用户名: 密码: 验证码:
改进蚁群算法及在路径规划问题的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路径规划问题是组合优化和运筹学领域研究的热点问题之一,具有重要的理论和现实意义。蚁群优化算法是受蚁群觅食行为启发而提出的一类群智能优化算法,该算法能有效地解决具有NP-Hard特性的组合优化问题。由于蚁群算法在求解离散问题的优势和对路径的敏感性,使它对路径规划问题的求解一直备受关注。
     本文针对旅行售货员问题、多智能体的编队控制问题、车辆路由问题以及智能体路径规划问题,分别提出改进的蚁群算法进行求解。主要的研究内容和创新点如下:
     1.提出了一种求解旅行售货员问题的改进蚁群算法。该算法在信息素更新过程中,使用一种信息素局部更新和全局动态更新结合的方法,使当前最优路径上的信息素能够根据当前最优解动态地进行调配,避免算法陷入停滞状态。在局部搜索过程中,仅对部分走出更优路径的售货员使用2-opt方法,提高了求解的精度,加快了最优解的收敛速度。仿真实验验证了算法的有效性,与其它算法相比,算法在求解质量和收敛速度上都显示出了良好的性能。
     2.提出了一种多智能体编队控制问题的改进蚁群算法。针对多智能体在编队过程中的最短编队距离问题,使用改进的蚁群算法对其求解。该算法每次迭代时,会给每个智能体一个随机的初始位置,以增强搜索的多样性。在搜索过程中,使用智能体当前位置与目标位置距离的倒数作为启发式信息,以引导智能体向路径更短的目标位置进行移动。局部搜索过程采用一种交换搜索的方式,能够扩大搜索的范围,加快最优解的收敛速度。仿真实验验证了算法的有效性。
     3.提出一种带容量约束车辆路由问题的改进蚁群算法。该算法使用一种新的车辆位置初始化方式,增加了车辆走出最优路径的可能性。在搜索过程中,使用客户之间路径的节省量作为启发式信息,以引导车辆向路径更节省的客户移动。信息素更新采用一种动态更新的方法,能够根据当前车辆所构建路径的情况对信息素进行更新,避免算法陷入停滞状态。局部搜索除使用2-opt方法外,针对不同车辆访问的客户,还增加了交换搜索和插入搜索,以扩大搜索的范围。仿真实验验证了算法的有效性。
     4.提出了一种静态环境下智能体路径规划问题的端点逼近蚁群算法,该算法使用栅格法对智能体的工作环境进行建模。算法使用折返迭代的方式对目标进行搜索。在搜索过程中,以移动方向上一定范围内最大信息素和目标引导函数作为启发式因子。并且,采用两种信息素对蚂蚁进行引导。根据蚂蚁对栅格访问和信息素散播的特点,提出一种端点(起始点与目标点)逼近的方法,它能够使起始点和目标点在迭代过程中逐步地相向移动,缩短了起始点和目标点之间的距离,加快了最优解的收敛速度。仿真实验验证了算法的有效性。
Path planning problems have become one of hot research areas in the field ofcombinatorial optimization and operations research. The researches in this area haveimportant significance on theory and practice. Ant colony optimization (ACO) is anovel nature-inspired metaheuristic algorithm based on real ants foraging behavior.The ACO belongs to the class of swarm intelligence algorithm, which obtainedencouraging results for solving of NP-hard combinatorial optimization problems.Because of the advantages of the ACO on solving discrete problems and beingsensitive to path, more and more attentions are paid to solve path planning problemsusing the ACO.
     In this paper improved ant colony algorithms (ACAs) are proposed to solve thefour path planning problems: traveling salesman problem, multiple agent formationcontrol problem, capacitated vehicle routing problem and agent path planningproblem. The main achievements and contents are listed below.
     1. An improved ACA is proposed for traveling salesman problems, in which anapproach of local and global dynamic pheromone updating is presented. Byusing the approach of local and global dynamic phenomenon updating, thedistribution of pheromone can be adjusted according to the current route status.The approach of2-opt is only used for some current optimal routes, which canspeed up the convergence of the optimal solution. Simulation resultsdemonstrate the proposed algorithm is efficient.
     2. Multi-agent formation control problems are researched. A new kind of problemnamed minimum formation distance problem in multi-agents systems is solved.An improved ACA is proposed to solve this kind of problem. In the process ofsearching, the reciprocal of the distance between agent’s current position andtarget position is chosen as the heuristic information. An exchange search approach is used to expand the scope of the search and speed up theconvergence of the optimal solution. Simulation results demonstrate theproposed algorithm is efficient.
     3. An improved ACA is proposed for capacitated vehicle routing problems. A newinitialization of vehicle’s position with an optimal and random selection is usedto increase the possibility of obtaining the optimal path. In the process ofsearching, the saving path among customers is chosen as the heuristicinformation to make the vehicles be more sensitive to the optimal path. Theapproach of local and global dynamic phenomenon updating is used to adjustthe distribution of phenomenon according to vehicles’ routes. Except themethod of2-opt, insertion and exchange search methods are also used to expandthe scope of the search for the clients on different vehicles’ routes. Thesimulation results demonstrate the proposed algorithm works well andefficiently.
     4. An ACA using endpoint approximation is proposed for agent path planningproblem under a unknown and static environment. In this algorithm the modelof agent 's workspace is established with grid method and fold-back iterating isused to search the aims. The most pheromone in a moving direction range and agoal guiding function are chosen as the heuristic information during thesearching process. Meanwhile, two kinds of pheromone are used to guide ants.Furthermore, according to the features of the pheromone strewing in the gridsand ants visiting grids, an endpoint approximation method is proposed to makethe starting point and the end point gradually move towards each other in theiterative process, shortening the distance between the starting point and the endpoint and accelerating the speed of convergence. The simulation resultsdemonstrate that the proposed algorithm has much high efficiency.
引文
[1] Colorni A, Dorigo M, Maniezzo V,et al. Distributed optimization by ant colonies.Proceedings ofthe1st European Conference on Artificial Life,1991:134~142.
    [2] Gambardella L M, Dorigo M. Ant-Q:A reinforcement learning approach to the travelingsalesman problem. Proceedings of the12th International Conference on Machine Learning,1995:252~260.
    [3] Dorigo M, Maniezzo V, Colorni A.Ant system:Optimization by a colony of cooperating agents.IEEE Transactions on Systems, Man, and Cybernetics-Part B,1996,26(1):29~41.
    [4] Dorigo M, Gambardella L M. Ant Colony System:A Cooperative Learning Approach to theTraveling Salesman Problem. IEEE Transactions on Evolutionary Compution,1997,1(1):53~66.
    [5] Kennedy J, Eberhart R C. Partical swarm optimization. Proceedings of IEEE InternationalConference on Neural Networks,1995:1942~1948.
    [6] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory.Proceedings of theSixth lnternational Symposium on Micro Machine and Human Science, Nagoya, Japan,1995:39~43.
    [7] Eberhart R C, Simpson P K, Bobbins R W. Computational Intelligence PC Tools. Boston,MA:Academic Press Professional,1996.
    [8] Xiong W Q, Yan Ch Y, Wang L Y. Binary Ant Colony Evolutionary Algorithm. InternationalConference on Intelligent Computing, HeFei, China,2005:1341~1350.
    [9]陈烨.用于连续函数优化的蚁群算法.四川大学学报(工程科学版),2004,36(6):117~120.
    [10]段海滨,马冠军等.一种求解连续空间优化问题的改进蚁群算法.系统仿真学报,2007,19(5):974~977.
    [11]陈绫,沈洁,秦玲.蚁群算法求解求解连续空间优化问题的一种方法.软件学报,2002,13(12):2317~2323.
    [12]陈绫,沈洁,秦玲.蚁群算法进行连续参数优化的新途径.系统工程理论与实践,2003,23(3):48~53.
    [13]杨勇,宋晓峰,王建飞等.蚁群算法求解连续空间优化问题.控制与决策,2003,18(5):573~576.
    [14]高尚,钟娟,莫述军.连续优化问题的蚁群算法研究.微机发展,2003,13(1):21~22.
    [15]汪鐳,吴启迪.蚁群算法在连续空间寻优问题求解中的应用.控制与决策,2003,18(1):45~48.
    [16] Fischetti M, Salazar J J, Toth P. A branch-and-cut algorithm for the symmetric generalized travelingsalesman problem. Operations Research,1997,45:378–94.
    [17] Snyder L V, Daskin M S. A random-key genetic algorithm for the generalized travelingsalesman problem. Operations Research,2006,173:38~53.
    [18] Darrell W, Doug H, Adele H.A Hybrid Genetic Algorithm for the Traveling Salesman ProblemUsing Generalized Partition Crossover. Lecture Notes in Computer Science,2011,6238:566~575.
    [19] Stutzle T, Hoos H H. MAX-MIN ant system and local search for the traveling salesmanproblem [C]. Indianapolis:Proceedings of the IEEE International Conference on EvolutionaryComputation,1997.309~314.
    [20]黄国锐,曹先彬,王煦法.基于信息素扩散的蚁群算法.电子学报,2004,32(4):865~868.
    [21]丁建立,陈增强,袁著祉.遗传算法与蚂蚁算法的融合.计算机研究与发展,2003,40(9):1351~1356.
    [22]朱庆保,杨志军.基于变异和动态信息素更新的蚁群优化算法.软件学报,2004,15(2):185~192.
    [23] Yang J H, Shi X H, Maurizio M, Liang Y CH. An ant colony method for generalized TSPproblem. Progress in Natural Science,2008,18:1417~1422.
    [24]冀俊忠,黄振,刘椿年.一种快速求解旅行商问题的蚁群算法.计算机研究与发展,2009,46(6):968~978.
    [25]詹仕华,王长缨,钟一文.求解TSP问题的伪贪婪离散粒子群优化算法.小型微型计算机,2011,32(1):181~184.
    [26]伍国华,马满好.路径交叉检测与消除方法和邻节点置换方法改进TSP的解.计算机应用研究,2011,28(2):485~487.
    [27]范会联,李献礼.基于近邻关系求解TSP的离散PSO算法.计算机应用研究,2011,28(2):511~544.
    [28] http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/U
    [29] Derek P, Zhang F M, Leonard N E. Cooperative control for ocean sampling: the glidercoordinated control system. IEEE Transactions on Control Systems Technology,2008,16(4):735~744.
    [30] Do K D. Formation tracking control of unicycle-type mobile robots with limited sensing ranges.IEEE Transactions on Control Systems Technology,2008,16(3):527~538.
    [31] Dong W J, Farrell J A. Decentralized cooperative control of multiple nonholonomic dynamicsystems with uncertainty. Automatica,2009,45(3):706~710.
    [32] Leonard N E, Paley D A, Davis R E, et al. Coordinated control of an underwater glider fleet inan adaptive ocean sampling field experiment in Monterey Bay. Journal of Field Robotics,2010,27(6):718~740.
    [33] Lewis M A, Tan K H. High precision formation control of mobile robots using virtual structureapproach. Autonomous Robots,1997,4:387~403.
    [34] Leonard N E, Fiorelli E. Virtual leader, artificial potentials and coordinated control of groups.IEEE Conference on Decision and Control, Orlando, FL, USA,2001,3:2968~2973.
    [35] Lawton A R, Young B J, Beard R W. A decentralized approach to elementary formationmaneuvers. IEEE International Conference on Robotics and Automation, San Francisco, CA,USA,2000,3:2728~2733.
    [36] Lawton J R, Beard R W, Young B J. A decentralized approach to formation maneuvers. IEEETransactions on Robotics and Automation,2003,19(6):933~941.
    [37] Ren W, Sorensen N. Distributed coordination architecture for multi-robot formation control.Robotics and Autonomous Systems,2008,56(4):324~333.
    [38] Ren W, Beard R W. Decentralized scheme for spacecraft formation flying via the virtualstructure approach. Journal of Guidance, Control and Dynamics,2004,27(1):73~82.
    [39] Li X, Wang X F, Chen G R. Pinning a complex dynamical network to its equilibrium. IEEETransactions on Circuits and Systems I,2004,51(4):2074~2087.
    [40] Tanner H G. Flocking with obstacle avoidance in switching networks of interconnectedvehicles. IEEE International Conference on Robotics and Automation,2004,3:3006~3011.
    [41] Tanner H G, Jadbabaie A, Pappas G J. Stable flocking of mobile agents Part I: fixed topology.IEEE Conference on Decision and Control,2003,2:2010~2015.
    [42] Tanner H G, Jadbabaie A, Pappas G J. Stable flocking of mobile agents Part Ⅱ: dynamictopology. IEEE Conference on Decision and Control,2003,2:2016~2021.
    [43]李宗刚,贾英民.一类具有群体leader的多智能体系统的聚集行为.智能系统学报,2006,1(2):26~30.
    [44] Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Transactionson Automatic Control,2009,54(2):293~307.
    [45] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEETransactions on Automatic Control,2006,51(3):401~420.
    [46] Wang J H, Cheng D, Hu X. Consensus of multi-agent linear dynamic systems. Asian Journal ofControl,2008,10(2):144~155.
    [47] Ni W, Cheng D. Leader-following consensus of multi-agent systems under fixed and switchingtopologies. Systems&Control Letters,2010,59(34):209~217.
    [48]石桂芬,方华京.基于相邻矩阵的多机器人编队容错控制.华中科技大学学报(自然科学版),2005,33(3):39~42.
    [49]吴正平,关治洪,吴先用.基于一致性理论的多机器人系统队形控制.控制与决策,2007,22(11):1241~1244.
    [50]杨洪勇,张嗣瀛.离散时间系统的多智能体的一致性.控制与决策,2009,24(3):413~416.
    [51] Laporte G, Mercure H, Nobert Y. A branch and bound algorithm for a class of asymmetricalvehicle routing problem. The Journal of Operational Research Society,1992,43(5):469~481.
    [52] Taillard E. Parallel Iterative Search Methods for Vehicle Routing problem. Networks,1993,23:661~673.
    [53] Bullnheimer B, Hartl R F, Strauss Ch. Applying the ant system to the vehicle routingproblem[A]. Meta-Heuristics: Advances and Trends in Local Search Paradigms forOptimization. Boston: Kluwer,1998,109~120.
    [54] Bullnheimer B, Hartl R F, Strauss Ch. An improved ant system for the vehicle routing problem.Annals of Operations Research,1999,89:319~328.
    [55]吴浩扬,常炳国,朱长纯,刘君华.基于模拟退火机制的多种群并行遗传算法.软件学报,2000,11(3):416~420.
    [56] Baker B M, Ayechew M A. A genetic algorithm for the vehicle routing problem. Computers andOperations Research,2003,30(5):787~800.
    [57] Wang Ch H, Lu J Zh. A hybrid genetic algorithm that optimizes capacitated vehicle routingproblems. Expert Systems with Applications,2009,36:2921~2936.
    [58] Bell J E, McMullen P R. Ant colony optimization techniques for the vehicle routing problem.Advanced Engineering Informatics,2004,18:41~48.
    [59] Gajpal Y, Abad P L. Multi-ant colony system (MACS) for a vehicle routing problem withbackhauls. European Journal of Operational Research,2009,196:102~117.
    [60] Chen Ch H, Ting Ch J. An improved ant colony system algorithm for the vehicle routingproblem. Journal of the Chinese Institute of Industrial Engineer,2006,23(2):115~126.
    [61] Juan A A, Faulin J, Ruiz R, et al. The SR-GCWS hybrid algorithm for solving the capacitatedvehicle routing problem. Applied Soft Computing,2010,10:215~224.
    [62]万博,卢昱,陈立云,何瑞波.求解CVRP的改进混合蛙跳算法研究.计算机应用研究,2011,28(12):4503~4506.
    [63]石刚,井元伟,马佳.一种新的免疫克隆算法在CVRP问题中的应用.东北大学学报(自然科学版),2009,30(10):1373~1376.
    [64] Lee C Y, Lee Z J, Lin Sh W, Ying K CH. An enhanced ant colony optimization (EACO) appliedto capacitated vehicle routing problem. Applied Intelligence,2010,32:88~95.
    [65] Brajevic I. Artificial bee colony algorithm for the capacitated vehicle routing problem.Proceedings of the11thEuropean Computing Conference World Scientific and EngineeringAcademy and Society, Paris, France,2011,239~244.
    [66] Zhao Y W, Peng D J,Zhang J L, Wu B. Quantum evolutionary algorithm for capacitatedvehicle routing problem. System Engineering Theory and Practice,2009,29(2):159~166.
    [67] Yeh Ch W. Solving capacitated vehicle routing problem using DNA-based computation.Proceedings2009International Conference on Information Management and Engineering,Kuala Lumpur, Malaysia,2009:170~174.
    [68] http://www.Branchandcut.org/VRP/data/
    [69] Trovato K I., Dorst, L, et al. Differential A*. IEEE Transactions on Knowledge and DataEngineering,2002,14(6):1218~1229.
    [70]朱庆保.全局未知环境下多机器人运动蚂蚁导航算法.软件学报,2006,17(9):1890~1898.
    [71] Porta G M A,Oscar M, et al. Path planning for autonomous mobile robot navigation with antcolony optimization and fuzzy cost function evaluation. Applied Soft Computing,2009,9(3):1102–1110.
    [72]朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法.机器人,2005,27(2):132~136.
    [73]王沛栋,冯祖洪,黄新.一种改进的机器人路径规划蚁群算法.机器人,2008,30(6):554~560.
    [74] TAN G Zh, HE H, Sloman A. Ant colony system algorithm for real-Time globally optimal pathplanning of mobile robots. Acta Automatica Sinica,2007,33(3):279~285.
    [75] Yee Z C, Ponnambalam S G. Mobile robot path planning using ant colony optimization.IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore,2009:851–856.
    [76]孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划.控制与决策,2005,20(9):1052~1060.
    [77] Ismail A T, Alaa S, Mohammed A W. A mobile robot path planning using genetic algorithm instatic environment. Journal of Computer Science,2008,4(4):341~344.
    [78] Geisler T, Manikas T W. Autonomous robot navigation system using a novel value encodedgenetic algorithm. Proceeding of IEEE Midwest Symposium on Circuits and Systems, Tulsa,United states,2002,3:45~48.
    [79] Sedighi K H, Ashenayi K, et al. Autonomous local path planning for a mobile robot using agenetic algorithm. Congress on Evolutionary Computation, United states,2004,2:1338~1345.
    [80] Rahul K, Anupam S, Ritu T. Robotic path planning in static environment using hierarchicalmulti-neuron heuristic search and probability. Neurocomputing,2011,74(14):2314~2335.
    [81]王芳,万磊,徐玉如,张玉奎.基于改进人工势场的水下机器人路径规划.华中科技大学学报(自然科学版),2011,39:184~187.
    [82]钟秋波,高超,方宝富.一种复杂环境下的仿人机器人路径规划算法.华中科技大学学报(自然科学版),2011,39:192~203.
    [83]陈卫东,朱奇光.基于模糊算法的移动机器人路径规划.电子学报,2011,39(4):971~980.
    [84]赵娟平,高宪文,符秀辉,刘金刚.移动机器人路径规划的改进蚁群优化算法.控制理论与应用,2011,28(4):458~461.
    [85] Maniezzo V, Colorni A, Dorigo M. The Ant System Applied to the Quadratic AssignmentProblem, Technical Report IRIDIA/94~28, UniversitéLibre de Bruxelles, Belgium,1994,11(5):769–778.
    [86] Ramkumar A S. A population-based hybrid ant system for quadratic assignment formulations infacility layout design. International Journal of Advanced Manufacturing Technology,2009,44(56):548-558.
    [87] Gambardella L, Taillard E, Dorigo M.Ant colonies for the QAP.Journal of the OperationsResearch Society,1999,(50):167~176.
    [88] Colomi A, Dorigo M, Maniezzo V,et al. Ant system for job-shop scheduling.Belgian Journalof Operations Research,Statistics and Computer Science,1994,(34):39~53.
    [89] Shyu S J, Lin B M T, Yin P Y Application of ant colony optimization for no-wait flowshopscheduling problem to minimize the total completion time.Computers and IndustrialEngineering,2004,47(23):181~193.
    [90] Blum C. Beam-ACO-hybridizing ant colony optimization with beam search:an application toopen shop scheduling.Computers and Operations Research,2005,32(6):1565~1591.
    [91] Tseng L Y, Chen S C. A hybrid metaheuristic for the resource-constrained project schedulingproblem.European Journal of Operational Research,2006,175(2):707~721.
    [92] Mathure M, Karale S B, Priye S,et al. Ant colony approach to continuous function optimization.Industrial and Engineering Chemistry Research,2000,39(10):3814~3822.
    [93] Dreo J, Siarry P. Continuous interacting ant colony algorithm based on dense heterarchy. FutureGeneration Computer Systems,2004,20(5):841~856.
    [94] Dreo J, Siarry P. An ant colony algorithm aimed at dynamic continuous optimization.AppliedMathematics and Computation,2006,181(1):457~46.
    [95] Toksari M D. Ant colony optimization for finding the global minimum. Applied Mathematicsand Computation,2006,176(1):308~316.
    [96] Socha K, Dorigo M. Ant colony optimization for continuous domains. European Journal ofOperational Research,2006,185(3):1155~1173.
    [97] Shelokar P S, Siarry P, Kulkarni B D. Particle Swarm and Ant Colony algorithms hybridizedfor improved continuous optimization.2006,188(1):129~142.
    [98]汪镭,吴启迪.蚁群算法在系统辨识中的应用.自动化学报,2003,29(1):102~109.
    [99] Duan H B, Wang D B, Zhu J Q, et al. Parameter identification of Lucre friction model for flightsimulation servo system based on ant colony algorithm. Transactions of Nanjing University ofAeronautics and Astronautics,2004,21(3):179~183.
    [100] Li L, Yang Y, Peng H, et al. Parameters identification of chaotic systems via chaotic antswarm. Chaos, Solitons and Fractals,2006,28(5):1204~1211.
    [101] Rajesh J, Gupta K, Kusumakar H S, et al. Dynamic optimization of chemical processes usingant colony framework. Computers and Chemistry,2001,25(6):583~595.
    [102] Shelokar P S, Jayaraman V K, Kulkarni B D. An ant colony classifier system:application tosome process engineering problems.Computers and Chemical Engineering,2004,28(9):1577~1584.
    [103] Zhang B, Chen D Z, Zhao W X. Iterative ant-colony algorithm and its application to dynamicoptimization of chemical process. Computers and Chemical Engineering,2005,29(10):2078~2086.
    [104] He Y J, Chen D Z, Zhao W X. Ensemble classifier system based on ant colony algorithm andits application in chemical pattern classification. Chemometrics and Intelligent LaboratorySystems,2006,80(1):39~49.
    [105] Zheng H, Wong A, Nahavandi S. Hybrid ant colony algorithm for texture classification.Proceedings of the2003Congress on Evolutionary Computation,2003,(4):2648~2652.
    [106] Wang X N, Feng Y J, Feng Z R. Ant colony optimization for image segmentation. Proceedingsof the International Conference on Machine Learning and Cybernetics,2005,(9):5355~5360.
    [107] Han Y F, Shi P F. An improved ant colony algorithm for fuzzy clustering in imagesegmentation. Neurocomputing,2007,70(4-6):665~671.
    [108] Le S H M, Kallel A, Descombes X. Ant colony optimization for image regularization based ona nonstationary Markov modeling. IEEE Transactions on Image Processing,2007,16(3):865~878.
    [109] Megala N, Chandrasekharan, Rajendran1, Ram G. An ant colony algorithm for cell-formationin cellular manufacturing systems. European Journal of Industrial Engineering,2008,2(3):298~336.
    [110] Seo M, Kim D. Ant colony optimisation with parameterised search space for the job shop.International Journal of Production Research,2010,48(4):1143~1154.
    [111] Wang S D, Zheng L, Zhang Zh H, Tian R. Solving the scheduling problem of humplocomotive with ant colony optimization. China Railway Science,2007,28(3):104~109.
    [112] Zhang P, Lin J, Xue L. An Adaptive Heterogeneous Multiple Ant Colonies Algorithm.Journal of Intelligent Systems,2010,19(4):301~314.
    [113] Ellabib I, Calamai P, Basir O. Exchange strategies for multiple Ant Colony System.Information Sciences,2007,177(5):1248~1264.
    [114] Yang Y, Kamel, Mohamed S. An aggregated clustering approach using multi-ant coloniesalgorithms. Pattern Recognition,2006,39(7):1278~1289.
    [115] Gajpal Y, Abad. An ant colony system (ACS) for vehicle routing problem with simultaneousdelivery and pickup. Computers and Operations Research,2009,36(12):3215~3223.
    [116] Santos L, Coutinho-Rodrigues J, Current J R. An improved ant colony optimization basedalgorithm for the capacitated arc routing problem. Transportation Research Part B:Methodological,2010,44(2):246~266.
    [117] Hu X M, Zhang J, Li Y. Orthogonal methods based ant colony search for solving continuousoptimization problems. Journal of Computer Science and Technology,2008,23(1):2~18.
    [118] Ghoseiri K, Nadjari B. An ant colony optimization algorithm for the bi-objective shortest pathproblem. Applied Soft Computing Journal,2010,10(4):1237~1246.
    [119] Vlachogiannis J G, Hatziargyriou N D, Lee K Y. Ant colony system-based algorithm forconstrained load flow problem. IEEE Transactions on Power Systems.2005,20(3):1241~1249.
    [120] Gajpal Y, Abad P L. Multi-ant colony system (MACS) for a vehicle routing problem withbackhauls. European Journal of Operational Research,2009,196(1):102~117.
    [121] Cao K, Yang X, Chen X J, Zang Y, Liang J M, Tian J. A novel ant colony optimizationalgorithm for large-distorted fingerprint matching. Pattern Recognition,2012,45(1):151~161.
    [122] Dorigo M, Stutzle T.北京:清华大学出版社,2007年.
    [123]叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例.武汉大学学报,2004,29(7):597~601.
    [124]詹士昌,徐婕,吴俊.蚁群算法中有关算法参数的最优选择.科技通报,2003,19(5):381~386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700