生动态、群体生物量以及不同前茬与不同耕作方式对早熟禾发生量的影响;测定了不同地区早熟禾生物型对乙酰辅酶A羧化酶(Acetyl coenzyme A carboxylase, ACCase)抑制剂类除草剂精噁唑禾草灵(fenoxaprop-P-ethyl)的敏感性;系统研究了早熟禾靶标酶ACCase活性、ACCase CT区片段氨基酸序列、ACCase基因相对表达量、谷胱甘肽硫转移酶(GST)活性、细胞色素P450氧化酶系主要组分含量及活性、抗氧化防御系统的相关指标与早熟禾耐药性的关系。
     1.早熟禾的生物学生态学特性
     对早熟禾籽实休眠、萌发及出苗特性的研究表明:成熟的早熟禾籽实具有接近20天的休眠期。0.5%次氯酸钠消毒后4℃清水浸泡、室外自然条件土壤层积、室外自然条件水下土壤层积均可快速解除早熟禾籽实的休眠,但低温干燥条件不利于其休眠解除;250mg·L-1赤霉素、31.25mg·L-1乙烯利或500mg·L-1硝酸钾室温浸泡早熟禾籽实24h均可有效的解除其休眠;早熟禾籽实萌发适宜温度为10~25℃,光照、酸碱度、盐胁迫均非其萌发的限制性因素,其萌发对水分胁迫非常敏感,0~2.0cm土壤深度时早熟禾的出苗率均可达到55%以上,土壤深度为3.5cm时,早熟禾籽实几乎不能出苗。
     田间调查早熟禾的结实特性、田间发生动态、群体生物量、不同前茬及不同耕作方式下早熟禾的发生量发现:2009年稻茬小麦田中早熟禾籽实成熟时,早熟禾平均株高为33.96±1.89cm,平均分蘖为6.7±1.2个,平均有效分蘖为5.6±1.2个,平均每穗粒数为1004±155粒,平均千粒重为0.2944±0.02g;稻茬小麦田早熟禾具有一个冬前出苗高峰;早熟禾的株高、鲜重均在小麦播后第15周进入快速增长期,比小麦推迟3周;前茬为玉米和水稻的试验田浅耕、免耕处理后撒播油菜和小麦,早熟禾的发生量具有显著的差异,以前茬为玉米,浅耕小麦田中早熟禾发生量最低。
     2.早熟禾对精噁唑禾草灵及其它除草剂的敏感性
     种子生测法和整株生测法测定了21个早熟禾生物型对精噁唑禾草灵的敏感性,结果表明早熟禾对精噁唑禾草灵具有天然抗药性,即耐药性。
     整株生测法测定了夏熟作物田禾本科杂草蔺草(Beckmannia syzigachne)、日本看麦娘(Alopecurus japonicus)、看麦娘(A. aequalis)、硬草(Sclerochloa kengiana)、棒头草(Polypogon fugax)对精噁唑禾草灵的敏感性,结果表明5种禾本科杂草中以看麦娘对精噁唑禾草灵最为敏感。
     整株生测法测定了早熟禾对其它ACCase抑制剂类除草剂的敏感性,结果表明早熟禾对高效氟吡甲禾灵(haloxyfop-P-methyl)、氰氟草酯(cyhalofop-butyl)、精吡氟禾草灵(fluazifop-P-butyl)、炔草酸(clodinafop-propargyl)、烯禾啶(sethoxydim)具有耐药性,而对吡喃草酮(tepraloxydim)、烯草酮(clethodim)敏感。
     土壤处理整株生测法测定早熟禾对19种非ACCase抑制剂类除草剂的敏感性,结果表明胺苯磺隆(ethametsulfuron-methyl)、磺酰磺隆(sulfosulfuron)、吡氟草胺(diflufenican)、氟噻草胺(flufenacet)、吡嘧磺隆(pyrazosulfuron)、叹草醚(bispyribac-sodium)、吡草胺(metazachlor)播后苗前处理对早熟禾均可达到比较理想的抑制效果。
     茎叶处理整株生测法测定早熟禾对15种非ACCase抑制剂类除草剂的敏感性,结果表明甲基二磺隆(mesosulfuron-methyl)、氟噻草胺(flufenacet)、胺苯磺隆(ethametsulfuron-methyl)、百草枯(paraquat)、草甘膦异丙胺盐(glyphosate)、草胺膦(glufosinate)茎叶处理均可有效抑制早熟禾的生长。
     3.早熟禾对精噁唑禾草灵的耐药性机理
     采用同位素标记检测法研究早熟禾及对照敏感杂草看麦娘ACCase对精噁唑禾草灵酸的敏感性,分子生物学技术研究早熟禾及对照敏感杂草看麦娘的ACCase氨基酸序列及其ACCase基因相对表达量的差异。结果表明早熟禾ACCase对精噁唑禾草灵酸敏感性极低,其ACCase氨基酸序列1781位点天然存在其它抗性禾本科杂草突变类型氨基酸亮氨酸(Leu),其ACCase基因表达量显著高于看麦娘。
     模式底物分光光度法测定施药前后早熟禾及看麦娘谷胱甘肽硫转移酶(GST)活性的变化动态。结果表明:施用精噁唑禾草灵初期早熟禾GST活性较未施药植株有所提升,后降至与未施药对照水平相当;而看麦娘GST活性则先稍有升高,后逐渐降至未施药水平之下。
     分光光度法测定施药前后早熟禾及对照敏感杂草看麦娘细胞色素P450氧化酶系主要组分细胞色素P450与细胞色素b5含量的变化动态。结果显示:施药后早熟禾细胞色素P450与细胞色素b5含量先升高,后逐渐降低,但其含量始终高于未施药植株;施药后看麦娘细胞色素P450含量先升高,后降至未施药水平之下,其细胞色素b5含量则先有所升高后降至未施药水平。
     荧光分光光度法测定施药前后早熟禾及看麦娘细胞色素P450氧化酶系介导的对硝基苯甲醚-O-脱甲基酶(PNOD)、乙氧基试卤灵-O-脱乙基酶(EROD)、乙氧基香豆素-O-脱甲基酶(ECOD)和NADPH-细胞色素P450还原酶活性的变化动态。施药后早熟禾细胞色素P450氧化酶系介导的PNOD、EROD、ECOD、NADPH-细胞色素P450还原酶活性均有所升高,尤以ECOD与NADPH-细胞色素P450还原酶活性升高相对较为显著。而看麦娘P450氧化酶系介导的PNOD、EROD、ECOD活性较未施药植株均有所下降,而NADPH-细胞色素P450还原酶活性则先升高,后降至未施药植株水平之下。
     整株生测法测定了细胞色素P450氧化酶系抑制剂胡椒基丁醚(PBO)、1-氨基苯并三唑(ABT)、马拉硫磷(malathion)寸精噁唑禾草灵的协同作用。研究表明细胞色素P450氧化酶系抑制剂PBO与ABT均可显著提高精噁唑禾草灵对早熟禾的抑制作用,而马拉硫磷则无增效作用。
     采用分光光度法或荧光分光光度法测定施药前后早熟禾体内活性氧伤害及抗氧化防御系统相关指标与其耐药性的关系。结果发现:施药后早熟禾超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性先升高,后又逐渐降低,过氧化物酶(POD)活性保持稳定,而看麦娘SOD、CAT活性保持稳定,POD活性先升高,后又逐渐降低。施药后早熟禾还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)含量先升高后降低,对照敏感杂草看麦娘则呈现逐渐下降的趋势。施药后早熟禾超氧阴离子(O2·-)、过氧化氢(H2O2)、抗坏血酸(AsA)、硫代巴比妥酸反应产物(TBARS)和可溶性蛋白含量保持稳定,而看麦娘则呈现逐渐升高的趋势。
     综上所述,早熟禾ACCase对精噁唑禾草灵酸极低的敏感性、氨基酸1781位点抗性突变类型氨基酸的天然存在及其相对较高的ACCase基因表达量可能是早熟禾对精噁唑禾草灵耐药性的主要机制之一。施药后早熟禾细胞色素P450与细胞色素b5含量及细胞色素P450氧化酶系活性得到了诱导性提升,表明细胞色素P450氧化酶系介导的代谢加强可能也是早熟禾对精噁唑禾草灵耐药性的主要机制之一。GST及抗氧化防御系统相关指标在早熟禾对精噁唑禾草灵的耐药性中可能也发挥了一定的作用。早熟禾对精噁唑禾草灵较高的耐药性水平可能是包含靶标酶、代谢酶及抗氧化防御系统等在内的多种机制共同作用的结果。
Annual bluegrass (Poa annua L.), a kind of worst grass weed in wheat (Triticum aestivum L.) and oilseed rape (Brassica campestris L.) fields in the middle and lower reach of Yangtze valley in China, was chosen as a main research object in this paper. The biological and ecological characteristics of P. annua and its mechanisms of tolerance to herbicide fenoxaprop-P-ethyl were studied to elucidate why the occurrence of P. annua were increased gradually and to make theoretic complementarity for herbicide tolerance mechanism of P. annua. In general, this paper did some exploration in following aspects: the characterization of seed dormancy and germination of P. annua; the characteration of fructification of mature P. annua plants, the occurrence dynamics, the population biomass and the influence of different kind of preceding crops and cultivation on plant biomass; the susceptibility of ACCase (acetyl coenzyme A carboxylase) to herbicide fenoxaprop-P-ethyl from P. annua; the relations of herbicide tolerance of P. annua with ACCase activity, amino acid sequence of ACCase CT domain, relative expression level of ACCase genes, GST activity, contents and activity of cytochrome P450monooxygenase, and anti-oxidant indexes.
     1.Biological and Ecological Characteristics of P. annua
     The mature seeds have about20days dormancy after being collected from fields. The dormancy of seeds could be broken by being buried underground5cm, buried ungerground5cm with water, soaked in the water at4℃after being disinfected using0.5%sodium hypochlorite (NaCIO). The seed dormancy of P annua could be broken by treated with chemicals such as250mg·L-1GA3,500mg·L-1KNO3and31.25mg·L-1Ethopon for24h. The optimum temperature range for seed germination was10~25℃and light was not necessary. Seed germination was sensitive to osmotic potential. But it was quite tolerant to salinity. More than80%of seeds could be germinated at pH values ranged from4to10. Seedling emergence was higher (55%) when seeds were sown at the depth of0~2.0cm.
     Few seedlings emerged when seeds were planted at a depth of3.0cm. Information gained in this study will load to a better understanding of the requirements of P. annua gerimination and seedling emergence.
     Fruiting traits of P. annua were investigated before the seed exfoliated in wheat fields rotated with rice. Its average plant height was33.96±1.89cm, average tillering nodes were6.7±1.2, average productive tillering nodes were5.6±1.2, average grain number per spike was1004±155and average1000-grain weight was0.2944±0.02g. Ecology exploration of P. annua showed that a main emergence fastigium was observed in winter with majority seedlings. The zooming period of plant height and fresh weight of P. annua occurred at15WAP (weeks after planting), which was three weeks later than wheat, and suggested that chemical control and fertilization should be performed within15WAP.
     The seedling emergences of P. annua in the wheat fields were varied when it occurred in the different previous crop and different tillage methods. The seedling emergence was lowest when it occurred in the wheat fields, which corn (Zea mays) was the previous crop and the wheat was planted after shallow tillage.
     2. The Sensitivity of P. annua to Herbicide Fenoxaprop-P-ethyl and Other Herbicides
     The susceptibility of P. annua to fenoxaprop-P-ethyl were identified by seed-bioassay and whole-plant test, which were collected from different fields, and similar results were obtained by both of methods. The biotypes, which had never been applied with fenoxaprop-P-ethyl, had very high ED50values which were not impossibily applied in the fields. This indicated that P. annua was tolerant to fenoxaprop-P-ethyl.
     The sensitivity level of Alopecurus aequalis, A. japonicus, Beckmannia syzigachne, Sclerochloa kengiana, and Polypogon fugax to fenoxaprop-P-ethyl were evaluated by whole-plant bioassay, which were collected from Zijin Mountain (Nanjing, Jiangsu), where fenoxaprop-P-ethyl had never been applied. The A. aequalis was the most sensitive to fenoxaprop-P-ethyl among the five grasses.
     The sensitivities of P. annua and susceptible reference weed A. aequalis to other ACCase inhibiting herbicides were evaluated by whole-plant bioassay. P. annua and susceptible weed A. aequalis were collected from Zijin Mountain (Nanjing, Jiangsu), where fenoxaprop-P-ethyl had never been applied. P. annua was found to be tolerant to fenoxaprop-P-ethyl as well as haloxyfop-P-methyl, clodinafop-propargyl, fluazifop-P-butyl, cyhalofop-butyl and sethoxydim, whereas it was sensitive to clethodim and tepraloxydim.
     The susceptibility of P. annua to19herbicides belong to different classes was determined by pre-emergence applied methods. Ethametsulfuron-methyl, sulfosulfuron, diflufenican, flufenacet, bispyribac-sodium, and metazachlor could be used to control P. annua through pre-emergence applied.
     The susceptibility of P. annua to15herbicides belong to different classes was determined by post-emergence spraying methods. Ethametsulfuron-methyl, mesosulfuron-methyl, flufenacet, paraquat, glufosinate, and glyphosate could be used to control P. annua through post-emergence spraying.
     3.The Mechanisms of Tolerance to Fenoxaprop-P-ethyl in P annua
     The IC50(the concentration of fenoxaprop-P-ethyl (free acid) that inhibited50%of acetyl coenzyme A carboxylase (ACCase) activity) values for P. annua was1.70-fold higher than that for A. aequalis, which was susceptible to fenoxaprop-P-ethyl in fields. The presence of the Leu-1781residue, which had been reported to be involved in the resistance of gramineous weeds to ACCase inhibitors, was subsequently identified in the plastidic ACCase of P. annua. Furthermore, the relative gene expression level of P. annua ACCase genes was found to be approximately2.4-fold higher than that in A. aequalis, possibly explaining the tolerance to fenoxaprop-P-ethyl of P. annua.
     The1-chloro-2,4-dinitrobenzene (CDNB) were used as model substrates to detect the activities of glutathione s-transferases (GST) in P. annua and susceptible A. aeuqlis in order to clarify the relationship with GST metabolic tolerance. The activity of GST in P. annua was higher than that in A. aequalis without herbicide treatment. GST activity in P. annua increased slowly after treated with fenoxaprop-P-ethyl, then it decreased to being similar to the untreated plants after3days treatment. The GST activity in A. aequalis increased when1day after treatment, then decreased to being smaller than the untreated plants in all of the cases.
     The contents of cytochrome P450and cytochrome b5in P. annua and A. aequalis were determined by spectrophotometric determination. After treated with fenoxaprop-P-ethyl, the contents of cytochrome P450and cytochrome b5in P. annua were significantly increased, compared with untreated plants. However, the increasing was less in A. aequalis, which was susceptible to fenoxaprop-P-ethyl.
     The activities of cytochrome P450monooxygenases mediating p-nitroanisole O-demethylase (PNOD), ethoxyresorufin O-dethylase (EROD), ethoxycoumarin Oxidase (ECOD), and NADPH-dependent cytochrome P450reductase were determined by influorescence spectrophotometry. The activities of cytochrome P450monooxygenase mediating PNOD, EROD, ECOD and NADPH-cytochrome P450reductase had increased in P. annua after application of fenoxaprop-P-ethyl, especially the activities of ECOD and cytochrome P450reductase. The O-deetylylation and reduction catalyzed by cytochrome P450monooxygenases may be involved in the metabolism of fenoxaprop-P-ethyl. It was also suggested that the induction of cytochrome P450monooxygenase activities is the mechanism involved in the fenoxaprop-P-ethyl tolerance observed in P. annua.
     The effects of fenoxaprop-P-ethyl and cytochrome P450monooxygenases inhibitor piperonyl butoxide (PBO), malathion and1-aminobenzotriazole (ABT) on the weed growth were evaluated by whole-plant bioassay. It had been found that PBO and ABT synergized fenoxaprop-P-ethyl activity in P. annua, while malathion had little effects. But the ED50vulues of fenoxaprop-P-ethyl had been applicaed with PBO or ABT were still very higher than the recommended dose in fileds. The synergisms of PBO and ABT valideted that cytochrome P450monooxygense is one of the mechanisms involved in the fenoxaprop-P-ethyl tolerance observed in P annua.
     The activities of superoxide dismutase, catalase, peroxidase, and contents of superoxide anion radial (O2·-), reduced/oxidized glutathione (GSH/GSSG), hydrogen peroxide (H2O2), ascorbic acid (AsA), thiobarbituric acid reactive substances (TBARS), and soluable protein in P. annua and A. aequalis were detected. Significant differences of all the indexes mentioned above were observed in P. annua and A. aequalis after treated with fenoxaprop-P-ethyl. The lower oxygen damages and higher activities of SOD, POD and CAT in P. annua indicated that tolerance due to oxidative stress may be one of the mechanisms of tolerance to herbicide fenoxaprop-P-ethyl in P. annua.
引文
[1]唐洪元.中国农田杂草[M].上海:上海科技教育出版社,1991.
    [2]苏少泉.杂草学[M].北京:农业出版社,1993.
    [3]毕海波,李应生.寿县稻茬麦田杂草种类演变及化学防治[J].现代农业科技,2011,16:164.
    [4]崔世荣,邰德良,李瑛,等.江苏省东台市农田杂草防除新问题与应变对策[J].北京农业,2010,7:60-63.
    [5]何翠娟,周伟军,金燕.上海市麦田杂草的发生、危害现状和防除对策[J].上海交通大学学报(农业科学版),2004,4:397.
    [6]侯琴慧,段泽民.鹤庆县大麦田地杂草发生情况调查[J].云南农业大学学报,2011,2:44-45.
    [7]钱贵喜,孙春来.海安县部分小麦田杂草重发原因及防治对策[J].现代农业科技,2008,1:96.
    [8]饶娜.菵草(Beckmannia syzigachne (Steud.) Fernald)生物学、生态学及其防除的研究[D].南京:南京农业大学,2008.
    [9]沈丹峰,邵文捷,石磊,等.近年宜兴市夏熟作物杂草发生及危害研究[J].上海农业科技,2010,6:118-120.
    [10]宋爱颖.萧县麦田杂草种群演变初探[J].安徽农学通报,2011,17:33-35.
    [11]杨玉珍,宋爱颖.萧县麦田阔叶杂草和禾本科杂草的防除技术[J].安徽农学通报,2011,17:171-172.
    [12]黄建中,姚东瑞.杂草学[M].北京:中国农业科技出版社,1996.
    [13]强胜.杂草学[M].北京:中国农业出版社,2001.
    [14]Travlos I S, Giannopolitis C N, Economou G. Diclofop resistance in sterile wild oat(Avena sterilis L.) in wheat fields in Greece and its management by other post-emergence herbicides [J]. Crop Protection,2011,30:1449-1454.
    [15]Lee H, Rustgi S, Kumar N, et al. Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides [J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108:8909-8913.
    [16]Powles S B, Yu Q. Evolution in action:plants resistant to herbicides [J]. Annual Review of Plant Biology,2010,61:317-347.
    [17]Heap I. International survey of herbicide resistant weeds. www.weedscience.org,2012,7.
    [18]Heap I M. The occurrence of herbicide-resistant weeds worldwide [J]. Pesticide Science,1997,51: 235-243.
    [19]Travlos I S, Giannopolitis C N, Economou G. Diclofop resistance in sterile wild oat(Avena sterilis L.) in wheat fields in Greece and its management by other post-emergence herbicides [J]. Crop Protection,2011,30:1449-1454.
    [20]Cocker K M, Northcroft D S, Coleman J O D, et al. Resistance to ACCase-inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum mechanisms of resistance and implications for control [J]. Pest Management Science,2011,57:587-597.
    [21]Yu L P C, Kim Y S, Tong L. Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden [J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107:22072-22077.
    [22]Xiang S, Callaghan M M, Watson K G, et al. A different mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by tepraloxydim [J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106:20723-20727.
    [23]Yu Q, Collavo A, Zheng M Q, et al. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations evalution using clethodim [J]. Plant Physiology,2007,145:547-558.
    [24]Liu W, Harrison D K, Chaluoska D, et al. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:3627-3632.
    [25]Pornprom T, Mahatamnuchoke P, Usui K. The role of altered acetyl-CoA carboxylase in conferring resistance to fenoxaprop-P-ethyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees) [J]. Pest Management Science,2006,62:1109-1115.
    [26]Ge X, D'avignon D A, Ackerman J J H, et al. Rapid vacuolar sequestration:the horseweed glyphosate resistance mechanism [J]. Pest Management Science,2010,66:345-348.
    [27]刘长令.世界农药大全:除草剂卷[M].北京:化学工业出版社,2002.
    [28]张一宾,张怿,伍贤英.世界农药新进展(二)[M].北京:化学工业出版社,2010.
    [29]邱江,王建,高联义,等.泰州市农田杂草的变化与防除对策[J].杂草科学,2006,1:28-30.
    [30]易红娟,花春晖,孙雪梅,等.12%收乐通EC防除油菜田早熟禾、硬草的效果[J].杂草科学,2003,3:31-32.
    [1]王乐凯.2003年中国小麦分布及品质状况[J].粮食加工,2004,4:21.
    [2]唐洪元.中国农田杂草[M].上海:上海科技教育出版社,1991.
    [3]余松烈.中国小麦栽培理论与实践[M].上海:上海科学技术出版社,2006.
    [4]郭绍铮,彭永欣,钱维朴,等.江苏麦作科学[M].南京:江苏科学技术出版社,1994.
    [5]中国农业年鉴编辑委员会.中国农业年鉴[M].北京:中国农业出版社,2004.
    [6]娄远来,薛光,邓渊钰.江苏省稻茬麦田杂草分布与危害[J].江苏农业科学,1998,2:36.
    [7]王开金,强胜.江苏省麦田杂草群落的数量分析[J].生物数学学报,2005,20:108-113.
    [8]冯维卓,吴建良.我国南方主要作物田的化学除草[J].农药,2000,39:1-7.
    [9]刘后利.实用油菜栽培学[M].上海:上海科技出版社,1987.
    [10]赵延存.稻茬移栽油菜田杂草群落发生规律及化学防除研究[D].南京;南京农业大学,2006.
    [11]Diepenbrock W. Yield analysis of winter oilseed rape(Brassica napus L.):A review [J]. Field Crop Research,2000,67:35-49.
    [12]苏少泉,姚顺祖.中国农田杂草化学防治[M].北京:中国农业出版社,1996.
    [13]中国统计局.江苏统计年鉴2008[M].北京:中国统计局,2008.
    [14]娄群峰,黄健中,张敦阳,等.南京地区油菜田杂草群落特点及分布规律的研究[J].江西农业大学学报,1999,21:370-375.
    [15]杨燕涛,张洪进,王东华,等.通州市油菜田杂草发生特点与分布规律初步研究[J].杂草科学,2005,1:23-26.
    [16]邱江,王建,高联义,等.泰州市农田杂草的变化与防除对策[J].杂草科学,2006,1:28-30.
    [17]易红娟,花春晖,孙雪梅,等.12%收乐通EC防除油菜田早熟禾、硬草的效果[J].杂草科学,2003,3:31-32.
    [18]蒋春梅.油达·乙草胺混用控制油菜田杂草效果初报[J].上海农业科技,2007,5:139.
    [19]钱贵喜,孙春来.海安县部分小麦田杂草重发原因及防治对策[J].现代农业科技,2008,1:96.
    [20]崔世荣,邰德良,李瑛,等.江苏省东台市农田杂草防除新问题与应变对策[J].北京农业,2010,7:60-63.
    [21]沈丹峰,邵文捷,石磊,等.近年宜兴市夏熟作物杂草发生及危害研究[J].上海农业科技,2010,6:118-120.
    [22]毕海波,李应生.寿县稻茬麦田杂草种类演变及化学防治[J].现代农业科技,2011,16:164.
    [23]宋爱颖.萧县麦田杂草种群演变初探[J].安徽农学通报,2011,17:33-35.
    [24]杨玉珍,宋爱颖.萧县麦田阔叶杂草和禾本科杂草的防除技术[J].安徽农学通报,2011,17:171-172.
    [25]何翠娟,周伟军,金燕.上海市麦田杂草的发生、危害现状和防除对策[J].上海交通大学学报(农业科学版),2004,4:397.
    [26]王红春,娄远来.早熟禾研究现状[J].杂草科学,2009,3:19-20.
    [27]饶娜.蔺草(Beckmannia syzigachne (Steud.) Fernald)生物学、生态学及其防除的研究[D].南京;南京农业大学,2008.
    [28]刘长令.世界农药大全:除草剂卷[M].北京:化学工业出版社,2002.
    [29]张一宾,张怿.世界农药新进展[M].北京:化学工业出版社,2007.
    [30]Hall L, Holtum J, Powles S. Mechanisms responsible for cross resistance and multiple resistance [M]//POWLES S, HOLTUM J. Herbicide resistance in plants, biology and biochemistry. Boca Raton, FL; CRC Press.1994:243-261.
    [31]Duke S O. Why have no new herbicide modes of action appeared in recent years? [J]. Pest Management Science,2012,68:505-512.
    [32]Gerwick B. Thirty years of herbicide discovery:Surveying the past and contemplating the future [M]. Agrow (Silver Jubilee Edition):Ⅶ-Ⅸ. Agrow.2010.
    [33]National Research Council of USA. The impact of genetically engineered crops on farm sustainability in the Unite States [M]. National Academies Press.2010.
    [34]Duke S O, Powles S B. Glyphosate resistant crops and weeds:Now and in the future [J]. AgBioForum,2009,12:346-357.
    [35]Appleby A P. A history of weed control in the United States and Canada-a sequel [J]. Weed Science, 2005,53:762-768.
    [36]Bomgardner M M. Germinating Pesticides [J]. Chemical and Engineering News,2011,89:13-17.
    [37]中国科学院中国植物志编辑委员会.中国植物志[M].北京::科学出版社,2002.
    [38]李扬汉.中国杂草志[M].北京:中国农业出版社,1998.
    [39]Mcelroy J S, Walker R H, Wehtje G R, et al. Annual bluegrass (Poa annua) populations exhibit variation in germination response to temperature, photoperiod, and fenarimol [J]. Weed Science, 2004,52:47-52.
    [40]Li X, Schuler M A, Berenbaum M R. Molecular mechanism of metabolic resistance to synthetic and natural xenobiotics [J]. Annual Review of Entomology,2007,52:231-253.
    [41]贵州植物志编辑委员会.贵州植物志[M].成都:四川民族出版社,1988.
    [42]刘建林,孟秀祥.四川攀西种子植物[M].北京:清华大学出版社,2007.
    [43]孙明学.大兴安岭森林植物[M].哈尔滨:东北林业大学出版社,2006.
    [44]中国科学院兰州沙漠研究所.中国沙漠植物质[M].北京:科学出版社,1985.
    [45]中国科学院青藏高原综合科学考察队.西藏植物志[M].北京:科学出版社,1987.
    [46]Williams G. Elsevier's dictionary of weeds of Western Europe [M]. Amsterdam/Oxford/New York: Elsevier Scientific Publishing Company,1982.
    [47]侯琴慧,段泽民.鹤庆县大麦田地杂草发生情况调查[J].云南农业大学学报,2011,2:44-45.
    [48]Darmency H, Gasquez J. Interpreting the evolution of a triazine resistant population of Poa annua L [J]. New Phytologist,1983,95:299-304.
    [49]Heap I. International survey of herbicide resistant weeds [M].2012.
    [50]Kelly S T. Identification and assessment of simazine resistance in annual bluegrass(Poa annua L.) [M]. Department of Plant and Soil Sciences. Mississipi; Mississipi State University.1998.
    [51]Yelverton F H, Isgrigg J. Herbicide-resistant weeds in turfgrass [J]. Golf Course Management,1998, 66:56-61.
    [52]Hutto K C, Coats G E, Taylor J M. Annual bluegrass (Poa annua) resistance to simazine in Mississipi [J]. Weed Technology,2004,18:846-849.
    [53]Isgrigg J, Yelverton F H, Brownie C, et al. Dinitroaniline resistant annual bluegrass in North Carolina [J]. Weed Science,2002,50:86-90.
    [54]Hanson B D, Mallory-Smith C A. Diuron-resistant Poa annua is resistant to norflurazon [J]. Weed Science,2000,48:666-668.
    [55]Herbert D, Cole D J, Pallett K, et al. Susceptibilities of different test systems from maize (Zea mays), Poa annua, and Festuca rubra to herbicides that inhibit the enzyme acetyl-coenzyme A carboxylase [J]. Pesticide Biochemistry and Physiology,1996,55:129-139.
    [56]Herbert D, Cole D J, Pallett K E, et al. Graminicide-binding by acetyl-CoA carboxylase from Poa annua leaves [J]. Phytochemistry,1997,44:399-405.
    [57]Takahashi A, Yamada S, Tanaka K. Mechanism of herbicidal activity of a new cyclohexan-1,3-dione, tepraloxydim to Poa annua L. [J]. Weed Biology and Management,2002,2: 84-91.
    [58]Delye C, Michel S.'Universal' primers for PCR-sequencing of grass chloroplastic acetyl-CoA carboxylase domains invovled in resistance to herbicides [J]. Weed Research,2005,45:323-330.
    [59]张一宾,张怿,伍贤英.世界农药新进展(二)[M].北京:化学工业出版社,2010.
    [60]Deprado R, Osuna M D, Fischer A J. Resistance to ACCase inhibitor herbicides in a green foxtail (Setaria viridis) biotype in Europe [J]. Weed Science,2004,52:506-512.
    [61]Derr J E. Detection of fenoxaprop-resistant smooth crabgrass (Digitaria isohaemum) in turf [J]. Weed Technology,2002,16:396-400.
    [62]Maneechore C, Samanwong S, Zhang X Q, et al. Resistance to ACCase-inhibiting herbicides in Spragnktop (Leptochloa chinensis) [J]. Weed Science,2005,53:290-295.
    [63]Mengistu L W, Messersmith C G, Christoffers M J. Diversity of herbicide resistance among wild oat simpled 36 yr apart [J]. Weed Science,2003,51:764-773.
    [64]Tal A, Zarka S, Rubin B. Fenoxaprop-p resistance in Phalaris minor conferred by an insensitive acetyl-coenzyme A carboxylase [J]. Pesticide Biochemistry and Physiology,1996,56:134-140.
    [65]Uludag A, Namli Y, Tal A, et al. Fenoxaprop resistance in sterile wild oat(Avena sterilis) in wheat fields in Turkey [J]. Crop Protection,2007,26:930-935.
    [66]Uludag A, Park K W, Cannon J, et al. Cross resistance of acetyl-CoA carboxylase inhibitor-resistant wild oat(Avena fatua) biotypes in the Pacific Northwesr [J]. Weed Technology,2008,22:142-145.
    [67]Andrews C J, Skipsey M, Townson J K, et al. Glutathione transferase activities toward herbicides used selectively in soybean [J]. Pesticide Science,1997,51:213-222.
    [68]Cummins I, Cole D J, Edwards R. Purification of multiple glutathione transferases involved in herbicide detoxification from wheat(Triticum aestivum L.) treated with the safener fenchlorazole-ethyl [J]. Pesticide Biochemistry and Physiology,1997,59:35-49.
    [69]Siminszky B, Corbin F T, Ward E R, et al. Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides [J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96: 1750-1755.
    [70]Zhang L, Lu Q, Chen H G, et al. Identification of a cytochrome P450 hydroxylase, CYP81A6, as the candidate for the bentazon and sulfonylurea herbicide resistance gene, Bel, in rice [J]. Moleculer Breeding,2007,19:59-68.
    [71]Cummins I, Moss S, Cole D J, et al. Glutathione transferases in herbicide-resistance and herbicide-susceptible black-grass(Alopecurus myosuroides) [J]. Pesticide Science,1997,51: 244-250.
    [72]Edwards R, Cole D J. Glutathione transferases in Wheat (Triticum) species with activity toward fenoxaprop-ethyl and other herbicides [J]. Pesticide Biochemistry and Physiology,1996,54: 96-104.
    [73]Tal A, Romano M L, Stephenson G R, et al. Glutathion conjugation:A detoxification pathway for fenoxaprop-ethyl in Barley, Crabgrass, Oat and Wheat [J]. Pesiticide Biochemistry and Physiology, 1993,46:190-199.
    [74]强胜.杂草学[M].北京:中国农业出版社,2001.
    [75]Heap I M. The occurrence of herbicide-resistant weeds worldwide [J]. Pesticide Science,1997,51: 235-243.
    [76]Moss S R. Herbicide to cross-resistance in slender foxtail (Alopecurus myosuroides) [J]. Weed Science,1990,38:492-496.
    [77]Imaizumi T, Wang G X, Ohsako T, et al. Genetic diversity of sulfonylurea-resistant and-susceptible Monochoria vaginalis populations in Japan [J]. Weed Reseaech,2008,48:187-196.
    [78]Laplante J, Rajcan I, Tardif F J. Multiple allelic forms of acetohydroxyacid synthase are responsible for herbicide resistance in Setaria viridis [J]. Theoretical and Applied Genetics,2009,119:577-586.
    [79]Lee H, Rustgi S, Kumar N, et al. Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides [J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108:8909-8913.
    [80]Powles S B, Yu Q. Evolution in action:plants resistant to herbicides [J]. Annual Review of Plant Biology,2010,61:317-347.
    [81]Sales M A, Shivrain V K, Burgos N R, et al. Amino acid substitutions in the acetolactate synthase gene of red rice (Oryza sativa) confer resistance to imazethapyr [J]. Weed Science,2008,56: 484-489.
    [82]Tranel P, Wright T R, Heap I M. ALS mutations from herbicide-resistant weeds [M].2009.
    [83]Warwick S I, Xu R, Sauder C, et al. Acetolactate synthase target-site mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia scoparid) [J]. Weed Science, 2008,56:797-806.
    [84]Yu Q, Han H P, Vila-Aiub M M, et al. AHAS herbicide resistance endowing mutations:effect on AHAS functionality and plant growth [J]. Journal of Experimental Botany,2010,61:3925-3934.
    [85]Davis M S, Solbiati J, Cronan J E. Over production of Acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli [J]. Biology Chemistry,2000,275: 28593-28598.
    [86]Niemann P, Pestemer W. Resistance of blackgrass (Alopecurus myosuroides) from different sites to herbicides [J]. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes,1984,36:113-118.
    [87]Heap I, Knight R. The occurrence of herbicide cross resistance in a population of annual ryegrass, (Lolium rigidum) resistant to diclofop-methyl [J]. Australian Journal of Agricultural Research,1986, 37:149-156.
    [88]Brown A C, Moss S R, Wilson Z A, et al. An isoleucine to leucine substitution in the ACCase of Alopecurus myosuroides (black-grass) is associated with resistance to the herbicide sethoxydim [J]. Pesticide Biochemistry and Physiology,2002,72:160-168.
    [89]Delye C, Zhang X Q, Michel S, et al. Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in blackgrass [J]. Plant Physiology and Biochemistry,2005,137:794-806.
    [90]Hall L M, Moss S R, Powles S B. Mechanisms of resistance to aryloxyphenoxypropionate herbicides in two resistant biotypes of Alopecurus myosuroides (blackgrass):herbicide metabolism as a cross-resistance mechanism [J]. Pesticide Biochemistry and Physiology,1997,57:
    [91]Menchari Y, Delye C, Corre L E. Genetic variation and population structure in Blackgrass (Alopecurus myosuroides Huds), a successful, herbicide-resistant, annual grass weed of winter cereal fields [J]. Molecular Ecology,2007,16:3161-3172.
    [92]Cruz-Hipolito H, Osuna M D, Dominguez-Valenzuela J A, et al. Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America [J]. Journal of Agricultural and Food Chemistry,2011,59:7261-7267.
    [93]Shimabukuro R A, Hoffer B L. Induction of ethylene as an indicator of senescence in the mode of action of diclofop-methyl [J]. Pesticide Biochemistry and Physiology,1996,54:146-158.
    [94]Travlos I S, Giannopolitis C N, Economou G. Diclofop resistance in sterile wild oat(Avena sterilis L.) in wheat fields in Greece and its management by other post-emergence herbicides [J]. Crop Protection,2011,30:1449-1454.
    [95]Delye C, Straub C, Michel S, et al. Nucleotide variability at the acetyl coenzyme A carboxylase gene and the signature of herbicide selection in the grass weed Alopecurus myosuroides Huds [J]. Molecular Biology and Evolution,2004,21:884-892.
    [96]Preston C, Tardif F J, Christopher J T, et al. Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium rigidum due to enchanced activity of several herbicide degrading enzymes [J]. Pesticide Biochemistry and Physiology,1996,54:123-134.
    [97]Zagnitko O, Jelenska J, Tevzadze G, et al. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-coA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98:6617-6622.
    [98]Christoffers M J, Berg M L, Messersmith C G. An isoleucine to leucine mutation in acetyl-coA carboxylase confers herbicide resistance in wild oat [J]. Genome,2002,45:1049-1056.
    [99]Delye C, Matejicek A, Mechel S. Cross-resistance patterns to ACCase-inhibiting herbicides conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds. (black-grass), re-examined at the recommended herbicide field rate [J]. Pest Management Science,2008,64:1179-1186.
    [100]Delye C, Wang T, Darmency H. An isoleucine-leucine substitution in chloroplastic acetyl-coA carboxylase from green foxtail (Setaria viridis L.Beauv.) is responsible for resistance to the cyclichexanedione herbicide sethoxydim [J]. Planta,2002,214:421-427.
    [101]Liu W J, Harrison D K, Chalupska D, et al. Single-site mutations in the carboxytransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:3627-3632.
    [102]Yu Q, Collavo A, Zheng M Q, et al. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations:evaluation using clethodim [J]. Plant Physiology,2007,145:547-558.
    [103]Zhang X Q, Powles S B. The molecular bases for resistance to acetyl co-enzyme A carboxylase (ACCase) inhibiting herbicides in two target-based resistant biotypes of annual ryegrass(Lolium rigidum) [J]. Planta,2006,223:550-557.
    [104]Caretto S, Giardina M C, Nicolodi C, et al. Chlorsulfuron resistance in Daucus carotacell lines and plants:involvement of gene amplification [J]. Theoretical and Applied Genetics,1994,88:520-524.
    [105]Dewaele E, Forlani G, Degrande D, et al. Biochemical characterization of chlorsulfuron resistance in Cichorium intybus L. var. Witloof [J]. Plant Physiology,1997,151:109-114.
    [106]Harms C T, Armour S L, Dimaio J J, et al. Herbicide resistance due to amplification of a mutant acetohydroxyacid synthase gene [J]. Molecular and General Genetics,1992,233:427-435.
    [107]Odell J, Caimi P, Yadav N, et al. Comparison of increased expression of wild-type and herbicide-resistant acetolactate synthase genes in transgenic plants, and indication of post-transcriptional limitation on enzyme activity [J]. Plant Physiology,1990,94:1647-1654.
    [108]Yu-Yau J S, Hepburn A G, Widholm J M. Glyphosate selected amplification of the 5-enolpyruvylshikimate-3-phosphate synthase gene in cultured carrot cells [J]. Molecular and General Genetics,1992,232:377-382.
    [109]Donn G, Tischer E, Smith J A, et al. Herbicide-resistant alfalfa cells:an example of gene amplification in plants [J]. Journal of Molecular and Applied Genetics,1984,2:621-635.
    [110]Bradley K W, Wu J, Hatzios K K, et al. The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a Johnsongrass biotype [J]. Weed Science,2001,49:477-484.
    [111]Schroder P. The role of glutathione and glutathione s-transferases in plant reaction and adaptation to xenobiotics [M]//GRILL D, TAUSZ M, DEKOK L. Significance of glutathione to plant adaptation to the environment. Netherlands; Kluver Academic publishers.2001:155-183.
    [112]Yuan J, Tranel P J, Jrstewart C N. Non-target-site herbicide resistance:a family business [J]. Trends in Plant Science,2007,12:6-13.
    [113]黄剑.小菜蛾抗阿维菌素品系细胞色素P450的研究[D].杨凌;西北农林科技大学,2005.
    [114]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001.
    [115]Estabrook R W. The remarkable P450s:A historical overview of the versatile heme protein catalysts [J]. The FASEB Journal,1996,10:206-214.
    [116]Frear D S, Swanson H R, Tanaka F S. N-demethylation of substituted 3-(phenyl)-1-methylureas: isolation and characterization of a microsomal mixed function oxidase from cotton [J]. Phytochemistry,1969,8:2157-2169.
    [117]Poter T D, Coon M J. Cytochrome P450:Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms [J]. Journal of Biological Chemistry,1991,266:13459-13472.
    [118]Coon M J, Vaz A D, Bestervelt L L. Cytochrome P450 2:Peroxidative reactions of diversozymes [J]. The FASEB Journal,1996,10:428-434.
    [119]Lewis D F V. Cytochrome P450:structure, function and mechanism [M]. London:Taylor & Francis,,1996.
    [120]Inui H, Ohkawa H. Herbicide resistance in transgenic plants with mammalian monooxygenase genes [J]. Pest Management Science,2005,61:286-291.
    [121]Morant M, Bak S, Moller B, et al. Plant cytochromes P450:tools for pharmacology, plant protection and phytoremediation [J]. Current Opinion in Biotechnology,2003,14:161-162.
    [122]Siminsky B. Plant cytochrome P450-mediated herbicide metabolism [J]. Photochemistry Review, 2006,5:445-458.
    [123]Werch-Reichart D. Monospecific polyclonal antibodies directed against purified cinnamate 4-hydroxylase from Helianthus tuberosus [J]. Plant Physiology,1990,102:1291-1298.
    [124]Moss S R, Cussans G W. Variability in the susceptibility of Alopecurus myosuroides (Black-grass) to chlortoluron and isoproturon [J]. Aspects Applied Biology,1985,9:91-98.
    [125]Bakkali Y, Ruiz-Santaella J P, Osuna M D, et al. Late watergrass (Echinochloa phyllopogon): mechanisms involved in the resistance to fenoxaprop-P-ethyl [J]. Journal of Agricultural Food Chemistry,2007,55:4052-4058.
    [126]Cocker K M, Northcroft D S, Coleman J O D, et al. Resistance to ACCase-inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum:mechanisms of resistance and implications for control [J]. Pest Management Science,2001,57:587-597.
    [127]Gressel J. Molecular Weed Biology [M]. London/New York:Taylor & Francis Press,2002.
    [128]Manley B S, Hatzios K H, Wilson H P. Absorption, translocation and metabolism of chlorimuron and nicosulfuron in imidazolinone-resistant and susceptible smooth pigweed (Amaranthus hybridus) [J]. Weed Technology,1999,13:759-764.
    [129]Park K W, Fandrich L, Mallory-Smith C A. Absorption, translocation, and metabolism of propoxycarbazone-sodium in ALS-inhibitor resistant Bromus tectorum biotypes [J]. Pesticide Biochemistry and Physiology,2004,79:18-24.
    [130]Preston C. Herbicide resistance in weeds endowed by enhanced detoxification:complication for management [J]. Weed Science,2004,52:448-453.
    [131]Preston C, Mallory-Smith C A. Biochemical mechanisms, inheritance, and molecular genetics of herbicide resistance in weeds [M]//POWLES S B, SHANER D L. Herbicide Resistance and World Grains. Boca Raton/London/New York/Washington, DC; CRC Press.2001:24-49.
    [132]Tardif F, Powles S B. Effect of malathion on resistance to soil-applied herbicides in a population of rigid ryegrass (Lolium rigidum) [J]. Weed Science,1999,47:258-261.
    [133]Yasuor H, Osuna M D, Ortiz A, et al. Mechanism of resistance to penoxsulam in late watergrass (Echinochloa phyllopogon) [J]. Journal of Agricultural Food Chemistry,2009,57:3653-3660.
    [134]Yun M S, Yogo Y, Miura R, et al. Cytochrome P-450 monooxygenase activity in herbicide-resistant and-susceptible late watergrass (Echinochloa phyllopogon) [J]. Pesticide Biochemistry Physiology,2005,83:107-114.
    [135]Mougin C, Cabanne F, Canivenc M-C, et al. Hydroxylation and N-demethylation of chlorotoluron by wheat microsomal enzymes [J]. Plant Science,1990,66:195-203.
    [136]Fonne-Pfister R, Kreuz K. Ring-methyl hydroxylation of chlortoluron by an inducible cytochrome P450-dependent enzyme from maize [J]. Phytochemistry,1990,29:2793-2796.
    [137]Mcfadden J J, Frear D S, Mansager E R. Ary hydroxylation of diclofop by a cytochrome P450 dependent monooxygenase from wheat [J]. Pesticide Biochemistry and Physiology,1989,34: 92-100.
    [138]Persans M W, Schuler M A. Differential induction of cytochrome P450-mediated triasulfuron metabolism by naphthalic anhydride and triasulfuron [J]. Plant Physiology,1995,109:1483-1490.
    [139]Zimmerlin A, Durst F. Xenobiotic metabolism in plants Aryl hydroxylation of diclofop by a cytochrome P-450 enzyme from wheat [J]. Phytochemistry,1990,29:1729-1732.
    [140]Moreland D E, Corbin F T, Mcfarland J E. Oxidation of multiple substrates by corn shoot microsomes [J]. Pesticide Biochemistry and Physiology,1993,47:206-214.
    [141]Thalacker F W, Swanson H R, Frear D S. Characterization, purification, and reconstitution of an inducible cytochrome P450-dependent triasulfuron hydroxylase from wheat [J]. Pesticide Biochemistry and Physiology,1994,49:209-223.
    [142]Fonne-Pfister R, Gaudin J, Kreuz K, et al. Hydroxylation of primisulfuron by an inducible cytochrome P450-dependent monooxygenase system from maize [J]. Pesticide Biochemistry and Physiology,1990,37:165-173.
    [143]Mcfadden J J, Gronwald J W, Eberlein C V. In vitro hydroxylation of bentazon by microsomes from naphthalic anhydride-treated corn shoots [J]. Biochemical and Biophysical Research Communications,1990,168:206-213.
    [144]Oztetik E. A tale of plant glutathione s-transferases:since 1970 [J]. Botany Review,2008,74: 419-437.
    [145]Basantani M, Srivastava A. Plant glutathione transferases-a decade falls short [J]. Canada Journal of Botany,2007,85:443-456.
    [146]Reade J P H, Milner L J, Cobb A H. A role for glutathione s-transferases in resistance to herbicides in grasses [J]. Weed Science,2004,52:468-474.
    [147]Frear D S, Swanson H R. Biosynthesis of S-(4-ethylamino-6- isopropylamino -2-s-triazino) glutathione partial purification and properties of glutathione-S- transferase from corn [J]. Phytochemistry,1970,9:2123-2132.
    [148]Lamoureuc G L, Shimabukuto R H, Swanson H R, et al. Metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in excised Sorghum leaf sections [J]. Journal of Agricultural Food Chemistry,1970,18:81-86.
    [149]Shimabukuro R H, Swanson H R, Walsh W C. Glutathione conjugation:atrazine detoxication mechanism in corn [J]. Plant Physiology,1970,46:103-107.
    [150]Edwards R, Dixon D P. The role of glutathione transferases in herbicide metabolism [M]//A. H. COBB, R. C. KIRKWOOD. Herbicides and their mechanisms of action. Sheffield; Sheffield Academic.2000:38-71.
    [151]Lamoureuc G L, Shimabukuro R H, Frear D D. Glutathione and glucoside conjugation in herbicide selectivity [M]//CASELEY J C, CUSSANS G W, ATKIN R K. Herbicide resistance in weeds and crops. Oxford; Butterworth-Heinemann.1991:227-261.
    [152]Marrs K A. The functions and regulation of glutathione S-transferases in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:127-158.
    [153]Hatton P J, Dixon D, Cole D J, et al. Glutathione transferase activities and herbicide selectivity in maize and associated weed species [J]. Pesticide Science,1996,46:267-275.
    [154]Cummins I, Cole D J, Edwards R. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass [J]. The Plant Journal,1999,18: 285-292.
    [155]Reade J P H, Cobb A H. Purification, characterisation and comparison of glutathione S-transferases from black-grass(Alopecurus myosuroides Huds) biotypes [J]. Pesticide Science, 1999,55:993-999.
    [156]Milner L J, Reade J P H, Cobb A H. An investigation of glutathione S-transferase activity in Alopecurus myosuroides Huds.(black-grass) in the field; proceedings of the Brighton Conference-Weeds Surrey, UK, F,1999 [C], BCPC Publications.
    [157]Milner L J M, Reade J P H, Cobb A H. Developmental changes in glutathione S-transferase activity in herbicide-resistant populations of Alopecurus myosuroides Huds (black-grass) in the field [J]. Pest Management Science,2001,57:1100-1106.
    [158]Lasat M M, Ditomaso J M, Hart J J, et al. Evidence for vacuolar sequestration of paraquat in roots of a paraquat-resistant Hordeum glaucum biotype [J]. Physiologia Plantarum,1997,99:255-262.
    [159]Preston C, Holtum J A M, Powles S B. On the mechanism of resistance to paraquat in Hordeum glaucum and H. leporinum:Delayed inhibition of photosynthetic O2 evolution after paraquat application [J]. Plant Physiology,1992,100:630-636.
    [160]Varadi G, Darko, Lehoczki E. Changes in the xanthophy II cycle and fluorescence quenching indicate light-dependent early events in the action of paraquat and the mechanism of resistance to paraquat in Erigron Canadensis(L.) Cronq [J]. Plant Physiology,2000,123:1459-1469.
    [161]Dinelli G, Bonetti A, Marotti A, et al. Possible involvement of herbicide sequestration in the resistance to diclofop-methyl in Italian biotypes of Lolium spp [J]. Pesticide Biochemistry and Physiology,2005,81:1-12.
    [162]Ge X, Davignon D A, Ackerman J J H, et al. Rapid vacuolar sequestration:the horseweed glyphosate resistance mechanism [J]. Pest Management Science,2010,66:345-348.
    [163]DePrado J L, DeProde R A, Shimabukuro R H. The effect of diclofop on membrane potential, ethylene induction, and herbicide phytotoxicity in resistant and susceptible biotypes of grasses [J]. Pesticide Biochemistry and Physiology,1999,63:1-14.
    [164]杨彩宏.油菜田日本看麦娘对高效氟吡甲禾灵抗药性的初步研究[D].南京:南京农业大学,2007.
    [165]韩瑞娟.日本看麦娘对高效氟吡甲禾灵抗性机理的研究[D].南京:南京农业大学,2010.
    [166]Khorommbi G. The key to herbicide resistance management [J]. SA-Grain,2000,11:68-70.
    [167]Ritter R L. Management tactics for herbicide resistant weeds [J]. Proceedings of the Annual Meeting of Northeastern Weed Society,1991,45:160-162.
    [168]郭小刚,刘景辉,李立军,等.不同耕作方式对杂草控制及燕麦产量的影响[J].中国农学通报,2010,26:111-115.
    [169]高宗军,李美,高兴祥,等.不同耕作方式对冬小麦田杂草群落的影响[J].草业学报,2011,20:15-21.
    [170]Moss S R. Strategies for the prevention and control of herbicide re-sistance in annual grass weeds [M]//DEPRADO R, JORR N J, GARC A-TORRES L. Weed and crop resistance to herbicides. London; Kluwer Academic.1997:283-290.
    [171]Orson J H, Livingston D B F. Field trials on the efficacy of herbicides on resistant black-grass (Alopecurus myosuroides) in different cultivation regimes; proceedings of the Brighton Crop Protection Conference-Weeds, Farnham, F,1987 [C]. British Crop Protection Council.
    [172]Beckie H J, Gill G S. Strategies for managing herbicide-resistant weeds [M]//SINGH H P, BATISH D R, KOHLI R K. Handbook of Sustainable Weed Management. Binghamton, NY; The Haworth Press.2006.
    [173]Ominski P D, Entz M H, Kenkel N. Weed suppression by Medicago sativa in subsequent cereal crops:a comparative survey [J]. Weed Science,1999,47:282-290.
    [174]Pearce G A, Holmes J E. The control of annual ryegrass [J]. Journal of Agricultural of Western Australia,1976,17:77-81.
    [175]Beckie H J, Jana S. Selecting for triallate resistance in wild oat [J]. Canadian Journal of Plant Science,2000,80:665-667.
    [176]Beckie H J. Herbicide-resistant weeds:Management tactics and practices [J]. Weed Technology, 2006,20:793-814.
    [177]Jasieniuk M, Brule-Babel A, Morrison I. The evolution and genetics of herbicide resistance in weeds [J]. Weed Science,1996,44:176-193.
    [178]Hawthorn-Jackson D, Davidson R, Preston C. The spread of herbicide resistant annual ryegrass pollen [J]. Weed Science Society of American Abstracts,2003,43:76.
    [179]Richter J, Powles S B. Pollen expression of herbicide target site resistance genes in annual ryegrass (Lolium rigidum) [J]. Plant Physiology,1993,102:1037-1041.
    [180]唐正辉,姚建仁.国外控制和延缓杂草抗药性的对策与措施[J].世界农业,1993,4:33-35.
    [181]Mohler C L. Enhancing the competitive ability of crops [M]//LIEBMAN M, MOHLER C L, STAVER C P. Ecological management of agricultural weeds. Cambridge; Cambridge University Press.2007:269-321.
    [182]Blackshaw R E. Safflower(Carthamus tinctorius) density and row spacing effects on competition with green foxtail (Setaria viridis) [J]. Weed Science,1993,41:403-408.
    [183]Lutman P J W, Dixon F L. The effect of drilling date on competition between volunteer barley and oilseed rape [M]. Proceedings of the European weed research symposium:Economic weed control. Wageningen; European Weed Research Society.1986:145-152.
    [184]Harvcy R G, Mcnevin G R. Combining cultural practices and herbicides to control wild-proso millet (Panicum miliaceum) [J]. Weed Technology,1990,4:433-439.
    [185]Gill G S. Development of herbicide resistance in annual ryegrass populations(Lolium rigidum Gaud.) in the cropping belt of Western Australia [J]. Australian Journal of Experimental Agricultural,1995,35:67-72.
    [186]Hartmann F, Lanszki I, Szentey L, et al. Resistant weed biotypes in Hungary [M]//L G RE A. Third International Weed Science Congress. Foz do Iguassu, Brazil. Corvallis, OR; International Weed Science Society.2000:138.
    [187]Hashem A, Bowran D, Piper T, et al. Resistance of wild radish (Raphanus raphanistrum) to acetolactate synthase-inhibiting herbicides in the Western Australia wheat belt [J]. Weed Technology,2001,15:68-74.
    [188]Itoh K, Wang G, Ohba S. Sulfonylurea resistance in Lindernia micrantha, an annual paddy weed in Japan [J]. Weed Research,1999,39:413-423.
    [189]Legere A, Beckie H J, Stevenson F C, et al. Survey of management practices affecting the occurrence of wild oat (Avena fatua) resistance to acetyl-CoA carboxylase inhibitors [J]. Weed Technology,2000,14:366-376.
    [190]Schmidt L, Talbert R, Mcclelland M. Management of acetolactate synthase (ALS)-resistant common cockebur (Xanthium strumarium) in soybean [J]. Weed Technology,2004,18:665-674.
    [191]Singh S, Kirkwood R C, Marshall G Biology and control of Phalaris minor Retz. (littleseed canarygrass) in wheat [J]. Crop Protection,1999,18:1-16.
    [192]Stephenson G, Dykstra M, Mclaren R, et al. Agronomic practices influencing triazine-resistant weed distribution in Ontario [J]. Weed Technology,1990,4:199-207.
    [193]Wrubel R P, Gressel J. Are herbicide mixtures useful for delaying the rapid evolution of resistance? A case study [J]. Weed Technology,1994,8:635-648.
    [194]Riches C R, Knights J S, Chaves L, et al. The role of pendimethalin in the integrated management of propanil-resistant Echinochloa colona in Central America [J]. Pesticide Science,1997,51: 341-346.
    [195]Valverde B E, Riches C R, Caseley J C. Prevention and management of herbicide resistant weeds in rice:Experiences from central America with Echinochloa colona [M]. San Jose/Costa Rica: Camara de Insumos Agropecuarios,2000.
    [196]Neve P, Powles S B. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance [J]. Heredity,2005,95:485-492.
    [197]Goeden R D. Biological control of weeds [M]//B T. Research methods in weed science, Second Edition. Alabama; Southern Weed Science Society.1977:43.
    [198]张希福,熊建伟,尹健.杂草生物防治的现状与展望[J].河南职业技术师范学院学报,1997,25:8-14.
    [199]Barreto R W. Latin American weed biological control science at the crossroads [M]//JULIEN M H, SFORZA R, BON M C, et al. Proceedings of the XII International Symposium on Biological Control of Weeds. UK; CAB International Wallingford 2008.
    [200]万方浩,王韧.世界杂草生防的历史成就及我国杂草生防的现状与建议[J].生物防治通报,1991,7:81-87.
    [201]Caesar A J, Kremer R J. Biomass reduction of Euphorbia esula/virgata by insect/bacterial combinations [M]//JULIEN M H, SFORZA R, BON M C, et al. Proceedings of the Ⅻ International Symposium on Biological Control of Weeds. UK; CAB International Wallingford 2008:7-12.
    [202]Myers J H, Quinn H, Jackson C a R, et al. Successful biological control of diffuse knapweed in British Columbia, Canada [M]//JULIEN M H, SFORZA R, BON M C, et al. Proceedings of the XII International Symposium on Biological Control of Weeds. UK; CAB International Wallingford 2008.
    [203]Strachan S D, Hess F D. The biochemical mechanism of action of the dinitroaniline herbicide oryzlin [J]. Pesticide Biochemistry and Physiology,1983,20:141-150.
    [204]黄建中,褚建军,叶建强.抗药性杂草的管理[J].杂草科学,1995,4:4-7.
    [205]洪华珠,喻子牛,李增智,等.生物农药[M].武汉:华中师范大学出版社,2010.
    [206]Gorddard R J, Pannell D J, Hertzler G. Economic evaluation of strategies for management of herbicide resistance [J]. Agricultural Systems,1996,51:281-298.
    [207]Liebman M, Mohler C L, Staver C P. Ecological management of agricultural weeds [M]. Cambridge:Cambridge University Press,2001.
    [208]Singh H P, Batish D R, Kohli R K. Handbook of sustainable weed management [M]. New York/London/Oxford:An Imprint of The Haworth Press,2005.
    [1]苏少泉.杂草学[M].北京:农业出版社,1993.
    [2]唐洪元.中国农田杂草[M].上海:上海科技教育出版社,1991.
    [3]Bello I A, Hatterman-Valenti H, Owen M D K. Factors affecting germination and seed production of Eriochloa villosa [J]. Weed Science,2000,48:749-754.
    [4]Chachalis D, Reddy K N. Factors affecting Campsis radicans seed germination and seedling emergence [J]. Weed Science,2000,48:212-216.
    [5]Mennan H, Zandstra B H. Effect of wheat (Triticum aestivum) cultivars and seeding rate on yield loss from Galium aparine (Cleavers) [J]. Crop Protection,2005,24:1061-1067.
    [6]Mcelroy J S, Walker R H, Wehtje G R, et al. Annual bluegrass(Poa annua) populations exhibit variation in germination response to temperature, photoperiod, and fenarimol [J]. Weed Science, 2004,52:47-52.
    [7]Clewis S B, Jordan D L, Spears J F, et al. Influence of environmental factors on cutleaf eveningprimrose (Oenothera laciniata) germination, emergence, development, vegetative growth, and control [J]. Weed Science,2007,55:264-272.
    [8]Michael B E, Kaufaman M R. The osmotic potential of polyethylene glycol 6000 [J]. Plant Physiology,1973,51:914-916.
    [9]Rao N, Dong L, Li J, et al. Influence of environmental factors on seed germination and seedling emergence of American sloughgrass (Beckmannia syzigachne) [J]. Weed Science,2008,56: 529-533.
    [10]饶娜.菵草(Beckmannia syzigachne (Steud.) Fernald)生物学、生态学及其防除的研究[D].南京:南京农业大学,2008.
    [11]董立尧.水直播稻田千金子(Leptochloa chinensis (L.) Ness)的生物学、生态学及其综合治理技术研究[D].南京;南京农业大学,2004.
    [12]孙颖,程云清,王海凤.不同化学药剂处理对龙胆草种子萌发的影响[J].吉林师范大学学报(自然科学版),2005,11:46.
    [13]Nikolaeva M. An update of Nokolaeva's seed dormancy classification system and its relevance to the ecology, physiology, biogeography and phylogenetic relationships of seed dormancy and germination [J]. Botanicheskii Zhumal,2011,86:1-14.
    [14]刘彩虹,李成云,朴光一,等.IAA和NAA对不同羊草种子发芽和幼苗生长的影响[J].黑龙江畜牧兽医(科技版),2011,5:79-81.
    [15]Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination [J]. Seed Science Research,2005,15:281-307.
    [16]张菊平,张艳敏,康业斌,等.硝酸钾处理对不同储藏年限辣椒种子发芽的影响[J].种子,2005,4:30.
    [17]Leon R G, Bassham D C, Owen M D K. Germination and proteome analyses reveal intraspecific variation in seed dormancy regulation in common waterhemp (Amaranthus tuberculatus) [J]. Weed Science,2006,54:305-315.
    [18]Hurro K C, Coats G E, Taylor J M. Annual bluegrass(Poa annua) resistance to simazine in Mississippi [J]. Weed Technology,2004,18:846-849.
    [19]Imaizumi S, Nishino T, Miyabe K, et al. Biological control of annual bluegrass(Poa annua L.) with a Japanese isolate of Xanthomonas campestris pv. Poae (JT-P 482) [J]. Biological Control,1997,8: 7-14.
    [20]Isgrigg J, Yelverton F, Brownie C, et al. Dinitroaniline resistant annual bluegrass in North Carolina [J]. Weed Science,2002,50:86-90.
    [21]肖满开,亢四毛,王龙.防除油菜田早熟禾药剂筛选试验报告[J].杂草科学,2006,2:47-49.
    [22]江苏省土壤普查办公室.江苏土壤[M].北京:中国农业出版社,1995.
    [23]巴逢辰,赵羿.中国海涂土壤资源[J].土壤通报,1997,28:49-51.
    [24]Fandrich L, Mallory-Smith C A. Factors affecting germination of jointed goatgrass(Aegilops cylindrica) seed [J]. Weed Science,2006,54:677-684.
    [25]Reddy K N, Singh M. Germination and emergence of hairy beggarticks (Bidens pilosa) [J]. Weed Science,1992,40:195-199.
    [26]Baskin C C, Baskin J M. Seed ecology, biogeography, and evolution of dormancy and germination [M]. New York:Academic Press,1998.
    [27]Mennan H, Ngouajio M. Seasonal cycles in germination and seedling emergence of summer and winter populations of catchweed bedstraw (Galium aparine) and wild mustard (Brassica kaber) [J]. Weed Science,2006,54:114-120.
    [28]Wei S, Zhang C, Li X, et al. Factors affecting buffalobur (Solanum rostratum) seed germination and seedling emergence [J]. Weed Science,2009,57:521-525.
    [29]Liebman M, Staver C P. Crop diversification for weed management [M]. LIEBMAN M, MOHLER C L, STAVER C P. Ecological management of agricultural weeds. Cambridge:Cambridge University Press.2007:322-374.
    [30]Karlen D L, Varvel G E, Bullock D G, et al. Crop rotations for the 21st century [J]. Advances in Agronomy,1994,53.
    [31]Mclenaghen R D, Cameron K C, Lampkin N H, et al. Nitrate leaching from ploughed pasture and the effectiveness of winter catch crops in reducing leaching losses [J]. New Zealand Journal of Agricultural Research,1996,39:413-420.
    [32]Froud-Williams R J. Changes in weed flora with different tillage and agronomic managements systems [M]. ALTIERI M A, LIEBMAN M. Weed Management in Agroecosystems:Ecological Approaches. Boca Raton:CRC Press.1988.
    [33]Liebman M, Ohno T. Crop rotation and legume effects on weed emergence and growth: applications for weed management [M]. HATFIELD J L, BUHLER D D, STEWART B A. Integrated Soil and Weed Management. Chelsea:Ann Arbor Press.1998.
    [34]Mohler C L. Mechanical management of weeds [M]. LIEBMAN M, MOHLER C L, STAVER C P. Ecological management of agricultural weeds. Cambridge:Cambridge University Press.2007.
    [35]Cavers P B, Kane M. Responses of proso millet (Panicum miliaceum) seedlings to mechanical damage and/or drought treatmens [J]. Weed Technology,1990,4:425-432.
    [1]唐洪元.中国农田杂草[M].上海:上海科技教育出版社,1991.
    [2]邱江,王建,高联义,等.泰州市农田杂草的变化与防除对策[J].杂草科学,2006,1:28-30.
    [3]毕海波,李应生.寿县稻茬麦田杂草种类演变及化学防治[J].现代农业科技,2011,16:164.
    [4]侯琴慧,段泽民.鹤庆县大麦田地杂草发生情况调查[J].云南农业大学学报,2011,2:44-45.
    [5]刘长令.世界农药大全:除草剂卷[M].北京:化学工业出版社,2002.
    [6]张一宾,张怿,伍贤英.世界农药新进展(二)[M].北京:化学工业出版社,2010.
    [7]Herbert D, Cole D J, Pallett K, et al. Susceptibilities of different test systems from maize (Zea mays), Poa annua, and Festuca rubra to herbicides that inhibit the enzyme acetyl-Coenzyme A carboxylase [J]. Pesticide Biochemistry and Physiology,1996,55:129-139.
    [8]Herbert D, Cole D J, Pallett K E, et al. Graminicide-binding by acetyl-CoA carboxylase from Poa annua leaves [J]. Phytochemistry,1997,44:399-405.
    [9]Takahashi A, Yamada S, Tanaka K. Mechanism of herbicidal activity of a new cyclohexan-1,3-dione, tepraloxydim to Poa annua L. [J]. Weed Biology and Management,2002,2: 84-91.
    [10]Seefeldt S S, Jensen J E, Fuerst E P. Log-logistic analysis of herbicide dose-response relationships [J]. Weed Technology,1995,9:218-227.
    [11]Burke I C, Thomas W E, Button J D, et al. A seeding assay to screen aryloxyphenoxypropionic acid and cyclohexanedione resistance in johnsongrass(Sorghum halepense) [J]. Weed Technology,2006, 20:950-955.
    [12]Burke I C, Wilcut J W, John C. Cross-resistance of a johnsongrass(Sorghum halepense) biotype to aryloxyphenoxypropionate and cyclohexandione herbicides [J]. Weed Technology,2006,20: 571-875.
    [13]Letouze A, Gasquez J. A rapid reliable test for screening aryloxyphenoxypropionic acid resistance within Alopecurus myosuroides and Lolium spp. populations [J]. Weed Research,1999,39:37-48.
    [14]Tal A, Kotoula-Syka E, Rubin B. Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides [J]. Crop Protection,2000,19:467-472.
    [15]Uludag A, Yildiz N, Tal A, et al. Fenoxaprop resistance in sterile wild oat(Avena sterilis) in wheat fields in Turkey [J]. Crop Protection,2007,26:930-935.
    [16]Yang C, Dong L, Li J, et al. Identification of Japanese foxtail(Alopecurus japonicus) resistant to haloxyfop using three different assay techniques [J]. Weed Science,2007,55:537-540.
    [17]De Carvalho L B, Cruz-Hipolito H, Gonzalez-Torralva F, et al. Detection of sourgrass(Digitaria insularis) biotypes resistant to glyphosate in Brazil [J]. Weed Science,2010,59:171-176.
    [1]Heap I. International survey of herbicide resistant weeds. www.weedscience.org,2012.
    [2]Powles S B, Yu Q. Evolution in action:Plants resistant to herbicides [J]. Annual Review of Plant Biology,2010,61:317-347.
    [3]Brown A C, Moss S R, Wilson Z A, et al. An isoleucine to leucine substitution in the ACCase of Alopecurus myosuroides (black-grass) is associated with resistance to the herbicide sethoxydim [J]. Pesticide Biochemistry and Physiology,2002,72:160-168.
    [4]Delye C, Wang T, Darmency H. An isoleucine-leucine substitution in chloroplastic acetyl-coA carboxylase from green foxtail(Setaria viridis L.Beauv.) is responsible for resistance to the cyclichexanedione herbicide sethoxydim [J]. Planta,2002,214:421-427.
    [5]Liu W, Harrison D K, Chaluoska D, et al. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:3627-3632.
    [6]Zagnitko O, Jelenska J, Tevzadze G, et al. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-coA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98:6617-6622.
    [7]Donn G, Tischer E, Smith J A, et al. Herbicide-resistant alfalfa cells:An example of gene amplification in plants [J]. Journal of Molecular and Applied Genetics,1984,2:621-635.
    [8]Yu-Yau J S, Hepburn A G, Widholm J M. Glyphosate selected amplification of the 5-enolpyruvylshikimate-3-phosphate synthase gene in cultured carrot cells. [J]. Molecular and General Genetics,1992,232:377-382.
    [9]Cummins I, Moss S, Cole D J, et al. Glutathione transferases in herbicide-resistant and herbicide-susceptible blackgrass(Alopecurus myosuroides) [J]. Pesticide science,1997,51: 244-250.
    [10]Reade J P H, Hull M R, Cobb A H. A role for glutathione S-transferase in herbicide resistance in blackgrass (Alopecurus myosuroides) [C]. Proceedings of the 1997 Brighton Crop Protection Conference-Weeds, Surrey,1997. BCPC Publications.
    [11]Heap I, Knight R. The occurrence of herbicide cross resistance in a population of annual ryegrass, (Lolium rigidum) resistant to diclofop-methyl [J]. Australian Journal of Agricultural Research,1986, 37:149-156.
    [12]Moss S R, Cussans G W. Variability in the susceptibility of Alopecurus myosuroides (black-grass) to chlortoluron and isoproturon [J]. Aspects Applied Biology,1985,9:91-98.
    [13]Yun M-S, Yogo Y. Cytochrome P-450 monooxygenase activity in herbicide-resistant and-susceptible late watergrass (Echinochloa phyllopogon) [J]. Pesticide Biochemistry and Physiology, 2005,83:107-114.
    [14]Cocker K M, Moss S R, Coleman J O D. Multiple mechanisms of resistance to fenoxaprop-P-ethyl in United Kingdom and other European populations of herbicide-resistant Alopecurus myosuroides (blackgrass) [J]. Pesticide Biochemistry and Physiology,1999,65:169-180.
    [15]韩瑞娟.日本看麦娘对高效氟吡甲禾灵抗性机理的研究[D].南京:南京农业大学,2010.
    [16]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method [J]. Methods,2001,25:402-408.
    [17]Bustin S, Beaulieu J-F, Huggett J, et al. MIQE precis:Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments [J]. BMC Molecular Biology,2010,11:74.
    [18]Bustin S, Benes V, Garson J, et al. The MIQE guidelines:Minimum information for publication of quantitative real-time PCR experiments [J]. Clin Chem,2009,55:611-622.
    [19]Edwards R, Cole D J. Glutathione transferases in Wheat (Triticum) species with activity toward fenoxaprop-ethyl and other herbicides [J]. Pesticide biochemistry and physiology,1996,54:96-104.
    [20]Hoagland D R, Arnon D I. The water culture method for growing plants without soil [J]. California Agricultural Experiment Station Circular,1950,347:1-32.
    [21]向文胜,王相晶,赵长山,等.小麦细胞色素P450s对绿黄隆的催化代谢作用[J].东北农业大学学报,1999,30:396-399.
    [22]邱立红,张文吉,李晓薇.棉铃虫微粒体多功能氧化酶系组分含量及酶活性在不同生长发育阶段的变化规律研究[J].农药学学报,1999,1:45-50.
    [23]Hansen L G, Hodgson E. Biochemical characteristics of insect microsomes:N-and O-demethylation [J]. Biochem Pharmacol,1971,20:1569-1572.
    [24]Shang C, Soderlund D M. Monooxygenase activity of tobacco budworm (Heliothis virescens F) larvae:Tissue distribution and optimal assay conditions for gut activity [J]. Comp Biochem Physiol, 1984,97:4072411.
    [25]黄剑.小菜蛾抗阿维菌素品系细胞色素P450的研究[D].杨凌:西北农林科技大学,2005.
    [26]Lee S S T, Scott J G. An improved method for preparation, stabilization nd storage of house fly (Diptera:Muscidae) microsomes [J]. Journal of Economic Entomology,1989,82:559-562.
    [27]Hung C-F, Sun C-N. Microsomal monooxygenases in diamondback moth larvae resistant to fenvalerate and popoeronyl butoxide [J]. Pesticide Biochemistry and Physiology,1989,33: 168-175.
    [28]Feng R, Houseman J G, Downe A E R. Effect of ingested meridic diet and corn leaves on midgut detoxification processes in the European corn borer, Ostrinia nubilalis [J]. Pesticide Biochemistry and Physiology,1992,42:203-210.
    [29]Schonbrod R D, Terriere L C. Inhibition of housefly microsomal epoxidase by the eye pigment, xanthommatin [J]. Pesticide Biochemistry and Physiology,1971,1:409-417.
    [30]Preston C, Tardif F J, Christopher J T, et al. Multiple resistance to dissimilar herbicide chemistries in a biotype of Lolium ridigum due to enhanced activity of several herbicide degrading enzyme [J]. Pesticide Biochemistry and Physiology,1996,54:123-134.
    [31]Christopher J T, Preston C, Powles S B. Malathion antagonizes metabolism-based chlorsulfuron resistance in Lolium rigidum [J]. pesticide Biochemistry and Physiology,1994,49:172-182.
    [32]Fischer A J, Bayer D E, Carriere M D, et al. Mechanisms of resistance to bispyribac-sodium in an Echinochloa phyllopogon accession [J]. Pesticide Biochemistry and Physiology,2000,68:156-165.
    [33]Hall L M, Moss S, Powles S B. Mechanism of resistance to chlorotoluron in two biotypes of the grass weed Alopecurus myosuroides [J]. Pesticide Biochemistry and Physiology,1995:180-192.
    [34]汤章城.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [35]王爱国,罗广华.植物的超氧物自由基与羧胺反应的定量关系[J].植物生理学通讯,1990,6:55-57.
    [36]刘俊,吕波,徐朗莱.植物叶片中过氧化氢含量测定方法的改进[J].生物化学与生物物理进展,2000,27:548-551.
    [37]杨彩宏.油菜田日本看麦娘对高效氟吡甲禾灵抗药性的初步研究[D].南京:南京农业大学,2007.
    [38]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002.
    [39]Choudhary M, Jetley U K, Khan M A, et al. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-SS [J]. Ecotoxicology and Environmental Safety,2007,66:204-209.
    [40]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003.
    [41]Shi Q, Zhu Z, Xu M, et al. Effect of excess managanese on the antioxidant system in Cucumis sativus L. under two light intensities [J]. Environmental and Experimental Botany,2006,58: 197-205.
    [42]Beauchamp C O, Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels [J]. Analytical Biochemistry,1971,44:276-287.
    [43]Kwak S S, Kim S K, Lee M S, et al. Acidic peroxidases from suspension-cultures of sweet potato [J]. Phytochemistry,1995,39:981-984.
    [44]Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves [J]. Plant Physiology,1992,98:1222-1227.
    [45]Bradford M M A. A rapid and sensitive method for the quantitation of microgram of protein utilizing the principle of protein dye binding [J]. Analytical Biochemistry,1976,72:248-254.
    [46]Davis M S, Solbiati J, Cronan J E. Over production of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli [J]. Biology Chemistry,2000,275.
    [47]Buchanan B B, Gruissem W, Jones R L. Biochemistry and molecular biology of plants [M]. New York:John Wiley & Sons, Inc,2002.
    [48]苏少泉.ACCase特性、功能及其抑制除草剂发展与杂草抗性[J].农药研究与应用,2006,10:1-8
    [49]Burke I C, Burton J D, York A C, et al. Mechanism of resistance to clethodim in a johnsongrass (Sorghum halepense) biotype [J]. Weed Science,2006,54:401-406.
    [50]Deprado R, Osuna M D, Fischer A J. Resistance to ACCase inhibitor herbicides in a green foxtail (Setaria viridis) biotype in Europe [J]. Weed Science,2004,52:506-512.
    [51]Maneechote C, Preston C, Powles S B. A diclofop-methyl-resistant Avena sterils biotype with a herbicide-resistant acetyl-coenzyme A and enhanced metabolism of diclofop-methyl [J]. Pesticide Science,1997,49:105-114.
    [52]Matthews N, Powles S B, Preston C. Mechanisms of resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides in a Hordeum leporinum population [J]. Pest Management Science,2000,56:441-447.
    [53]Tal A, Zarka S, Rubin B. Fenoxaprop-P resistance in Phalaris minor conferred by an insensitive acetyl-Coenzyme A carboxylase [J]. Pesticide Biochemistry and Physiology,1996,56:134-140.
    [54]Avila W, Bolanos A, B.E. V. Characterization of the cross-resistance mechanism to herbicides inhibiting acetyl coenzyme-A carboxylase in itchgrass (Rottboellia cochinchinnensis) biotypes from Bolivia [J]. Crop Protection,2007,26:342-348.
    [55]Volenberg D, Stoltenberg D. Altered acetyl-coenzyem A carboxylase confers resistance to clethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis [J]. Weed Research,2002,42: 342-350.
    [56]Yang C, Dong L, Li J, et al. Identification of japanese foxtail (Alopecurus Japonicus) resistant to haloxyfop using three different assay techniques [J]. Weed Science,2007,55:537-540.
    [57]Moss S R, Cocker K M, Brown A C, et al. Characterisation of target-site resistance to ACCase-inhibiting herbicides in the weed Alopecurus myosuroides (black-grass) [J]. Pest Management Science,2003,59:190-201.
    [58]Tal A, Rubin B. Molecular characterization and inheritance of resistance to ACCase-inhibiting herbicides in Lolium rigidum [J]. Pest Management Science,2004,60:1013-1018.
    [59]Maneechote C, Samanwong S, Zhang X-Q, et al. Resistance to ACCase-inhibiting herbicides in sprangletop(Leptochloa chinensis) [J]. Weed Science,2005,53:290-295.
    [60]Herbert D, Cole D J, Pallett K, et al. Susceptibilities of different test systems from maize (Zea mays), Poa annua, and Festuca rubra to herbicides that inhibit the enzyme acetyl-coenzyme A carboxylase [J]. Pesticide Biochemistry and Physiology,1996,55:129-139.
    [61]Herbert D, Cole D J, Pallett K E, et al. Graminicide-binding by acetyl-CoA carboxylase from Poa annua leaves [J]. Phytochemistry,1997,44:399-405.
    [62]Delye C, Michel S.'Universal'primers for PCR-sequencing of grass chloroplastic acetyl-CoA carboxylase domains invovled in resistance to herbicides [J]. Weed Research,2005,45:323-330.
    [63]Christoffers M J, Berg M L, Messersmith C G. An isoleucine to leucine mutation in acetyl-coA carboxylase confers herbicide resistance in wild oat [J]. Genome,2002,45:1049-1056.
    [64]Delye C, Matejicek A, Mechel S. Cross-resistance patterns to ACCase-inhibiting herbicides conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds. (black-grass), re-examined at the recommended herbicide field rate [J]. Pest Management Science,2008,64:1179-1186.
    [65]Yu Q, Collavo A, Zheng M Q, et al. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations evalution using clethodim [J]. Plant Physiology,2007,145:547-558.
    [66]Zhang X-Q, Powles S B. The molecular bases for resistance to acetyl co-enzyme A carboxylase (ACCase) inhibiting herbicides in two target-based resistant biotypes of annual ryegrass(Lolium rigidum) [J]. Planta,2006,223:550-557.
    [67]Darmency H, Gasquez J. Spontaneous hybridization of the putative ancestors of the allotetraploid Poa annua [J]. New Phytologist,1997,136:497-501.
    [68]Tutin T G. Origin of Poa annua L. [J]. Nature,1952,169:160.
    [69]Caretto S, Giardina M C, Nicolodi C, et al. Chlorsulfuron resistance in Daucus carota cell lines and plants:Involvement of gene amplification. [J]. Theoretical Applied Genetics,1994,88:520-524
    [70]Dewaele E, Forlani G, Degrande D, et al. Biochemical characterization of chlorsulfuron resistance in Cichorium intybus L. var. Witloof[J]. Journal of Plant Physiology,1997,151:109-114.
    [71]Harms C T, Armour S L, Dimaio J J, et al. Herbicide resistance due to amplification of a mutant acetohydroxyacid synthase gene. [J]. Molecular and General Genetics,1992,233:427-435.
    [72]Odell J T, P G Caimi, N S Yadav, et al. Comparison of increased expression of wild-type and herbicide-resistant acetolactate synthase genes in transgenic plants, and indication of post-transcriptional limitation on enzyme activity. [J]. Plant Physiology,1990,94:1647-1654.
    [73]Bradley K W, Wu J, Hatzios K K, et al. The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a Johnsongrass biotype [J]. Weed Science,2001,49:477-484.
    [74]Frear D S, Swanson H R. Biosynthesis of S-(4-ethylamino-6- isopropylamino -2-s-triazino) glutathione partial purification and properties of glutathione-S- transferase from corn [J]. Phytochemistry,1970,9:2123-2132.
    [75]Lamoureuc G L, Shimabukuto R H, Swanson H R, et al. Metabolism of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) in excised Sorghum leaf sections [J]. Journal of Agricultural Food Chemistry,1970,18:81-86.
    [76]Shimabukuro R H, Swanson H R, Walsh W C. Glutathione conjugation:Atrazine detoxication mechanism in corn [J]. Plant Physiology,1970,46:103-107.
    [77]Edwards R, Dixon D P. The role of glutathione transferases in herbicide metabolism [M]. A. H. COBB, R. C. KIRKWOOD. Herbicides and their mechanisms of action. Sheffield:Sheffield Academic.2000:38-71.
    [78]Lamoureuc G L, Shimabukuro R H, Frear D D. Glutathione and glucoside conjugation in herbicide selectivity [M]. CASELEY J C, CUSSANS G W, ATKIN R K. Herbicide resistance in weeds and crops. Oxford:Butterworth-Heinemann.1991:227-261.
    [79]Marrs K A. The functions and regulation of glutathione S-transferases in plants [J]. Annual Review Plant Physiology and Plant Molecular Biology,1996,47:127-158.
    [80]ztetik E. A tale of plant glutathione s-transferases:since 1970 [J]. Botany review,2008,74: 419-437.
    [81]Andrews C J, Skipsey M, Townson J K, et al. Glutathione transferase activities toward herbicides used selectively in soybean [J]. Pesticide Science,1997,51:213-222.
    [82]冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001.
    [83]Zimmerlin A, Durst F. Xenobiotic metabolism in plants Aryl hydroxylation of diclofop by a cytochrome P-450 enzyme from wheat [J]. Phytochemistry,1990,29:1729-1732.
    [84]Moreland D E, Corbin F T. Influence of safeners on the in vivo and in vitro metabolism of bentazon and metolachlor by grain-sorghum shoots-a preliminary roport [J]. Zeitschrift Fur Naturforschung C:Journal of Biosciences,1991,46:906-914.
    [85]Moreland D E, Corbin F T, Fleischmann T J, et al. Partial characterization of microsomes isolated from mung bean cotyledons [J]. Pesticide Biochemistry and Physiology,1995,52:98-108.
    [86]Moreland D E, Corbin F T, Mcfarland J E. Oxidation of multiple substrates by corn shoot microsomes [J]. Pesticide Biochemistry and Physiology,1993,47:206-214.
    [87]Bravin F, Zanin G, Preston C. Resistance to diclofop-methyl in two Lolium spp. populations from Italy:studies on the mechanism of resistance [J]. Weed Research,2001,41:461-473.
    [88]Mcfadden J J, Frear D S, Mansager E R. Aryl hydroxylation of diclofop by a cytochrome P450 dependent monooxygenase from wheat [J]. Pesticide Biochemistry and Physiology,1989,34: 92-100.
    [89]Burnet M W M, Loveys B R, Holtum J A, et al. A mechanism fo chlorotoluron resistance in Lolium rigidum [J]. Planta,1993,190:182-189.
    [90]Burnet M W M, Loveys B R, Holtum J a M, et al. Increased detoxification is a mechanism of simazine resistance in Lolium rigidum [J]. Pesticide Biochemistry and Physiology,1993,46: 207-218.
    [91]Letouze A, Gasquez J. Enhanced activity of several herbicide-degrading enzymes:A suggested mechanism responsible for multiple resistance in blackgrass(Alopecurus myosuroides Huds.) [J]. Agronomie,2003,23:601-608.
    [92]Deng F, Hatzios K K. Characterization of cytochrome P450-mediated bensulfuron-methyl O-demethylation in rice [J]. Pesticide Biochemistry and Physiology,2003,74:102-115.
    [93]Singh S, Kirkwood R C, Marshall G. Effect of ABT on the activity and rate of degradation of isoproturon in susceptible and resistant biotypes of Phalaris minor and in wheat [J]. Pesticide Science,1998,53:123-132.
    [94]李合生.现代植物生理学[M].北京:高等教育出版社,2006.
    [95]傅茂润.黄花菜抗氧化特性研究[D].杭州:浙江大学,2009.
    [1]李扬汉.中国杂草志[M].北京:中国农业出版社,1998.
    [2]毕海波,李应生.寿县稻茬麦田杂草种类演变及化学防治[J].现代农业科技,2011,16:164.
    [3]侯琴慧,段泽民.鹤庆县大麦田地杂草发生情况调查[J].云南农业大学学报,2011,2:44-45.
    [4]钱贵喜,孙春来.海安县部分小麦田杂草重发原因及防治对策[J].现代农业科技,2008,1:96.
    [5]邱江,王建,高联义,等.泰州市农田杂草的变化与防除对策[J].杂草科学,2006,1:28-30.
    [6]沈丹峰,邵文捷,石磊,等.近年宜兴市夏熟作物杂草发生及危害研究[J].上海农业科技,2010,6:118-120.
    [7]宋爱颖.萧县麦田杂草种群演变初探[J].安徽农学通报,2011,17:33-35.
    [8]杨燕涛,张洪进,王东华,等.通州市油菜田杂草发生特点与分布规律初步研究[J].杂草科学,2005,1:23-26.
    [9]巴逢辰,赵羿.中国海涂土壤资源[J].土壤通报,1997,28:49-51.
    [10]Liebman M, Mohler C L, Staver C P. Ecological management of agricultural weeds [M]. Cambridge:Cambridge University Press,2001.
    [11]Chauhan B S, Gill G, Preston C. Influence of tillage systems on vertical distribution,seedling recruitment and persistence of rigid ryegrass(Lolium rigidum)seed bank [J]. Weed Science,2006, 54:669-676.
    [12]Heap I M. The occurrence of herbicide-resistant weeds worldwide [J]. Pesticide Science,1997,51: 235-243.
    [13]黄建中,姚东瑞.杂草学[M].北京:中国农业科技出版社,1996.
    [14]张朝贤,倪汉文,魏守辉,等.杂草抗药性研究进展[J].中国农业科学,2009,42:1274-1289.
    [15]Heap I. International survey of herbicide resistant weeds. www.weedscience.org,2012,7.
    [16]刘长令.世界农药大全:除草剂卷[M].北京:化学工业出版社,2002.
    [17]Cruz-Hipolito H, Osuna M D, Dominguez-Valenzuela J A, et al. Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America [J]. Journal of Agricultural and Food Chemistry,2011,59:7261-7267.
    [18]Delye C, Michel S.'Universal'primers for PCR-sequencing of grass chloroplastic acetyl-CoA carboxylase domains invovled in resistance to herbicides [J]. Weed Research,2005,45:323-330.
    [19]Travlos I S, Giannopolitis C N, Economou G. Diclofop resistance in sterile wild oat(Avena sterilis L.) in wheat fields in Greece and its management by other post-emergence herbicides [J]. Crop Protection,2011,30:1449-1454.
    [20]Yu Q, Collavo A, Zheng M Q, et al. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations:evaluation using clethodim [J]. Plant Physiology,2007,145:547-558.
    [21]Liu W J, Harrison D K, Chalupska D, et al. Single-site mutations in the carboxytransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:3627-3632.
    [22]Christoffers M J, Berg M L, Messersmith C G An isoleucine to leucine mutation in acetyl-coA carboxylase confers herbicide resistance in wild oat [J]. Genome,2002,45:1049-1056.
    [23]Zagnitko O, Jelenska J, Tevzadze G, et al. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-coA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors [J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98:6617-6622.
    [24]Cummins I, Cole D J, Edwards R. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass [J]. The Plant Journal,1999,18: 285-292.
    [25]Cummins I, Moss S, Cole D J, et al. Glutathione transferases in herbicide-resistance and herbicide-susceptible black-grass (Alopecurus myosuroides) [J]. Pesticide Science,1997,51: 244-250.
    [26]Yuan J, Tranel P J, Jrstewart C N. Non-target-site herbicide resistance:a family business [J]. Trends in Plant Science,2007,12:6-13.
    [27]Yun M S, Yogo Y, Miura R, et al. Cytochrome P-450 monooxygenase activity in herbicide-resistant and-susceptible late watergrass (Echinochloa phyllopogon) [J]. Pesticide Biochemistry and Physiology,2005,83:107-114.
    [28]Lewis D F V. Cytochrome P450:Structure, function and mechanism [M]. London:Taylor & Francis,,1996.
    [29]Morant M, Bak S, Moller B, et al. Plant cytochromes P450:tools for pharmacology, plant protection and phytoremediation [J]. Current Opinion in Biotechnology,2003,14:161-162.
    [30]Siminsky B. Plant cytochrome P450-mediated herbicide metabolism [J]. Photochemistry Review, 2006,5:445-458.
    [31]Powles S B, Yu Q. Evolution in action:plants resistant to herbicides [J]. Annual Review of Plant Biology,2010,61:317-347.
    [32]李合生.现代植物生理学[M].北京:高等教育出版社,2006.
    [33]Deprado R, Osuna M D, Fischer A J. Resistance to ACCase inhibitor herbicides in a green foxtail (Setaria viridis) biotype in Europe [J]. Weed Science,2004,52:506-512.
    [34]韩瑞娟.日本看麦娘对高效氟吡甲禾灵抗性机理的研究[D].南京:南京农业大学,2010.
    [35]杨彩宏.油菜田日本看麦娘对高效氟吡甲禾灵抗药性的初步研究[D].南京:南京农业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700