用户名: 密码: 验证码:
微波诱导催化玉米淀粉水解的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在α-淀粉酶和葡萄糖淀粉酶(简称糖化酶)共催化的基础上,引入微波辐射,借助微波诱导催化强化淀粉水解反应。对微波辐射下整个淀粉水解反应过程进行详细研究,并与传统的加热水解方式相比较。主要研究内容和结论如下:
     (1)研究微波诱导双酶催化玉米淀粉水解的最佳工艺条件。首先,考察pH值、反应温度、底物浓度、酶制剂的用量、辐射时间及微波功率等因素对玉米淀粉水解率的影响。结果表明,与传统的水浴加热相比,经微波辐射的玉米淀粉的水解率均高于水浴加热20%以上;其次,运用正交试验法对微波诱导双酶催化玉米淀粉水解的工艺条件进行优化。经极差分析与方差分析后确定的微波诱导双酶催化玉米淀粉水解的最佳工艺条件为反应温度65℃,辐射时间30min,酶制剂的用量分别为α-淀粉酶的用量90U/g干淀粉,糖化酶的用量110U/g干淀粉。
     (2)研究微波诱导双酶催化玉米淀粉水解反应的动力学特性。考察经微波辐射和水浴加热下不同因素对玉米淀粉酶水解反应初反应速率的影响。实验结果表明该催化反应经微波辐射后的初反应速率在不同条件下均比水浴加热的要大,增大幅度20%以上;采用实验方法求取了双酶的米氏常数Km和最大初反应速度Vm,其中α-淀粉酶在微波辐射下的Km约是水浴的12倍,Vm约是水浴的14倍,糖化酶在微波辐射下的Km约是水浴的10倍,Vm约是水浴的8倍,同时指出反应产物葡萄糖对糖化酶的抑制作用经微波辐射后有所减弱。
     (3)SDS-聚丙烯酰胺凝胶电泳实验表明,微波辐射没有改变α-淀粉酶和葡萄糖淀粉酶的分子量大小,它们的一级结构没有发生改变,换句话说,酶蛋白的肽键没有发生断裂,微波辐射对酶蛋白的一级结构没有造成影响,这是酶蛋白维持活性的基本条件,有利于酶水解玉米淀粉反应的进行。
     (4)α-淀粉酶的圆二色性(CD)及二级结构研究表明,分别经微波辐射和水浴加热处理后的α-淀粉酶,其CD谱线在波长λ=193nm处的峰高均降低,微波辐射处理的峰高降低幅度在140%-220%之间,水浴加热处理的降低幅度在60%-140%之间;微波辐射处理时间为60min时,λ=193nm处谱峰消失,而水浴处理60min时在该处表现为一弱峰;在波长λ=204nm和λ=220nm处的双负峰,处理组的峰位都出现了蓝移变化,微波辐射下蓝移幅度在5-8nm之间,水浴加热下蓝移幅度在3-5nm之间;随着处理时间的延长,微波辐射和水浴加热均促使二级结构α-螺旋,p-折叠,p-转角和无规则卷曲之间的转化。糖化酶的圆二色性和二级结构的研究表明,经微波辐射和水浴加热处理后的CD谱线,在波长λ=193nm处的峰高的降幅在36.4%~68.2%之间;在λ=206nm和λ=220nm的双负峰处,处理组的峰高增幅在10.8%-31.4%之间;于λ=193nm处的峰位在微波辐射下有蓝移的趋势,幅度在0.2-3nm之间,而水浴处理下峰位变化不明显;随着处理时间的延长,微波辐射和水浴加热均促使二级结构α-螺旋,p-折叠,p-转角和无规则卷曲之间的转化,但变化趋势有所不同。结论表明,微波辐射能影响肽链中氢键的分布,导致氢键的松弛,断裂和重组,使原有维系酶蛋白二级结构的稳定性的氢键取向发生改变,使酶蛋白结构稳定性降低,柔性变大,这为微波辐射的宏观生物效应的作用机理提供了重要的理论依据。
     (5)α-淀粉酶和葡萄糖淀粉酶经微波辐射和水浴加热处理后的紫外吸收光谱有差异,这是微波辐射诱导酶蛋白三维结构的变化的结果,微波辐射能使酶的活性中心暴露,利于酶的活性中心和底物分子的有效结合,提高酶的催化效率。
     (6)分别经微波辐射和水浴加热处理后的α-淀粉酶和糖化酶,其酶活都发生了变化。在水浴加热情况下,a-淀粉酶酶活随加热温度的升高先增大后下降,60℃左右时酶有最大活性;糖化酶酶活随加热温度的升高先增大后下降,40℃左右时酶有最大活性;α-淀粉酶酶活随加热时间的延长先增大后下降,20min左右时酶有最大活性,25min之后酶的活性开始快速下降;糖化酶酶活随加热时间的延长先增大后下降,15min左右时酶有最大活性,20min之后酶的活性开始下降。经微波辐射处理的α-淀粉酶酶活随辐射温度的升高先增大后下降,60℃左右时酶有最大活性;糖化酶酶活随辐射温度的升高先增大后下降,40℃左右时酶有最大活性;α-淀粉酶酶活是随辐射时间的延长先增大后下降,20min左右时酶有最大活性;糖化酶酶活也是随辐射时间的延长先增大后下降,15min左右时酶有最大活性。a-淀粉酶微波辐射温度取55~65℃较合适,糖化酶取35-45℃为合适;α-淀粉酶微波辐射时间取15~25min较好,糖化酶微波辐射时间取15min左右较好。
     (7)分别在不同的水解体系(包括不加酶、加α-淀粉酶和加双酶)中,考察了辐射时间、温度、底物浓度、微波功率等因素对玉米淀粉的晶体结构,化学结构,形态结构等方面的影响。玉米淀粉溶液经过不同时间的微波辐射后,红外结晶度均有所变化。经微波辐射后的玉米淀粉经光学显微镜放大400倍后观察,可以看到,即便经过微波辐射玉米淀粉已经开始糊化,但玉米淀粉的形态结构仍为完整的颗粒,但表面变得粗糙。加酶处理后的淀粉颗粒表面甚至出现凹坑。且经双酶处理后的淀粉比单酶处理后的淀粉的效果更为明显,在红外吸收光谱中也有所显示,其结晶度更低,红外吸收峰更为宽大。
     研究结果表明,微波辐射能诱导酶蛋白构象改变,强化双酶之间的协同效应。与传统的淀粉酸水解法、酶水解法和酸酶水解法相比,微波诱导催化淀粉水解法具有提高反应速率和缩短反应时间等明显优点,是一种优于传统水解方法的新技术。
Microwave inducement catalysis can strengthen the corn starch hydrolysis catalyzed by a-amylase and glucoamylase. Hydrolysis of corn starch by double enzyme catalyzed under microwave inducement was studied detailedly in this paper, comparing with the conventional water bath heating. The main contents and conclusions are as follows:
     (1) The optimum conditions of corn starch hydrolysis were studied by the microwave irradiation and double-enzyme. First, the study of the pH value, temperature, substrate concentration, enzyme's dosage, reaction time and microwave power on the starch hydrolysis rate, compared with the conventional water bath heating, it was found that the hydrolysis rate of corn starch by microwave irradiation was more than20%higher than the water bath; Secondly, the corn starch hydrolysis process under microwave irradiation condition was optimized by orthogonal test. Range and variance analysis were used to finalize the optimal conditions of corn starch hydrolysis under microwave irradiation, the reaction temperature65℃, reaction time30min, the dosage of a-amylase90U/g dry starch, the dosage of glucoamylase110U/g dry starch.
     (2) The kinetics of corn starch hydrolysis by microwave irradiation and double-enzyme was studied. The influence of different factors on the initial reaction rate of corn starch hydrolysis under microwave irradiation and water bath conditions with double-enzyme, the conclusion was found that the initial reaction rate under microwave irradiation increased over20%of all cases. In addition, the two-enzyme's Michaelis constants Km and the maximum initial reaction velocity Vm were obtained by experiments, the Km of a-amylase under microwave irradiation is12times higher than water bath, the Vm is14times higher than water bath, the Km of glucoamylase under microwave irradiation is10times higher than water bath, the Vm is about8times higher than water bath, at the same time, the influence of glucose as a inhibitor on glucoamylase decreased under microwave irradiation.
     (3) SDS-polyacrylamide gel electrophoresis experimental results showed that, microwave irradiation did not change the double-enzyme's molecular size compared with water bath. That is, the peptide bonds of doubleenzymes did not break, and their primary structure did not change. That is, microwave irradiation did not have the impact on the primary structure of the double enzymes, so microwave irradiation will help the reaction of double-enzyme's corn starch hydrolysis.
     (4) α-Amylase's circular dichroism (CD) and secondary structure changes under the condition of microwave irradiation and water bath was studied by circular dichroism spectra. The results showed that, the peak height (at λ,=193nm) of the CD spectra of the samples treated by microwave irradiation and water bath both reduced, the reduced rate by microwave irradiation ranged from140%to220%, while the reduced rate by water bath ranged from60%to140%; the peak of the sample treated by microwave irradiation for60min disappeared at λ=193nm, while showed a wake peak by water bath; the peak position by microwave irradiation emerged a blue shift in the range of between5-8nm at λ=204nm and λ=220nm, while emerged in the range of between3-5nm by water bath. With time going, microwave irradiation and water bath have prompted the secondary structure of α-helix, β-sheet, β-turn and random coil's mutual transformations, but the trends were different.Glucoamylase's circular dichroism and secondary structure changes under the condition of microwave irradiation and water bath were studied too. Results have shown that, the peak height of the CD spectra of samples treated by microwave irradiation and water bath reduced by36.4%~68.2%at λ=193nm, and the peak height of the CD spectra of samples treated increased by10.8%~31.4%at λ=206nm and λ=220nm, and the peak position emerged a blue shift at λ=193nm in the range of between0.2-3nm nm, but the peak position chang a little by water bath. With the time going, microwave irradiation and water bath have prompted the secondary structure of a-helix, β-sheet, β-turn and random coil's mutual transformations, but the trends were different. Conclusions indicated that microwave radiation affected the distribution of hydrogen bonds in peptide chains, resulting in relaxation, fracturing and recombinant of hydrogen bonds. The orientation of hydrogen bonds maintaining peptide secondary structure stability changed, so that the structural stability of peptide reduced, and flexibility larger, which provided an important mechanism of the theory for the macroscopic biological effects of microwave irradiation.
     (5) According to the difference between the UV absorption spectrums of double enzyme under microwave irradiation and water bath, it was concluded that microwave irradiation induced the changes in double enzymes'three-dimensional structure, so that microwave irradiation enables the exposure of the double enzymes'active site. This is very conducive to the combination of the active site and substrate molecules and to enhance the activity of double enzymes. It was concluded that microwave irradiation changed the micro-environment of double enzymes'active site conformation to enhance the starch hydrolysis reaction.
     (6) After being processed by microwave radiation and water bath respectively, the enzyme activity of both a-amylase and glucoamylase changed. While processed by water bath, the enzyme activity of a-amylase first increased and then decreased as the temperature of the water bath increased. It had the most enzyme activity around60℃. The enzyme activity of glucoamylase had the same pattern as that of the a-amylase as the temperature of the water bath kept increasing. It had the most enzyme activity around40℃. When the temperature of the water bath was kept constant, the enzyme activity of a-amylase first increased and then decreased as the time of heating increased. It had the most enzyme activity around20min and then It's enzyme activity decreased rapidly after25min; the enzyme activity of glucoamylase had the same pattern as that of the a-amylase as the time of heating increased. It had the most enzyme activity around15min and then It's enzyme activity decreased rapidly after20min. While processed by microwave radiation, the enzyme activity of a-amylase first increased and then decreased as the temperature of the radiation increased. It had the most enzyme activity around60℃. The enzyme activity of glucoamylase had the same pattern as that of the a-amylase as the temperature of the water bath kept increasing. It had the most enzyme activity around40℃. The enzyme activity of a-amylase first increased and then decreased as the time of radiation increased. It had the most enzyme activity around20min; the enzyme activity of glucoamylase had the same pattern as that of the a-amylase as the time of heating increased. It had the most enzyme activity around15min. The appropriate radiation temperature for a-amylase is between55~65℃and for glucoamylase is between35~45℃; the appropriate radiation time for a-amylase is between15~25min and for glucoamylase is around15min.
     (7)The effect of radiation time、temperature、substrate concentration and microwave power on the crystal structure、chemical structure and morphological configuration of corn starch were studied in different hydrolysis systems (with no enzyme、with a-amylase and with double enzyme) respectively. The crystallinity of corn starch had changed after its solution had been dealt with microwave radiation by different lengths of time. After the corn starch had been dealt with microwave radiation, it had been observed under400times lens of optical microscope that even it started to paste and its surface became rough, its morphology configuration was still a complete granule. Pit was also observed on the surface of the corn starch that had been dealt with enzyme. This effect was more obvious for the corn starch that had been dealt with double enzyme than that had been dealt with one, and it was also reflected in the infrared absorption spectrum:the former had low crystallinity and its infrared absorption peak was broader.
     Conclusions indicated that microwave irradiation can induce the structure changes in a-amylase and glucoamylase and strengthen the double-enzyme synergy effect. Compared with the traditional methods of starch hydrolysis, such as acid hydrolysis, enzymatic hydrolysis and acid-enzyme combined hydrolysis, microwave inducement catalysis can enhance the starch hydrolysis reaction and shorten the reaction time.It is a new technique superior to the tradition hydrolysis method on corn starch hydrolysis.
引文
[1]林勇.淀粉与葡萄糖生产[C].江西:江西科学技术出版社,1986,45-80.
    [2]李里特.食品原料学[C].北京:中国农业出版社,2001,63-71.
    [3]张力田.变性淀粉[C].广州:华南理工大学出版社,1992,1-17.
    [4]粒粒网讯.中国玉米加工业的现状和发展[EB/OL]. (2008-05-09)[2010-12-25]. http://www.n88888888.com/ARTICLE.
    [5]中国食品科技网.玉米淀粉细分产品市场调研报告[EB/OL]. (2010-07-19)[2010-12-26]. http://www.tech-food.com
    [6]Onusseit H. Starch in industrial adhesives:new developments [J]. Industrial crops and products,1992,1(2-4):141-146.
    [7]Goyal N, Gupta J K, Soni S K. A novel raw starch digesting thermostable a-amylase from Bacillus sp.I-3 and its use in the direct hydrolysis of raw potato starch[J]. Enzyme and microbial technology,2005,37(7):723-734.
    [8]张海艳,董树亭,高荣岐.植物淀粉研究进展[J].中国粮油学报,2006,21(1):41-46.
    [9]Poliakoff M, Fitzpatrick J M, Farren T P, et al. Green chemistry:science and politics of change[J]. Science,2002,297:807-810.
    [10]Suresh C, Dubey A K, Srikanta S, et al. Characterisation of a starch-hydrolysis enzyme of Aspergillus niger[J]. Appl microbiol biotechnol,1999,51:673-675.
    [11]Li K L, Xia L X, Li J, et al. Salt-assisted acid hydrolysis of starch to D-glucose under microwave irradiation [J]. Carbohydrate research,2001,331:9-12.
    [12]贺小贤.生物工艺原理[C].北京:化学工业出版社,2007,72-76.
    [13]止戈.淀粉糖的酸糖化工艺[EB/OL].(2009-06-16)[2010-04-02]http://blog.sina.com.cn/s/blog_4d82897f0100e0wg.html.
    [14]杨巍巍,印方平.酸法制备玉米多孔淀粉的工艺优化及其产品特性的研究[J].现代食品科技,2009,25(5):538-541.
    [15]夏立新,李坤兰,曹国英,等.微波辐射技术在淀粉水解制葡萄糖反应中的研究[J].化学世界,2000,(7):352-355.
    [16]Yu Jinglin, Wang Shujun, Jin Fengmin, et al. The structure of C-type Rhizoma Dioscorea starch granule revealed by acid hydrolysis method[J]. Food Chemistry, 2009,113(2):585-591.
    [17]Pang Jiping, Wang Shujun, Yu Jinglin,et al. Comparative studies on morphological and crystalline properties of B-type and C-type starches by acid hydrolysis[J]. Food Chemistry,2007,105(3):989-995.
    [18]Gerard C, Colonna P, Buleon A, Planchot V. Order in maize mutant starches revealed by mild acid hydrolysis[J]. Carbohydrate Polymers,2002, 48(2):131-141.
    [19]Ahmed J, Auras R. Effect of acid hydrolysis on rheological and thermal characteristics of lentil starch slurry[J]. LWT-Food Science and Technology, 2011,44(4):976-983.
    [20]Wang Ya-Jane, Truong Van-Den, Wang Lin-feng. Structures and rheological properties of corn starch as affected by acid hydrolysis [J]. Carbohydrate Polymers,2003,52(3):327-333.
    [21]Tang H R, Brun A, Hills B. A proton NMR relaxation study of the gelatinisation and acid hydrolysis of native potato starch [J]. Carbohydrate Polymers,2001,46(1)7-18.
    [22]孙秀萍,于九皋,刘延奇.不同淀粉的酸解历程及性质研究[J].精细化工,2004,21(3):202-205.
    [23]Komiya T, Nara S. Changes in crystallinity and gelatinization phenomena of potato starch by acid treatment[J]. Starch,1986,3(8):9-13.
    [24]钟振声,关会垒,陈钰,王荣.在乙酸缓冲液中用复合酶水解淀粉的工艺条件研究[J].现代食品科技,2009,25(3):302-304.
    [25]王菲菲,曹龙奎.玉米淀粉制取葡萄糖的工艺研究.农产品加工,2009,8(12),71-74.
    [26]沈泽洞.温度、时间、pH值对酶法水解淀粉生产葡萄糖二糖三糖四糖生成量影响的研究[J].广州食品工业科技,2004,20(1)1-2.
    [27]张剑,易华锋,张开诚,等.双酶法水解玉米淀粉的工艺研究[J].酿酒科技,2009,177(3):95-97,102.
    [28]毕静.中温型a-淀粉酶水解玉米淀粉生产麦芽糊精工艺研究[J].食品与发酵科技,2010,37(03);72-74.
    [29]张国权,史一一,罗勤贵,等.荞麦淀粉双酶水解工艺条件的优化研究[J].中国粮油学报,2008,23(04):86-90.
    [30]姚卫蓉,姚惠源.复合淀粉酶酶解生淀粉机理探讨[J].工业微生物,2005,35(4):15-18.
    [31]郝晓敏,王遂,崔凌飞.α-淀粉酶水解玉米淀粉的研究[J].食品科学,2006,27(2):141-143.
    [32]张树政.酶制剂工业[C].北京:科学出版社,1984:112-219.
    [33]缪可嘉,王正祥.淀粉酶系中淀粉结合域的结构和功能的研究进展[J].食品工业科技,2007,28(3):242-245.
    [34]孙连海.α-淀粉酶结构与功能关系研究[硕士学位论文].河南:河南农业大学,2006.
    [35]Marco J L, Bataus L A, Valencia F F. Purification and characterization of a truncated Bacillus subtilis a-amylase produced by Escherichia coli[J]. Applied microbiology and biotechnology,1996,44(6):746-752.
    [36]Robert t, Chatterton J, Kirsten M, et al. Salivary a-amylase as a measure of endogenous adrenergic activity [J]. Clinical physiology and functional imaging, 1996,16(4):433-488.
    [37]刘增然,何秀萍,龙章富,等.淀粉酶基因的克隆及其在工业啤酒酵母中的表达[J].食品科学,2004,25(9):78-82.
    [38]成庆利,李艳霞,陈红歌,等.黄单胞菌a-淀粉酶基因的克隆、测序及表达探讨[J].河南农业大学学报,2004,38(4):448-451.
    [39]李金霞,蔡恒,路福平.地衣芽孢杆菌耐高温a-淀粉酶基因在大肠杆菌中的克隆、表达及其产物的分泌[J].食品与发酵工业,2004,30(3):70-73.
    [41]武金霞,王沛,李晓明.糖化酶的研究进展及趋势[J].自然杂志,2003,25(3):161-163.
    [42]马丽娜,陈喜文,甘睿.葡萄糖淀粉酶的结构和功能研究进展[J].生物技术通讯,2005,16(6):677-680.
    [43]杨依军,李多川,沈崇尧.葡萄糖淀粉酶研究进展[J].微生物学通报,1996,23(5):312-315.
    [44]Ezeji T C, Wolf A, Bahl H. Isolation, characterization, and identification of geobacillus thermodenitrificans Hro10, an a-amylase and a-glucosidase producing thermophile.[J), Canadian Journal of Microbiology,2005,51(8):685.
    [45]Kusunoki K, Kawakami K, Shiraishi F, et al. A kinetic expression for hydrolysis of soluble starch by glucoamylase[J]. Biotechnology and bioengineering,1982, 24:347-354.
    [46]王华,韩金玉,钟穗生,等.双酶一步法水解马铃薯淀粉的动力学研究[J].高校化学工程学报,2001,15(5):446-452.
    [47]钟穗生,张林香,胡全胜.马铃薯淀粉的酶解动力学与数学模拟[J]中国粮油学报,1997,12(02):34-38.
    [48]胡全胜.马铃薯淀粉低转化及α-淀粉酶催化反应动力学研究[硕士学位论文].山西:太原工业大学,1995.35.
    [49]Rui M F, Bezerra, Albino A, Dias. Discrimination among eight modified michaelis-menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios Inhibition by cellobiose[J]. Applied Biochemistry and Biotechnology,2004,112 (3):10-15.
    [50]Vance K. Starch hydroiysis kintics of Bacillus Iicheniformis a-amylase[J]. J. Chem.Tech. Biotech.,1991,51 (51)::209.
    [51]张驰松,袁永俊,王健.糖化过程中α-淀粉酶酶解动力学的研究[J].酿酒,2007,34(2):36-39. [52]钟穗生,刘生玉,张林香.马铃薯淀粉糖化动力学的研究[J]中国粮油学报,1998,13(01):21-25,44.
    [53]刘社际,谭辉玲.玉米淀粉酶催化糖化的反应动力学模型[J].重庆大学学报(自然科学版),1997,21(01):109-111.
    [54]Fujii M, Kawamura Y. Synergistic action of a-amylase and glucoamylase on hydrolysis of starch[J]. Biotechnology and Bioengineering,1985, 27:260-265.
    [55]Fujii M, Homma T, Taniguchi M. Synergism of α-amylase and glucsamylase on hydrolysis of native starch granules[J]. Biotechnology and Bioengineering,1988, 32:910-915.
    [56]董华壮,扶雄,罗志刚,等.双酶协同酶解木薯淀粉的研究[J].现代食品科技,2009,25(2):182-184.
    [57]周家华,黄立新,周俊侠.α-淀粉酶和葡萄糖淀粉酶协同水解淀粉的动力学研究[J].中国调味品,1997,22(7):10-12.
    [58]陆冬梅,杨连生.双酶协同水解微波改性木薯淀粉的动力学研究[J].精细化工,2004,21(10):768-771.
    [59]吕巧玲,张兴,谢逸萍,等.不同酶对淀粉的协同作用动力学研究[J].食品工业科技,2009,30(6):156-159.
    [60]Wong D W S, Robertson G H, Lee C C, Wagschal K. Synergistic action of recombinant a-amylase and glucoamylase on the hydrolysis of starch granules[J]. The Protein Journal,2007,26(2):159-164.
    [61]黄强,李琳,扶雄,等.酶对淀粉颗粒相变性质的影响[J].高分子材料科学与工程,2009,25(2):85-88.
    [62]刘延奇,李素云,杨留枝,等.酶催化水解对玉米淀粉结构的影响研究[J].粮食与饲料工业,2007,(6):30-32.
    [63]刘延奇,李素云,杨留枝,于九皋.酶催化水解对马铃薯淀粉结构的影响[J].粮油食品科技,2007,15(02):47-49.
    [64]Yamada T, Hisamatsa M, Teranish K, et al. Components of the porous maize starch granule prepared by amylase treatment[J]. Starch,1995,9 (9):358-362.
    [65]连锁加盟网.淀粉糖的种类、特性和制造工艺[EB/OL].[2010-04-05].http://news.u88.cn/zx/shipinzixun_dianfenlei/822891.htm.
    [66]Ndife M,Sumnu G,Bayindirh L.Differentialscanning calorimetry determination of gelatinization rates in different starched due to microwave heating [J].Lebensmitted Wissenschaft and Technology,1998,31(3):484-488.
    [67]Lewandowicz G,Jankowski T,Fornal J.Effect of microwave radiation on physico-chemical properties and structure of paotato and tapioca starches.Carbohydrate Polymers,1997,34:213-220.
    [68]罗志刚,于淑娟,杨连生.微波场对小麦淀粉性质的影响[J].化工学报,2007,58(11):2871-2875.
    [69]熊犍,叶君,王茜.微波辐射对木薯淀粉结构的影响[J].化工学报,2006,57(5):1204-1208.
    [70]陆冬梅,杨连生.微波变性淀粉水解规律的研究[J].化工科技,2005,13(1):26-29.
    [71]胡华宇,黄祖强,童张法.双酶协同水解机械活化玉米淀粉的研究[J].粮油加工,2008,(6):92-95.
    [72]Gedye R, Smith F, Westaway K. Microwave chemistry[J].Tetrahedron lettert, 1986,27(3):279-281.
    [73]Liu Lixin, Zhang Dong, An Lijia, et al. Hydrolytic deploymerization of poly (ethylene terephthalate) under microwave irradiation[J]. Journal of Applied Polymer Science,2005,95(3):719.
    [74]Loupy A. Microwaves in organic synthesis[M]. Germany:Wiley-VCH, Weiheim, 2006.
    [75]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学技术出版社,1999.118.
    [76]杨晓庆.微波与化学反应体系相互作用过程中的特殊效应研究[D].四川:四川大学信息与通信系统,2006.
    [77]梁亮,梁逸曾.微波辐射技术在有机合成中的应用[J].化学通报,1996,(3):26-32.
    [78]陈新谋,刘悟日.高频介质加热技术[M].北京:科学出版社,1979.
    [79]Bose A K, Manhas M S, Ghosh M et al. Highly Accelerated Reactions in a Microwave Ovem:Synthesis of Heterocycles[J]. Heterocycles,1990, 30(2):741-744.
    [80]Shibata C, Kashima T, Ohuchi K. Nonthermal influence of microwave power on chemical reactions[J]. Japanese journal of applied physics,1996,35:316-319.
    [81]Dollington S D, Bond G, Moyes R B. The influence of microwaves on the rate of reaction of propanal with ethanoic acid[J]. The journal of organic chemistry, 1991,56:1313-1317.
    [82]张兆庆,张驰,吴浩洁.微波电磁场生物效应机理研究进展[J].磁性材料及器件,2000,30(1):53-57.
    [83]黄卡玛,杨晓庆.微波加快化学反应中非热效应研究的新进展[J].自然科学进展,2006,16(3):273-279.
    [84]Hoz A, Diaz-Ortiz A, Moreno A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects[J]. Chemical Society Reviews,2005, 34:164-178.
    [85]Roy I, Gupta M N. Non-thermal effects of microwaves on protease-catalyzed esterification and transesterification[J]. Tetrahedron,2003,59(29):5431-5436.
    [86]李平,赵会玲,张萍,等.微波加热制备纳米ZnO粉体及其表征[J].精细化工,2003,20(5):265-267.
    [87]朱琦瑜,李疏芬.微波法制备纳米CuO粉体[J].飞航导弹,2002,9:59-61.
    [88]杨升红,张小明,张廷杰,等.微波法制备纳米TiO2粉末[J].稀有金属材料与工程,2000,29(5):354-356.
    [89]孙振华,郝斌.微波烧结制备陶瓷材料的研究进展[J].陶瓷,2010, (1):12-13,23.
    [90]孙强金,朱和国.微波烧结技术的研究进展[J].中国材料科技与设备,2008,5(6):5-7.
    [91]Jain M, Skandan G, Singhal A, et al. Processing of nanopowders into transparent ceramics for infrared windows[J]. Proceeding of SPIE,2003,5078: 189-198.
    [92]Fang Yi, Agrawal D, Skandan G, et al. Fabrication of translucent MgO ceramics using nanopowders [J]. Materials Letters,2004,58:551-554.
    [93]Cheng Ji-ping, Agfawal D, Zhang Yun-jin, et al. Microwave sintering of transparent alumina[J]. Materials Letters,2002,56:587-592.
    [94]Cheng Ji-ping, Agfawal D, Zhang Yun-jin, et al. Development of translucent aluminum nitride(AlN)using microwave sintering process[J]. Journal of Electroceramics,2002,9:67-71.
    [95]Lee S G, Park H C, Kang B S, et al. Synthesis of a-alumina platelets from y-alumina with and without microwaves [J]. Materials Science and Engineering A,2007,466:79-83.
    [96]王峰,王安英.微波加热技术的发展概况[J].佛山陶瓷,1998,3:33-34.
    [97]Duangduen A, David E C. Ignition behavior and characteristics of microwave combustion synthesized Al2O3-TiC powders [J]. Ceramic International,2004, 30:1909-1912.
    [98]贺智勇,李林,彭小艳.微波烧结技术及其在ZrB2合成中的应用[J].硅酸盐通报,2005,3:64-66.
    [99]Janney M A, Kimvey Allen W R. Enhanced diffusion in sapphire during microwave heating [J]. J of Materials Science,1997,32:1347-1355.
    [100]石葛如,贾云发.微波固相反应的扩散增强机理[J].青岛大学学报,1998,11(1):64-66.
    [101]Saitou K. Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders[J]. Scripta materialia,2006,54:875-879.
    [102]易建宏,罗述东,唐新文,等.金属粉末冶金零件的微波烧结机理[J].粉末冶金材料科学与工程,2002,7(3):180-184.
    [103]Wong W L E and Gupta M. Development of Mg/Cu nanocomposites using microwave assisted rapid sintering[J]. Composites science and technology, 2007,67:1541-1552.
    [104]Thakur S K, Kong T S, Gupta M. Microwave synthesis and characterization of metastable(Al/Ti)and hybrid(Al/Ti+ SiC)composites[J]. Materials Science and Engineering A,2007,452-453: 61-69.
    [105]Aravindan S, Krishnamurthy R. Jointing of ceramic composites by microwave heating[J]. Materials Letters 1999,38:245-248.
    [106]Zhou Shuang-jie, Martin C H. A study of microwave reaction rate enhancement effect in adhesive bonding of polymers and composites[J]. Composites Strcture,2003,61:303-309.
    [107]Deksnys T P, Menezes R R, Fagury-Neto E, et al. Kiminami Synthesizing Al2O3/SiC in a microwave oven:A study of process parameters [J]. Ceramics International,2007,33:67-71.
    [108]朱和国,陈湜,吴旭.微波热爆合成Al-ZrO2-B系铝基复合材料研究[C].第 六届全国铸造复合材料学术会议论文,2008,福州.
    [109]程宇航,吴一平,陈建国,等.微波烧结CuTi-金刚石复合体[J].无机材料学报,1999,14(3):470-474.
    [110]彭金辉,刘纯鹏.微波场中矿物及其化合物的升温特性[J].中国有色金属学报,1997,7(3):50-51.
    [111]蔡卫权,李会泉,张懿.微波技术在冶金中的应用[J].过程工程学报,2005,5(2):228-232.
    [112]魏莉,贾微.难浸金矿石预处理新工艺一微波焙烧[J].黄金,2003,12(24):29-31.
    [113]周健,程吉平,袁润章,等.微波烧结WC-Co细晶硬质合金的工艺与性能[J].中国有色金属学报,1999,9(3):464-468.
    [114]欧阳国强,张小云,田学达等.微波焙烧对石煤提钒的影响[J].中国有色金属学报,2008,18(4):750-754.
    [115]王一雍,张廷安,陈霞,鲍丽.微波焙烧对一水硬铝石矿浸出性能的影响[J].过程工程学报,2007,7(2):317-321.
    [116]曹俊,周继承,吴建懿.微波煅烧制备纳米氧化锌[J].无机盐工业,2004,36(5):31-33.
    [117]马少健,李长平,陈建新.微波焙烧活化膨润土处理Cu2+废水的研究[J].金属矿山,2004, (6):56-60.
    [118]张登峰.微波诱导催化技术在污染治理中的应用[J].浙江电力,2007,(3):13-16.
    [119]邹宗柏,傅大放,张璐.用微波照射消除磺基水杨酸污染物[J].环境污染与防治,1999,21(1):22-24.
    [120]Liu Xi-tao, Quan Xie,Bo Long-li, et al. Simultaneous pentaehlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation[J]. Carbon,2004, (42):415-422.
    [121]洪光,王鹏,张国宇,等.改性氧化铝微波诱导氧化处理雅格素蓝BF-BR染料废水的研究[J].环境科学学报,2005,25(2):254-258.
    [122]国伟林,高丽,姬广磊,等.甲基紫染料废水的微波诱导催化降解[J].济南大学学报(自然科学版),2006,20(3):213-215.
    [123]高宇.微波诱导氧化法处理有机磷农药废水初探[J].重庆工商大学学报(自然科学版),2006,23(3):253-255.
    [124]Zhang Xun-li, David O H, Lee C, et al.Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS2 catalysts[J]. Applied Catalysis B: Environmental,2001,33:137-148.
    [125]Ringler S, Girard P, Maire G, et al.Mechanistic studies of NOx reduction reactions under oxidative atmosphere on alumina supported 0.2wt% platinum catalyst treated under microwave (Part Ⅱ) [J]. Applied Catalysis B: Environmental,1999,20:219-233.
    [126]Tang Jun-wang, Zhang Tao, Liang Dong-bai, et al. Direct decomposition of NO by microwave heating over Fe/NaZSM-5[J].Applied Catalysis B: Environmental,2002,36:1-7.
    [127]张达欣,于爱民.微波-炭还原法处理一氧化氮的研究[J].高等学校化学学报,1999,18(8):1271-1274.
    [128]张达欣,于爱民,金钦汉.微波-炭还原法处理二氧化硫(SO2)的研究[J].微波学报,1998,14(4):341-346.
    [129]Takashima H, Ren Li-li, Kanno Y.Catalytic decomposition of TCE under microwave[J].Catalysis Communications,2004,5:317-319.
    [130]胡希明,梅治乾,刘海洋,等.四苯基卟啉的微波诱导合成研究[J].华南理工大学学报(自然科学版),1999,27(10):11-15.
    [131]Pipus G, Plazl I, Koloini T. Esterification of benzoic acid in microwave tubular flow reactor[J]. Chemical engineering,2000,76(3):239-245.
    [132]Danks T N. Microwave assisted synthesis of pyrroles[J]. Tetrahedron Letters, 1999,40(20):3957-3960.
    [133]杨伯伦,贺拥军.微波加热在化学反应中的应用进展[J].现代化工,2001,21(4):8-12.
    [134]张立新,李欢.微波辐射有机干反应研究进展[J].石化技术与应用,2006,24(5):407-410.
    [135]陈广球,郭建维,范超落,等.微波技术在化学合成中的应用进展[J].广州化工,2001,29(2):1-5.
    [136]黄志真,吴露玲,黄宪.微波作用下亚烃基丙二酸亚异丙酯的合成[J].合成化学,1998,6(2):184-187.
    [137]尤丽莎,张文敏.微波辐照合成单分散、大粒径的聚苯乙烯微球[J].安徽师范大学学报(自然科学版),2000,20(1):100-102.
    [138]刘玮炜,钱保华,纪延光,等.微波加热磷钨酸催化合成对羟基苯甲酸丁酯[J].淮海工学院学报,1999,8(3):45-46.
    [139]程兴安.用微波炉测定纸板水分[J].纸和造纸,2002,(3):66.
    [140]樊伟伟,黄惠华.微波杀菌技术在食品工业中的应用[J].食品与机械,2007, 23(1):143-146.
    [141]曾庆孝.食品加工与保藏原理[M].北京:化学工业出版社,2002,223,
    [142]宁井铭,方世辉,等.绿茶饮料微波灭菌技术研究[J].安徽农业大学学报,2005,32(3):365-368.
    [143]Huang Yuan-yuan, Sheng Jian-chun, Yang Fang-mei, et al. Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea[J]. Food Engineering,2007,(78):687-692.
    [144]张丽华,马春影,杨建文,等.微波在牛乳保鲜中的应用[J].食品工业,2003,(2):37-38.
    [145]肖淼鑫,张仲欣.牛乳微波杀菌工艺试验研究[J].中国乳品工业,2005,33(5):21-23.
    [146]赵振峰,张仲欣,张玉先.微波灭菌对牛乳中Vc的影响[J].乳业科学与技术,2005,(6):253-255.
    [147]Sun Ting, Tang Ju-ming, Joseph R P. Antioxidant activity and quality of asparagus affected by microwave-circulated water combination and conventional sterilization[J]. Food Chemistry,2007,(100):813-819.
    [148]Lau M H, Tang J. Pasteurization of pickled asparagus using 915MHz microwaves[J]. Food Engineering,2002(51):283-290.
    [149]陈昌实,黄智洵,等.糖水荔枝罐头生产中应用微波杀菌技术的研究[J].食品与机械,2005,21(5):49-51.
    [150]杨明,奚月东,等.蘑菇酸化及其微波杀菌效果研究[J].扬州大学学报,1998,1(3):50-52.
    [151]霍文兰,吕蓓红.苦菜经微波处理后营养成分分析[J].信阳师范学院学报,2006,19(2):220-222.
    [152]黄红梅,王新风.PDA培养基的微波灭菌研究[J].北方园艺,2005(1):71-72.
    [153]区慧,志华,等.滴眼剂采用微波灭菌效果的研究[J].中国医药学杂志,2003,23(8):508-509.
    [154]韩德权.微波杀菌在中药生产中的研究应用[J].黑龙江大学自然科学学报,2004,21(2):138~140.
    [155]徐依景.微波杀菌保鲜面包的研究[J].食品工业科技,2005,26(4):74-76.
    [156]Huang Li-han, Sites J. Automatic control of a microwave heating process for in-package pasteurization of beef frankfurters [J]. online Food Engineering, 2006, (80):226-233.
    [157]徐秋芳,海强.微波技术在腐乳生产中的应用[J].广州食品工业科技,2001, 17(2):40-42.
    [158]陆胜民.微波处理延长腐竹保存期的研究[J].粮油加工与食品机械,2003,(1):60-62.
    [159]辛志宏,海乐.微波技术在食品杀菌与保鲜中的应用[J].粮油加工与食品机械,2004(4):30-32.
    [160]Soriano-Martin M L, Porras-Piedra A, Porras-Soriano A. Use of microwaves in the prevention of Fusarium oxysporum f. sp. melonis infection during the commercial production of melon plantlets [J]. Crop Protection,2006, (25):52-57.
    [161]陈亚妮,张军民.微波萃取技术研究进展[J].应用化工,2010,39(2):270-272,279.
    [162]Szentmihalyi, Klara. Rose hip oil obtained from waste hip seeds by different extraction methods [J]. Bioresource Technology,2002,82(2):195.
    [163]姚中铭,吕晓玲,褚树成.栀子黄色素提取工艺的研究——微波提取法与传统浸提法的比较[J].天津轻工业学院学报,2001,(39):20-21.
    [164]Hao Jin-yu, Huang Shun-de, Xue Bo-yong, el al. Microwave-assisted extraction of artemi sinin from Artemisiaannua L [J]. Separation and Purification Technology,2002,28(3):191-196.
    [165]周志,汪兴平.茶多糖分离提取技术研究[J].食品与发酵工业,2002,28(13):83-84.
    [166]李嵘,金美芳.微波法提取银杏黄酮苷的新工艺[J].食品科学,2000,21(2):39-41.
    [167]杨云,张卓曼,李攻科.微波辅助萃取/气相色谱-质谱联用分析蔬菜中的有机磷农药[J].色谱,2002,20(5):390-393.
    [168]郎春燕,汪模辉,林郑和.微波溶解光度法测定茶叶中痕量锗[J].理化检验——化学分册,2002,38(10):502-504.
    [169]Saxena R K, Isar J, Saran, et al. Efficient microwave-assisted hydrolysis of triolein and synthesis of bioester, bio-surfactant and glycerides using Aspergillus carneus lipase[J]. Research communications,2005, 89(6):1000-1003.
    [170]Saifuddin N, Raziah A Z. Enhancement of lipase enzyme activity in non-aqueous media through a rapid three phase partitioning and microwave irradiation[J]. E-journal of chemistry,2008,5(4):864-871.
    [171]Huang W, Xia Y M, Gao H, et al. Enzymatic esterification between n-alcohol homologs and n-caprylic acid in non-aqueous medium under microwave irradiation[J]. Journal of molecular catalysis b:enzymatic,2005,35:113-116.
    [172]蔡汉成,方云,夏咏梅.一种新的催化方法:微波辐射-酶耦合催化有机合成[J].有机化学,2003,23(3):298-304.
    [173]夏咏梅,孙诗雨,方云,等.微波辐射-酶耦合催化(MIECC)反应[J].化学进展,2007,19(2/3):250-255.
    [174]Karmee S K. Application of microwave irradiation in biocatalysis[J]. Research journal of biotechnology,2006,1(2):1.
    [175]Mazumder S, Dhrubojyoti D L, Prajapati D, et al. Microwave-induced enzyme-catalyzed chemoselective reduction of organic azides[J]. Chemistry & biodiversity,2004,1:925-929.
    [176]Roy I, Munishwar N G. Non-thermal effects of microwaves on protease-catalyzed esterification and transesterification[J]. Tetrahedron,2003, 59:5431-5436.
    [177]张小云,田学达,陈华荣,等.微波诱导催化制备淀粉水解糖的方法.中国:200610136955.5[P],2008-10-22.
    [178]陈小兵,李丽,王昭.微波催化技术的应用研究进展[J].辽宁石油化工大学学报,2006,26(4):15-17.
    [179]郭进武,郑美玲,田敏,等.利用微波辐射法快速水解淀粉的实验结果分析[J].洛阳医专学报,1996,15(2):88-89.
    [180]梁宏.紫外导数光谱在蛋白质溶液构象分析中的应用[J].广西师范大学学报(自然科学版),1995,13(2):48-51.
    [181]许强,杨科利,王志坚.电场对a-淀粉酶紫外光谱及其活性的影响[J].种子,2008,27(9):40-41.
    [182]姚占全,敖敦格日勒,许强.应用圆二色光谱研究电场对α-淀粉酶二级结构的影响.分析测试学报,2006,25(4):24-26.
    [183]黄汉昌,姜招峰,朱宏吉.紫外圆二色光谱预测蛋白质结构的研究方法.化学通报,2007,(7):501-506.
    [184]Whitmore L, Wallace B A. Protein secondary structure analyses from circular dichroism spectroscopy:Methods and reference databases. Biopolymers,2007, 89(5):392-400.
    [185]Sreerama N, Venyaminov Y S, Woody R W. Estimation of protein secondary structure from circular dichroism spectra:inclusion of denatured proteins with native proteins in the analysis. Analytical biochemistry,2000,287:243-251.
    [186]Sreerama N, Woody R W. Estimation of protein secondary structure from circular dichroism Spectra:Comparison of contin, selcon, and cdsstr methods with an expanded reference set. Analytical biochemistry,2000, 287(2):252-260.
    [187]Johnson W C. Protein secondary structure and circular dichroism:a practical guide. Proteins:structure, function, and bioinformatics,1989,7(3):205-214.
    [188]沈星灿,梁宏,何锡文,等.圆二色光谱分析蛋白质构象的方法及研究进展.分析化学,2004,32(3):388-394.
    [189]冯永君,张长铠,陈雅丽.火菇素的圆二色性与溶液二级结构[J].化学学报,2000,(7):816-820.
    [190]Oobatake M, Takahashi S, Ooi T. Conformational stability of ribonuclease T1[J], Biochem,1979,86(1):55-63.
    [191]王镜岩,朱圣庚,徐长法.生物化学(第三版)[M].北京:高等教育出版社,2006.
    [192]郭桥,罗贵民,孙启安,等.α-淀粉酶与糖化酶的共固定化研究[J].生物化学杂志,1994,3(10):259-262.
    [193]刘洪,张小云,曾美霞.微波辐射下双酶催化淀粉水解的动力学研究[J].精细化工,2010,27(1):70-73,104.
    [194]刘洪,张小云,谭丽,等.微波-双酶耦合催化淀粉水解[J].食品与发酵工业,2010,36(4):101-103.
    [195]聂丽红.淀粉锌络合物的制备及特性研究[D].广州,华南理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700