用户名: 密码: 验证码:
基于VMS发布诱导信息的快速路网动态最优控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于可变信息标志(Variable Message Signs, VMS)的交通诱导系统是智能交通系统的组成部分,对改善路网的交通状况有重要的作用。交通诱导系统通过VMS发布诱导信息,可以有效地调节车流在路网各个道路上的分布,从而避免部分道路车流过多而产生拥堵。
     由于交通诱导系统发布的信息并不是强制的要求,驾驶员对于诱导信息不一定服从,诱导结果是不确定的。这种不确定性给交通诱导信息的发布策略带来了挑战,不恰当的策略可能会使交通拥堵从一个道路转移到另一个道路,甚至加重整个路网的拥堵。因此,诱导信息的发布策略是交通诱导系统的关键。
     本文应用最优控制理论的方法,研究了交通诱导系统的建模和动态信息发布策略。本文创新性地提出了在驾驶员不确定服从的情况下交通诱导系统的动态最优控制方法,以及多点控制的交通诱导系统中控制点的动态选择方法。此外,相比于大多数现有研究,本文选择VMS在有限状态之间的切换作为控制变量,使得其优化结果具有更好的可操作性。全文的主要研究内容和成果总结如下:
     (1)假设驾驶员对VMS发布的诱导信息的服从率为固定值,应用宏观交通流模型将基于VMS的交通诱导问题归纳为一种最优控制问题。针对该问题中控制变量只在2个离散点取值的特殊情况,通过变量代换将最优控制问题转化为关于切换时刻的最优参数选择问题,依据离散系统的极小值原理给出了改进的最优梯度条件和相应的数值解法。仿真研究发现,交通诱导对路网的改善作用在准饱和流量需求的情况下最佳。
     (2)假设驾驶员对VMS发布的诱导信息的服从率为满足正态分布的随机值,研究了含随机变量的交通诱导系统的动态优化控制问题。提出了针对该问题的双层最优控制结构,先求解下层确定的交通流分配问题,再求解上层随机的驾驶员服从问题。随后,在证明系统性能指标为服从率的凸函数的基础上,将上层的随机问题转化为系统性能指标对服从率的灵敏度最小化的确定问题并求解,解决了交通诱导系统的随机最优控制问题难以分析求解的困难。仿真结果证实该动态优化控制方法能够快速地求解出具有较好统计性能的结果,且在参数变化时仍具有稳定的优化效果。
     (3)假设驾驶员在分岔路口的路径选择概率为与下游各路段旅行时间相关的时变值,以VMS是否发布实时旅行时间信息为控制变量,研究了考虑驾驶员选择行为模型的交通诱导系统的最优控制问题。其中驾驶员的路径选择行为用Logit模型描述,道路上瓶颈点的车辆排队过程用Point Queue模型描述。采用真实路网数据的仿真结果验证了最优控制方法的有效性,而持续性发布旅行时间信息并不是系统的最优策略。
     (4)在上述工作的基础上,研究了包含多个VMS及入口匝道控制点的路网协调控制问题。针对控制点过多带来的负面效应,以无控制时各控制点的梯度信息作为特征值,将控制点按照对路网性能潜在影响的大小进行K平均聚类,提出了一种快速有效地动态选择控制点的方法。该方法弥补了交通诱导系统中控制点动态选取方面的研究缺失。采用真实路网数据的仿真结果表明,该方法可以根据不同的场景来动态选择最佳控制点,并显著改善路网的通行效率。
The traffic guidance system (TGS) based on variable message signs (VMS) is an important component of the intelligent transportation system. Providing traffic information via VMS potentially leads to a more efficient traffic network. By use of the TGS, the traffic is better distributed through the roads in the network, so no road is congested due to a heavy demand.
     The key different aspect of the TGS comparing with the traditional signal control system is the uncertainty of the guidance effect. Unlike other control devices, VMSs are not supported by mandatory regulations. Consequently, it is uncertain whether drivers obey or disobey the guidance. This kind of uncertainty makes the design of information provision strategy challenging. Improper provision of guidance information may move the congestion from one road to another, and degrade the overall mobility of the network.
     Designing the information provision strategy is important for the TGS, and is studied in the dissertation. The optimal control method is adopted to get the optimal information provision strategy via VMS. We innovatively propose a dynamical optimal control method for the TGS considering the uncertain behavior of driver, and a clustering method for the control location selecting problem in network with multi-VMS and on-ramps. Moreover, the switches between several countable states of VMS are used as the control variables in the dissertation. It makes the derived optimal strategy easier to understand and more manipulatable in compare with most current works. The main contributions of the dissertation are summarized as follows:
     First, assuming that drivers have a constant compliance rate with respect to the messages via VMS, a second-order macroscopic traffic flow model is adopted to formulate the basic optimal control problem for the TGS. The control variables in the problem are the on-off states of VMS, i.e. binary variables, so the optimal control problem is transformed to an easy-to-solve optimal parameter selecting problem. The problem is then solved by use of revised gradient based on the maximum principle. It is shown by simulation that the proposed method performs best in scenarios with critically saturated flow demand.
     Second, assuming that drivers' compliance rate to VMS follows a given stochastic distribution, the optimal control for the TGS with stochastic parameters is studied. The problem is formulated in the format of a bi-level optimal control problem, which consists of a deterministic lower level problem about the traffic network and a stochastic upper level problem about drivers' stochastic compliance. Then, the sensitivity of cost function with respect to drivers' compliance is utilized to convert the upper level problem to a deterministic one, and the convexity of cost function with respect to drivers' compliance is proved. The proposed conversion method makes it able to avoid the complexity and difficulty of solving a stochastic optimal control problem. Simulation shows that the expectation of the cost criterion is improved, and the improvement is rather robust while parameters change.
     Third, drivers are assumed to choose a route that maximizes their individual utility according to their perception of travel time, and drivers' diversion rate turns out a time-varying parameter. A discrete choice model named the logit model, together with a vehicle queuing model named the point queue model are adopted to formulate the new optimal control problem, in which whether or not providing real-time travel time information via VMS is used as the control variable. The proposed method is tested via numerical examples that use real-world traffic demand levels in a commuting network in Minneapolis, MN. It is found that always giving information may not be the optimal strategy, while the proposed on-off control method always performs best. The sensitivity of the solution to varying demand patterns is also analyzed.
     Finally, the problem of designing optimal strategy for coordinated control of route guidance via VMS and ramp metering is considered. To conquer the side effect arising from the big number of control variables, the gradients of control variables are utilized and a K-means cluster algorithm is applied to select the best control locations. Simulation of a real-world traffic network shows that the proposed method can dynamically select control locations and efficiently reduce the total time spent of drivers. In some specific scenario, the selective control method performs even better than the one employing all control variables.
引文
[1]. 北京交通发展研究中心.2011北京市交通发展年度报告,2011.
    [2]. 公路工程技术标准.JTGB01-2003,2004.
    [3]. 城市道路交通规划设计规范.GB 50220-95,1995.
    [4]. Haj-Salem H, Ramananjaona C, Kates R. EUropean RAmp Metering Project (EURAMP). Safety Critical Issues-Project,2006(507645).
    [5]. O'Brien A. Research pays off:new ramp metering algorithm improves systemwide travel time. TR News,2000(209):p.38-39.
    [6]. 杜豫川,周小鹏,袁文平,孙立军.上海快速道路网智能诱导系统的设计与实现.计算机工程,2009.35(21):p.235-237,241.
    [7]. 关积珍.对北京奥运公众交通信息服务的探讨.交通运输系统工程与信息,2008.8(6):p.61-66.
    [8]. Dai Y, Yu Y, Lv X. Design and implementation of cross-over Huangpu river traffic information guidance system. Computer Engineering,2007.33(19):p.279-282.
    [9]. 范海龙.城市快速路可变限速控制策略研究,2012,北京交通大学博士学位论文.
    [10]. 于荣,王国祥,郑继媛,王海燕.基于支持向量机的城市道路交通状态模式识别研究.交通运输系统工程与信息,2013(1):p.130-136.
    [11]. 戴红.基于模糊模式识别的城市道路交通状态检测算法.吉林工程技术师范学院学报,2005.21(3):p.41-45.
    [12]. 陈斌,金炜东.四类交通事故检测算法的分析.交通科技与经济,2005(3):p.50-52.
    [13]. 贺国光,李宇,马寿峰.基于数学模型的短时交通流预测方法探讨.系统工程理论与实践,2000.11(12):p.51-56.
    [14]. 王正武,黄中祥.短时交通流预测模型的分析与评价.系统工程,2003.21(6):p.97-100.
    [15]. 葛亮,信红喜,马俊.公路交通可持续发展评价指标体系及评价方法研究.公路,2006(6):p.20-24.
    [16]. 陈小鸿,林航飞.城市交通控制与诱导系统性能评价指标研究.公路交通科技,2000.5(17):p.42-45.
    [17]. 苏永云,莫一魁.城市交通诱导系统影响评价方法研究.山东交通科技,2010(6):p.51-54.
    [18]. Papageorgiou M, Diakaki C, Dinopoulou V, Kotsialos A, Wang Y. Review of road traffic control strategies. Proceedings of the IEEE,2003.91(12):p.2043-2067.
    [19]. Erke A, Sagberg F, Hagman R. Effects of route guidance variable message signs (VMS) on driver behaviour. Transportation Research Part F:Traffic Psychology and Behaviour,2007.10(6):p.447-457.
    [20]. Ben-Akiva M, Depalma A, Kaysi 1. Dynamic network models and driver information systems. Transportation Research Part A-Policy and Practice,1991.25(5):p.251-266.
    [21]. Emmerink R. Concentration, overreaction, market penetration and Wardrop's principles in an ATIS environment. Rivista Internazionale di Economia dei Trasporti.1995.22(2):p.123-141.
    [22]. Wahle J, Bazzan A, Klugl F, Schreckenberg M. The impact of real-time information in a two-route scenario using agent-based simulation. Transportation Research Part C:Emerging Technologies, 2002.10(56):p.399-417.
    [23]. Greenshields B, Bibbins J, Channing W, Miller H. A study of traffic capacity, in Highway Research Board proceedings.1935:Washington, D.C. p.448-477.
    [24]. Greenberg H. An analysis of traffic flow. Operations Research,1959.7(1):p.79-85.
    [25]. Edie L, Foote R. Department of Traffic and Operations, in Proceedings of the Annual Meeting-Highway Research Board.1958:National Academy of Sciences-National Research Council.
    [26]. Branston D. Link capacity functions:A review. Transportation Research,1976.10(4):p.223-236.
    [27]. Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y. Dynamical model of traffic congestion and numerical simulation. Physical Review E,1995.51(2):p.1035-1042.
    [28]. Chowdhury D, Santen L, Schadschneider A. Statistical physics of vehicular traffic and some related systems. Physics Reports,2000.329(4):p.199-329.
    [29]. Gunay B. Car following theory with lateral discomfort. Transportation Research Part B: Methodological,2007.41(7):p.722-735.
    [30]. Leutzbach W. Introduction to the theory of traffic flow.1987, New York, NY:Springer-Verlag New York Inc.
    [31]. Pipes L. An operational analysis of traffic dynamics. Journal of Applied Physics,1953.24(3): p.274-281.
    [32]. Lighthill M, Whitham G. On kinematic waves.Ⅰ. Flood movement in long rivers. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1955.229(1178):p.281-316.
    [33]. Lighthill M, Whitham G. On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1955. 229(1178):p.317-345.
    [34]. Richards P. Shock waves on the highway. Operations Research,1956.4 (1):p.42-51.
    [35]. Payne H. FREFLO:A macroscopic simulation model of freeway traffic. Transportation Research Record,1979.722:p.68-77.
    [36]. Papageorgiou M, Blosseville J, Hadj-Salem H. Modelling and real-time control of traffic flow on the southern part of Boulevard Peripherique in Paris:Part Ⅰ:Modelling. Transportation Research Part A:General,1990.24(5):p.345-359.
    [37]. Papageorgiou M, Blosseville J, Hadj-Salem H. Modelling and real-time control of traffic flow on the southern part of Boulevard Peripherique in Paris:Part Ⅱ:Coordinated on-ramp metering. Transportation Research Part A:General,1990.24(5):p.361-370.
    [38]. Daganzo C. The cell transmission model-A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B-Methodological,1994.28(4):p. 269-287.
    [39]. Daganzo C. The cell transmission model, part Ⅱ:Network traffic. Transportation Research Part B-Methodological,1995.29(2):p.79-93.
    [40]. Prigogine 1, Herman R. Kinetic theory of vehicular traffic.1971, New York, NY:Elsevier Publishing Company, Incorporated.
    [41]. Paveri-Fontana S. On Boltzmann-like treatments for traffic flow:A critical review of the basic model and an alternative proposal for dilute traffic analysis. Transportation Research,1975.9(4):p.225-235.
    [42]. Helbing D. Traffic and related self-driven many-particle systems. Reviews of Modern Physics, 2001.73(4):p.1067-1141.
    [43]. Helbing D, Hennecke A, Shvetsov V, Treiber M. MASTER:macroscopic traffic simulation based on a gas-kinetic, non-local traffic model. Transportation Research Part B:Methodological,2001. 35(2):p.183-211.
    [44]. Khattak A, Koppelman F, Schofer J. Stated preferences for investigating commuters diversion propensity. Transportation,1993.20(2):p.107-127.
    [45]. Schofer J, Khattak A, Koppelman F. Behavioral issues in the design and evaluation of advanced traveler information systems. Transportation Research Part C:Emerging Technologies,1993. 1(2):p.107-117.
    [46]. Adler J, McNally M. In-laboratory experiments to investigate driver behavior under advanced traveler information systems. Transportation Research Part C:Emerging Technologies,1994.2(3):p. 149-64.
    [47]. Adler J. Investigating the learning effects of route guidance and traffic advisories on route choice behavior. Transportation Research Part C:Emerging Technologies,2001.9(1):p.1-14.
    [48]. Peeta S, Ramos J, Pasupathy R. Content of variable message signs and on-line driver behavior, Transportation Research Record,2000.1725:p.102-108.
    [49]. Al-Deek H, Venkata S, Flick J. Impact of dynamic message signs on satisfaction and diversion of toll road travelers. Transportation Research Record,2009.2099:p.1-13.
    [50]. Xu T, Sun L, Peng Z. Empirical analysis and modeling of drivers'response to variable message signs in Shanghai, China. Transportation Research Record,2011.2243:p.99-107.
    [51]. Gan H, Ye X. Urban freeway users' diversion response to variable message sign displaying the travel time of both freeway and local street. IET Intelligent Transport Systems,2012.6(1):p.78-86.
    [52]. Elliott M, Armitage C, Baughan C. Using the theory of planned behaviour to predict observed driving behaviour. British Journal of Social Psychology,2007.46(1):p.69-90.
    [53]. Foo S, Abdulhai B, Hall F. Impacts on traffic diversion rates of changed message on changeable message sign. Transportation Research Record,2008.2047:p.11-18.
    [54]. Dia H, Panwai S. Modelling drivers'compliance and route choice behaviour in response to travel information. Nonlinear Dynamics,2007.49(4):p.493-509.
    [55]. Lee C, Ran B, Yang F, Loh W. A hybrid tree approach to modeling alternate route choice behavior with online information. Journal of Intelligent Transportation Systems,2010.14(4):p.209-219.
    [56]. Kachroo P, Ozbay K. Solution to the user equilibrium dynamic traffic routing problem using feedback linearization. Transportation Research Part B-Methodological,1998.32(5):p.343-360.
    [57J. Zhang H, Recker W. On optimal freeway ramp control policies for congested traffic corridors. Transportation Research Part B-Methodological,1999.33(6):p.417-436.
    [58]. Kaysi I, Ali N. Analytical modeling of driver-guidance schemes with flow variability considerations, Transportation Research Record,2000.2717:p.55-65.
    [59]. Engelson L. On dynamics of traffic queues in a road network with route choice based on real time traffic information. Transportation Research Part C-Emerging Technologies,2003.11(2):p.161-183.
    [60]. Liu Y, Chang G, Yu J. An integrated control model for freeway corridor under nonrecurrent congestion. IEEE Transactions on Vehicular Technology,2011.60(4):p.1404-1418.
    [61]. Jacob C, Abdulhai B. Automated adaptive traffic corridor control using reinforcement learning-Approach and case studies. Transportation Research Record,2006.1959:p.1-8.
    [62]. Zuurbier F, van Zuylen H, Hoogendoom S, Chen Y. Generating optimal controlled prescriptive route guidance in realistic traffic networks-A generic approach. Transportation Research Record,2006. 1944:p.58-66.
    [63]. Zhang L, Gou J, Jin M. Model of integrated corridor traffic optimization. Transportation Research Record,2012.2311:p.108-116.
    [64]. Tang Y, Chien S. Optimization of work zone schedule considering time-varying traffic diversion, in Transportation Research Board.2010.
    [65]. Wang Y, Papageorgiou M, Sarros G, Knibbe W. Feedback route guidance applied to a large-scale express ring road. Transportation Research Record,2006.1965:p.79-88.
    [66]. Kotsialos A, Papageorgiou M, Mangeas M, Haj-Salem H. Coordinated and integrated control of motorway networks via non-linear optimal control. Transportation Research Part C-Emerging Technologies,2002.10(1):p.65-84.
    [67]. Xu T, Sun L, Peng Z, Hao Y. Integrated route guidance and ramp metering consistent with drivers'en-route diversion behaviour. IET Intelligent Transport Systems,2011.5(4):p.267-276.
    [68]. Messmer A, Papageorgiou M. Route diversion control in motorway networks via nonlinear optimization. IEEE Transactions on Control Systems Technology,1995.3(1):p.144-154.
    [69]. Paz A, Peeta S. Behavior-consistent real-time traffic routing under information provision. Transportation Research Part C-Emerging Technologies,2009.17(6):p.642-661.
    [70]. Peeta S, Gedela S. Real-time variable message sign-based route guidance consistent with driver behavior. Transportation Research Record,2001.1752:p.117-125.
    [71]. Sawaya O, Doan D, Ziliaskopoulos A. Predictive time-based feedback control approach for managing freeway incidents. Transportation Research Record,2000.1710:p.79-84.
    [72]. Bellman R. A Markovian decision process.1957, RAND Corporation:Santa Monica, CA.
    [73]. Pontryagin L. Optimal processes of regulation, in 58th International Congresses of Mathematicians.1958:Edinburgh.
    [74]. 舒迪前.预测控制系统及其应用.机械工业出版社,1995.
    [75]. Corona D, de Schutter B. Adaptive cruise control for a SMART car:a comparison benchmark for MPC-PWA control methods. IEEE Transactions on Control Systems Technology,2008.16(2):p. 365-372.
    [76]. Leung C, Huang S, Kwok N, Dissanayake G. Planning under uncertainty using model predictive control for information gathering. Robotics and Autonomous Systems,2006.54(11):p.898-910.
    [77]. 社建福.基于预测控制的小型无人直升机自主飞行研究,2008,上海交通大学博士学位论文.
    [78]. 孙文秀,张润彤.基于模糊预测控制的ATP系统建模与仿真.系统仿真学报,2010(08):p.1974-1980.
    [79].谢生钢.基于活性污泥模型的污水处理过程预测控制方法研究,2008,浙江大学硕士学位论文.
    [80]. Aboudolas K, Papageorgiou M, Kouvelas A, Kosmatopoulos E. A rolling-horizon quadratic-programming approach to the signal control problem in large-scale congested urban road networks. Transportation Research Part C-Emerging Technologies,2010.18(5):p.680-694.
    [81]. Bellemans T, de Schutter B, de Moor B. Model predictive control for ramp metering of motorway traffic:A case study. Control Engineering Practice,2006.14(7):p.757-767.
    [82]. Bellemans T, de Schutter B, de Moor B. Anticipative model predictive control for ramp metering in freeway networks, in proceedings of the American Control Conference,2003.
    [83]. Wang Y, Papageorgiou M, Messmer A. Predictive feedback routing control strategy for freeway network traffic. Transportation Research Record,2003.1856:p.62-73.
    [84]. Bellemans T, de Schutter B, de Moor B. Model predictive control with repeated model fitting for ramp metering, in Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems,2002.
    [85]. Pearson J, Sridhar R. A discrete optimal control problem. IEEE Transactions on Automatic Control,1966.11(2):p.171-174.
    [86]. Kotsialos A, Papageorgiou M. Nonlinear optimal control applied to coordinated ramp metering. IEEE Transactions on Control Systems Technology,2004.12(6):p.920-933.
    [87]. Papageorgiou M. Application of automatic control concepts to traffic flow modeling and control.1983:Springer.
    [88]. Kattan L, Nurul Habib K, Nadeem S, Islam T. Modeling travelers'responses to incident information provided by variable message signs in Calgary, Canada. Transportation Research Record, 2010.2185:p.71-80.
    [89]. 盛骤,谢潘.概率论和数理统计.高等教育出版社,2001.
    [90]. von Stackelberg H. The theory of the market economy. William Hodge,1952.
    [91]. Vicente L, Calamai P. Bilevel and multilevel programming:A bibliography review.1994.5(3): p.291-306.
    [92]. Chen C, Cruz J. Stackelburg solution for two-person games with biased information patterns. IEEE Transactions on Automatic Control,1972.17(6):p.791-798.
    [93]. Ye J. Optimal strategies for bilevel dynamic problems. SIAM Journal on Control and Optimization,1997.35(2):p.512-531.
    [94]. Ben-Akiva M, Lerman S. Discrete choice analysis:theory and application to predict travel demand. MIT press,1985.
    [95]. Vickrey W. Congestion theory and transport investment. American Economic Review,1969. 59(2):p.251-260.
    [96]. Liu H, Wu X, Ma W, Hu H. Real-time queue length estimation for congested signalized intersections. Transportation Research Part C:Emerging Technologies,2009.17(4):p.412-427.
    [97]. Liu H, Ma W. A virtual vehicle probe model for time-dependent travel time estimation on signalized arterials. Transportation Research Part C:Emerging Technologies,2009.17(1):p.11-26.
    [98]. Liu H, Ma W, Hu H, Wu X, Yu G. SMART-SIGNAL:Systematic Monitoring of Arterial Road Traffic Signals, in.11th International IEEE Conference on Intelligent Transportation Systems,2008.
    [99]. Kawamura K. Perceived value of time for truck operators. Transportation Research Record, 2000.1725:p.31-36.
    [100]. Chorus C, Arentze T, Timmermans H. Traveler compliance with advice:A Bayesian utilitarian perspective. Transportation Research Part E-Logistics and Transportation Review,2009.45(3):p.486-500.
    [101]. Abbas M, McCoy P. Optimizing variable message sign locations on freeways using genetic algorithms, in 78th Annual Meeting of the Transportation Research Board.1999:Washington, DC. p.67-73.
    [102]. Chiu Y, Huynh N, Mahmassani H. Determining optimal locations for variable message signs under stochastic incident scenarios, in 80th Annual Meeting of the Transportation Research Board.2001: Washington, DC. p.56-60.
    [103]. Chiu Y, Huynh N. Location configuration design for dynamic message signs under stochastic incident and ATIS scenarios. Transportation Research Part C:Emerging Technologies,2007.15(1):p. 33-50.
    [104]. 尚华艳,黄海军,高自友.基于元胞传输模型的可变信息标志选址问题研究.物理学报,2007.56(8):p.35-40.
    [105].卢晓珊,黄海军,尚华艳.先进出行者信息系统环境下的可变信息板选址.北京航空航天 大学学报,2012.38(10):p.1352-1357.
    [106]. Shang H, Huang H, Gao Z. Locating the variable message signs by cell transmission model. Acta Physica Sinica,2007.56(8):p.4342-4347.
    [107]. 张荣光,乔梁.北京市VMS布局规划设置研究.道路交通与安全,2010(3):p.25-29.
    [108]. 袁舒平,漆凯,关积珍.考虑诱导信息影响的可变信息标志优化选址研究——以北京南站为例.交通运输系统工程与信息,2010.11(增1):p.228-233.
    [109]. 杨艳群,卓曦.基于安全分析的高速公路可变情报板选址方法.福州大学学报(自然科学版),2009(6):p.905-909.
    [110].倪富健,刘志超.可变交通信息牌的最优分布模型.信息与控制,2003.32(5):p.395-398.
    [111]. 傅立平,李硕,Henderson J.可变信息标志系统(CMS)选址优化模型.交通运输系统工程与信息,2005.5(5):p.105-124.
    [112]]. 承向军,郭伟平.基于行程时间和路口延误的网络VMS选址算法.交通与计算机,2008.26(2):p.27-30.
    [113]. Papageorgiou M, Papamichail I. Overview of traffic signal operation policies for ramp metering. Transportation Research Record,2008.2047:p.28-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700