用户名: 密码: 验证码:
以苯并咪唑类衍生物为识别基的共轭聚合物的设计、合成及化学传感特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭聚合物所具有的独特的物理光学特性以及相比较小分子所具有的荧光信号放大优势,已在生物及化学传感领域得到了广泛关注与研究。这其中,苯并咪唑类衍生物具有强的金属配位能力和多样的配位方式,却很少作为离子识别单元引入到含N杂环类共轭聚合物传感器中。在本文中,我们以苯并咪唑衍生物为识别位点,从结构与性能角度出发详细考察了其与聚合物不同链接方式时所产生的识别性能差异。研究主要分为以下四个方面:
     1.首先设计合成了识别基ethyl2-(4,7-dibromo-2-(pyridin-2-yl)-1H-benzo[d]imidazol-1-yl)acetate (PBMA),并将其4,7位与共轭聚合物相连得聚合物P1,并将其作为检测Ag~+的荧光传感器。研究结果显示其对Ag~+展现出极好的选择性。在其他离子存在的情况下,仍具有良好的识别能力。同时,该聚合物也表现出对Ag~+的高灵敏度。其最低检测限可达50nM。加入Ag~+后,聚合物不仅表现出荧光强度的降低,同时荧光颜色也由蓝色变为绿色。因此提供了一种新颖的能对Ag~+离子检测的共轭聚合物荧光传感材料。
     2.从结构与性能的角度出发,改变前面合成的识别基与聚合物的链接方式,将其5,5'位与聚合物相连得聚合物P4,P5,考察其离子识别性能的变化。研究发现此时的聚合物表现出对Ni~(2+)的高选择性。而完全不识别Ag~+。实验进一步从分子结构和电化学特征方面考察了其可能引起这种变化的原因。随着Ni~(2+)浓度的增加,其启动氧化电位和氧化电位依次逐渐升高,这主要是由于识别基与聚合物链接位置的改变,聚合物链结构发生了改变,导致了其电子密度改变,也就改变了与金属离子的配位能力。同时也表明通过微调识别基与聚合物的链接方式或者滴加不同金属离子与聚合物配位可以达到调节聚合物能级的目的,从而有可能达到各种不同应用的目的。
     3.在上面研究的基础上,进一步将识别基中的吡啶单元用噻吩单元替代,同样将其5,5'位与聚合物相连得P6,P7,考察了其离子识别性能的变化。研究显示此时聚合物表现出对Ag~+的高选择性。而完全不识别Ni~(2+)。实验进一步应用核磁滴定和电化学实验考察其原因。实验结果表明,S原子的引入对Ag~+的识别起到关键作用。互为同分异构的识别基仅仅由于酯基取代位置的不同,导致了其所构成的聚合物荧光光谱和电化学特征的较大差异,说明微调识别基不仅可以达到识别的目的,而且可以调节传感器的识别能力。这为我们进一步了解结构与性能的关系,设计更具特异识别性的传感器提供了有益的经验。
     4.实验进一步将识别基放在聚合物的侧链(P8),考察其离子识别性能。比较识别基在主链时聚合物(P2)的识别特征(识别Ag~+,Fe~(3+)),P8的对离子的识别性能发生了显著的变化。其表现出对Cu~(2+)和Ni~(2+)的高选择性和高灵敏度。在此基础上,进一步利用聚合物与金属离子形成的二级配合物作为“turn on”传感器检测氨基酸。加入半胱氨酸(Cys),能使[聚合物-Cu~(2+)]配合物的荧光恢复。而加入组氨酸(His)和色氨酸(Tryp)能使[聚合物-Ni~(2+)]配合物荧光恢复。其对半胱氨酸(Cys),组氨酸(His)和色氨酸(Tryp)的检测限分别达到了0.5,5和0.1ppm。这意味着共轭聚合物的检测性能可以通过与不同的金属作用来调节,同时也提供了一个新颖的检测氨基酸的方法。另一方面也表明识别基在聚合物中位置的不同(在主链还是在侧链)可以决定不同的识别性能。为我们认识结构与性能的关系以及系统设计更合理的化学传感器提供了一个非常有益的经验。
Conjugated polymers (CPs) has delocalized π-electronic conjugated ‘‘molecular wires’’ cangreatly amplify the fluorescence signal. As compared in small moleculaes, facile energymigration from polymer backbone upon light excitation and the amplification of fluorescentsignals resulted from the excitation energy transfer to the chromophore. CPs has receivedconsiderable attention as sensing materials used in bioanalysis and chemical sensors. In thesematerials, benzimidazole derivatives have excellent corrdination ability and diversecoordination modes with metal ions. However, few reports on benzimidazole derivativesutilized as congjugated polymer chemosensors. In this thesis, we designed, synthesized anddeveloped the new conjugated polymer sensing platform based on benzimidazole derivativesfor detection of matal ions and amino acids. The influence of connective monities on theonjugated polymer for the recognization performance was investigated in detail. Thisdissertation includes four parts:
     First, The recognization group ethyl2-(4,7-dibromo-2-(pyridin-2-yl)-1H-benzo[d]imid-azol-1-yl)acetate (PBMA) was synthesized, and caped unit (4,7position) linked with conjugated polymer backone as a fluorescent chemosensor(P1) for the Ag~+ion sensing.The result indicated that P1showed excellent selectivity toward Ag~+by avoiding theinterference from other metal ions and the detection limt was down to50nm. The emission intensity of P1rapidly descreased and the fluorescent color also changed fromblue to green after addition of Ag~+. The sensing mechanism of the polymer was also investigated by applying a similar copolymer (P2, P3) and by measuring1H NMRspectra. This is the first copolymer (P1) containing PBMA units in the backbone structure as metal ion chemosensor, which will help to extend the number and the applications of fluorometric polymer sensors for metal ions detection.
     Second, for the evaluation of relationship between structure and properties, we changed thelinker position (5,5’ position) between PBMA with polymer backone and synthesizedcopolymer P4and P5. The results showed that no significant spectral change was observed inthe fluorescence spectra except in the case of Ni~(2+). Specifically, Ag~+can not be recognized atall. We further inverstigated the reasons fot change in recognization behaviors with molecular structure and their electrochemied characteristics. With the increase of Ni~(2+)concentration, theonset oxidation potential and the oxidation potential of P4or P5were gradually improved.Plausibly, the linking moniety of PBMA with polymer chain has changed the electron densityof the polymer, so the complexing ability of conjugated polymer with metal ions was alsochanged. It is also indicated that the energy level of conjugated polymer could be adjusted bychanging the linking ways between recognization group and congjugated polymer backon oraddition of different metal ion complex with polymer.
     Third, based on previous research results, pyridine unit in PBMA further replaced withthiophene unit, and the recognization performance of copolymer P6and P7were alsoinvestigated. The novel conjugated polymer P6and P7showed high selectivity for Ag~+detection. The results indicated that the introduction of S atoms in copolymer (P6, P7) play akey role for detection of Ag~+.This phenomen further give insight understanding relationshipbetween structure and their properties.
     Fourth, on the bases of results from copolymer P2, the recognization group as side chain ofconjugated copolymer (P8), and binding and recognition behavior toward the metal ions andamino acids were investigated. The fluorescence of copolymer P8can be completelyquenched by Cu~(2+)and Ni~(2+)through a photoinduced electron transfer process, resulting information of metal complexes of polymer ([P8-Cu~(2+)] and [P8-Ni~(2+)]). These results indicatethat coplymer P8is expected to be a selective chemosensor for Cu~(2+)and Ni~(2+). Moreover, insitu formed [P8-Cu~(2+)] complex showed excellent fluorescence “turn on” properties with highselectivity towards Cys, while [P8-Ni~(2+)] complex with high selectivity towards His and Tryp.These complexes are expected to be promising chemosensors for amino acids due to highselectivity and high sensitivity (detection limit concentration is0.5ppm for Cys,5.0ppm forHis and0.1ppm for Tryp). It means that the detection selectivity of conjugated polymericchemosensor can be controlled by metal ions. Thus, this work provides a new type ofpromising polymeric fluorescent chemosensor for amino acids.
引文
[1] Shirakawa H., Louis E.J., MacDiarmid A.G., et al. Synthesis of electrically conductingorganic polymers: Halogen derivatives of polyacetylene (CH)x [J]. J. Chem. Soc., Chem.Comm.,1977,16:578–580.
    [2] Chiang C.K., Druy S.C., Gau S.C., et al., Synthesis of highly conducting films ofderivatives of polyacetylene [J]. J.Am.Chem.Soc.1978,100(3):1013–1015.
    [3]窦文超,荧光共轭聚合物PPESO3的合成及应用研究[D]:吉林,吉林大学,2009
    [4] Adrian A., Alfonso S.-C., Jose′M. Costa-F., et al., Fluorescent conjugated polymers forchemical and biochemical sensing [J]. Trends in Anal. Chem.,2011,30(9):1513–1525.
    [5] Jiang H., Zhao X., Sehanze K.S., Amplified Fluorescene Quenehing of a ConjugatedPolyelectrolyte Mediated by Ca2+[J]. Langmuir.,2006,22(13):5541–5543
    [6] Jeremy S.T, Gao Y., et al., Tuning the OPtical properties of a Water-Soluble Cationic poly(p-Phenylenevinylene): Surfactant ComPlexation with a Conjugated Polyeleetrolyte [J]. J.Phys. Chem. B,2008,112(3):760–763.
    [7] Mendez J.D., Sehroeter M., Weder C., Hyperbranehed Poly(p-phenylene ethynylene)s,Macromol Chem Phys.[J].2007,208(15):1625–636
    [8] Hwang G.T., Kim B.H., Conjugated Dendrimers Based on Bis(enediynyl)benzene Units[J].Organ. Lett.2004,6(16):2669–2672.
    [9] Zhu Y., Heim L., Tieke B., Red emitting diphenylpyrrolopyrrole(DPP)-based PolymersPrepared by Stille and Heck coupling[J]. Macromol. Chem. Phys.,2006,207(23):2206-2214.
    [10] Chen H., He X.X., Xie M.G., et al., Novel fluorene-carzazole based conjugatedcopolymers containing pyrazoline and benzothiazole segments for blue light-emittingmaterials [J]. Chin. Chemi. Lett.2007,18(12):1496–150.
    [11] Rabindranath A.R., Zhu Y., Tieke B., et al., Red emitting N-functionalized Poly(l,4-diketo-3,6-diphenylpyrrrolo[3,4-e]pyrrole)(Poly-DPP): A deeply colored polymerwith unusually large Stokes shift[J]. Macromolecules,2006,39(24):5250–5256
    [12] Zhu Y., Rabindranath A.R., Tieke B., et al., Highly Iumineseent l,4-diketo-3,6-dip-henylpyrrolo[3,4-c]pyrrole(DPP–) based conjugated polymers prepared upon suzuki coupling[J]. Macromolecules,2007,40(19):6981–6989.
    [13] Samuel W. Thomas III, Guy D. Joly, and Timothy M. Swager, Chemical Sensors Basedon Amplifying Fluorescent Conjugated Polymers[J]. Chem. Rev.2007,107(4):13391386.
    [14] An L, Tang Y, Wang S. et al., Water-soluble conjugated polymers for continuous andsensitive fluorescence assays for phosphatase and peptidase [J]. J. Mater Chem.,2007,17:4147–4152
    [15]徐巍栋,赖文勇,黄维等,水溶性共轭聚合物研究与应用进展[J],中国科学:化学,2011,3(41):409–423.
    [16] Wright A.T., and Anslyn E.V., Differential receptor arrays and assays for solution-basedmolecular recognition [J]. Chem. Soc. Rev.,2006,35(1):14–28.
    [17] Amendola V., and Fabbrizzi L., Anion receptors that contain metals as structural units[J]. Chem. Commun.,2009,513–531
    [18] Prodi L., Luminescent chemosensors: from molecules to nanoparticles [J]. New J.Chem.,2005,29,20–31.
    [19] Yoon J., Kim S.K., and Kim K.S., et al., Imidazolium receptors for the recognition ofanions [J]. Chem. Soc. Rev.,2006,35(4):355–360.
    [20] Czarnik A.W., Fluorescent Chemosensors for Ion and Molecule Recognition [D].American Chemical Society, Washington, D.C.,1992.
    [21] Dickinson B.C., Srikun D. and Chang C.J., Mitochondrial-targeted fluorescent probesfor reactive oxygen species [J]. Curr. Opin.Chem.Biol,2010,14(1):50–56.
    [22] Kobayashi H., Ogawa M., and Urano Y., et al., New strategies for fluorescent probedesign in medical diagnostic imaging [J]. Chem. Rev.,2010,110(5):2620–2640.
    [23] Sinkeldam R.W., Greco N.J. and Tor Y., Fluorescent analogs of biomolecular buildingblocks: design, properties, and applications [J]. Chem. Rev.,2010,110(5):2579–2619.
    [24] Gunnlaugsson T., Glynn M., Kruger P.E., et al., Anion recognition and sensing inorganic and aqueous media using luminescent and colorimetric sensors [J]. Coord.Chem. Rev.,2006,250(23+24):3094–3117.
    [25] Jiang P.J., and Guo Z.J., Fluorescent detection of zinc in biological systems: recentdevelopment on the design of chemosensors and biosensors [J]. Coord. Chem. Rev.,2004,248,205–229.
    [26] Bell T.W. and Hext N.M., Supramolecular optical chemosensors for organic analytes [J].Chem. Soc. Rev.,2004,33(9):589–598.
    [27] Gunnlaugsson T., Glynn M., Kruger P.E., et el., Fluorescent photoinduced electrontransfer (PET) sensors for anions; from design to potential application [J]. J. Fluoresc.,2005,15(3):287–299.
    [28] De Silva A.P., Gunaratne H.Q.N., Gunnlaugsson T., Signaling Recognition Events withFluorescent Sensors and Switches [J]. Chem. Rev.,1997,97(5):1515–1566.
    [29] Callan J.F., de Silva A.P. and Magri D.C., A review of liminescent sensors and switches[J]. Tetrahedron,2005,61(36):8551–8588.
    [30] Martinez-Manez R. and Sancenon F., Fluorogenic and chromogenic chemosensors andreagents for anions [J]. Chem. Rev.,2003,103(11):4419–4476.
    [31] Valeur B., and Leray I., Design principles of fluorescent molecular sensors for cationrecognition [J]. Coord. Chem. Rev.,2000,205(1):3–40.
    [32] Xu Z.C., Yoon J., and Spring D.R., Fluorescent chemosensors for Zn2+[J]. Chem. Soc.Rev.,2010,39(6):1996–2006.
    [33] Kim J.S., and Quang D.T., Calixarene-derived fluorescent probes [J]. Chem. Rev.,2007,107(9):3780–3799
    [34] Zhao Q., Li F.Y. and Huang C. H., Phosphorescent chemosensors based on heavy-metalcomplexes [J]. Chem. Soc. Rev.,2010,39(8):3007–3030
    [35] Sapsford K.E., Berti L., and Medintz I.L., Materials for fluorescence resonance energytransfer analysis: beyond traditional donor-acceptor combinations [J]. Angew. Chem.,Int. Ed.,2006,45(28):4562–4589.
    [36] Carlson H.J. and Campbell R.E., Genetically encoded FRET-based biosensors formultiparameter fluorescence imaging [J]. Curr. Opin. Biotechnol.2009,20(1):19–27.
    [37] Lodeiro C. and Pina F., Luminescent and chromogenic molecular probes based onpolyamines and related compounds [J]. Coord. Chem. Rev.,2009,253(9-10):1353-1383
    [38] Hong Y.N., Lam J.W.Y. and Tang B.Z., Aggregation-induced emission: phenomenon,mechanism and applications [J]. Chem. Commun.,2009,4332–4353.
    [39] Wang M., Zhang G.X., and Tang B.Z., et al., Fluorescent bio/chemosensors based onsilole and tetraphenylethene luminogens with aggregation-induced emission feature [J].J. Mater. Chem.,2010,20,1858–1867.
    [40] Wu J.S., Liu W.M., Lee S.T., et al., Fluorescence turn on of coumarin derivatives bymetal cations: a new signaling mechanism based on C=N isomerization [J]. Org. Lett.,2007,9(1):33–36.
    [41] Berezin M.Y., and Achilefu S., Fluorescence lifetime measurements and biologicalimaging [J]. Chem. Rev.,2010,110(5):2641–2684
    [42] Joseph D.L., Karine A.F., Thomas M.F., et al., Boronic acid based photoinduced electrontransfer (PET) fluorescence sensors for saccharides [J]. New J. Chem.,2010,34,2922–2931
    [43] Yousuke O., Minako S., Kohei K., et al., Detection of water in organic solvents byphoto-induced electron transfer method [J]. Org. Biomol. Chem.,2011,9,1314–1316
    [44] Rotkiewicz K., Grellmann K.H., and Grabowski Z.R., Reinterpretation of the anomalousfluorescense of p-n,n-dimethylamino-benzonitrile [J]. Chem. Phys. Lett.,1973,19(3):315–318
    [45] Ito A. Ishizaka S. and Kitamura N., A ratiometric TICT-type dual fluorescent sensor foran amino acid [J]. Phys. Chem. Chem. Phys.,2010,12,6641–6649
    [46] Rettig W., and Lapouyade R., Fluorescence probes based on twisted intramolecularcharge transfer (TICT) states and other adiabatic photoreactions, in Topics inFluorescence Spectroscopy, Probe Design and Chemical Sensing, Ed.[D]. J. R.Lakowicz, Plenum Press, New York,1994, vol.4, p.109.
    [47] Wang J.B, Qian X.H, and Cui J.N., Detecting Hg2+Ions with an ICT Fluorescent SensorMolecule: Remarkable Emission Spectra Shift and Unique Selectivity [J]. J. Org. Chem.,2006,71(11):4308–4311
    [48] Xu Z.C., Xiao Y., Qian X.H., et al., Ratiometric and Selective Fluorescent Sensor forCuII Based on Internal Charge Transfer (ICT)[J]. Org. Lett.,2005,7(5):889–892
    [49] F rster T., Zwischenmoleculare Energiewanderung und Fluoreszenz [J]. Ann. Phys.,1948,2,55–58
    [50]徐巍栋,赖文勇,黄维等,水溶性共轭聚合物研究与应用进展[J],中国科学:化学,2011,41(3)409–423.
    [51] Dexter D.L., Atheory of sensitized luminescence in solids [J]. J. Chem. Phys.,1953,21,836–850.
    [52] Sung W.H., Keon H.K., June H., Design and Synthesis of a new pH Sensitive PolymericSensor Using Fluorescence Resonance Energy Transfer [J]. Chem. Mater.,2005,17(25):6213–6215.
    [53] Tsuyoshi T. and Hisakazu M., FRET detection of amyloid β-peptide oligomerizationusing a fluorescent protein probe presenting a pseudo-amyloid structure [J]. Chem.Commun.,2012,48(10):1568–1570.
    [54] Feng X.L., Wang S., and Bazan G.C., A Highly Emissive Conjugated PolyelectrolyteVector for Gene Delivery and Transfection [J]. Adv. Mater.2012,24(40):5428–5432
    [55] Yuan H.X., Chong H., Wang S., Chemical Molecule-Induced Light-Activated Systemfor Anticance and Antifungal Activities [J]. J. Am. Chem. Soc.2012,134(32):1318413187
    [56] Zhu H.L., Yang Q., and Wang S., et al., Rapid, Simple, and High-ThroughputAntimicrobial Susceptibility Testing and Antibiotics Screening [J]. Angew. Chem. Int.Ed.2011,50(41):9607–9610.
    [57] Feng X.L., Wang S., A Convenient Preparation of Multi-Spectral Microparticles byBacteria-Mediated Assemblies of Conjugated Polymer Nanoparticles for Cell Imagingand Barcoding [J]. Adv. Mater.2012,24(5):637–641
    [58] Yang Q., Qiu T., Wang S., et al., Simple and Sensitive Method for Detecting PointMutations of Epidermal Growth Factor Receptor Using Cationic Conjugated Polymers[J]. ACS Appl. Mater. Interfaces,2011,3(11):4539–4545
    [59] Yang Q., Qiu T., Wang S., Simple and Sensitive Method for Detecting Point Mutationsof Epidermal Growth Factor Receptor Using Cationic Conjugated Polymers [J]. ACSAppl. Mater. Interfaces,2011,3(11):4539–4545
    [60] He F, Tang Y, Zhu D., et al., Fluorescent amplifying recognition for DNAG-quadruplexfolding with a cationic conjugated polymer: a platform for homogeneous potassiumdetection [J]. JAm Chem Soc.2005,127(35):12343–12346.
    [61] Pu K.-Y., and Liu B., A Multicolor Cationic Conjugated Polymer for Naked-EyeDetection and Quantifcation of Heparin [J]. Macromolecules2008,41(18):6636–6640.
    [62] Liu B., Thanh Dan T.T., and Bazan G.C., Collective Response from a CationicTetrahedral Fluorene for Label-Free DNA Detection [J]. Adv. Funct. Mater.2007,17(14):2432–2438.
    [63] Li K. and Liu B., Conjugated Polyelectrolyte Amplifed Thiazole Orange Emission forLabel Free Sequence Specifc DNA Detection with Single Nucleotide PolymorphismSelectivity [J]. Anal. Chem.2009,81(10):4099–4105.
    [64] Pu K.-Y., Fang Z., and Liu B., Effect of Charge Density on Energy-Transfer Propertiesof Cationic Conjugated Polymers [J]. Adv. Funct. Mater.2008,18(8):1321–1328
    [65] Liu B., Wang S., and Bazan G.C., et al., Effect of Chromophore-Charge Distance on theEnergy Transfer Properties of Water-Soluble Conjugated Oligomers [J]. J. Am. Chem.Soc.2003,125(22):6705–6714
    [66] Liu B. and Bazan G.C., Homogeneous Fluorescence-Based DNA Detection withWater-Soluble Conjugated Polymers [J]. Chem. Mater.,2004,16(23):4467-4476
    [67] Liu B. and Bazan G. C., Interpolyelectrolyte Complexes of Conjugated Copolymers andDNA[J]., J. Am. Chem. Soc.2004,126(7):1942–1943
    [68] Liu B. and Bazan G.C., Methods for strand-specific DNA detection with cationicconjugated polymers suitable for incorporation into DNA chips and microarrays [J].Proc NatlAcad Sci U S A.,2005,102(3):589–593.
    [69] Pu K.-Y., Pan S.Y., and Liu B., Optimization of Interactions between a CationicConjugated Polymer and Chromophore-Labeled DNA for Optical Amplifcation ofFluorescent Sensors [J]. J. Phys. Chem. B2008,112(31):9295–9300
    [70] Liu B. and Bazan G.C., Optimization of the Molecular Orbital Energies of ConjugatedPolymers for Optical Amplification of Fluorescent Sensors [J]. J. Am. Chem. Soc.2006,128(4):1188–1196
    [71] Pu K.-Y., Liu B., Optimizing the cationic conjugated polymer-sensitized fluorescentsignal of dye labeled oligonucleotide for biosensor applications [J]. BiosensBioelectron.,2009,24(5):1067–1073
    [72] Liu J., Ding D.J., Liu B., et al., PEGylated conjugated polyelectrolytes containing2,1,3-benzoxadiazole units for targeted cell imaging [J]. Polym. Chem.,2012;3(6):1567–1575.
    [73] Zhang Y., Wang Y.Y., and Liu B., Peptide-Mediated Energy Transfer between anAnionic Water-Soluble Conjugated Polymer and Texas Red Labeled DNA forProtease and Nuclease Activity Study [J]. Anal. Chem.2009,81(10):3731–3737.
    [74] Liu B., Wang S., Bazan G.C., Shape-Adaptable Water-Soluble Conjugated Polymers [J].J. Am. Chem. Soc.2003,125(44):13306–13307.
    [75] Liu B. and Dishari S.K., Synthesis, Characterization, and Application of CationicWater-Soluble Oligofluorenes in DNA-Hybridization Detection [J]. Chem. Eur. J.2008,14(24):7366–7375.
    [76] Liu B. and Bazan G.C., Tetrahydrofuran Activates Fluorescence Resonant EnergyTransfer from a Cationic Conjugated Polyelectrolyte to Fluorescein-Labeled DNA inAqueous Media [J]. Chem. Asian J.2007,2(4):499–504
    [77] Li K. and Liu B., Water-soluble conjugated polymers as the platform for protein sensors[J]. Polym. Chem.,2010,1(3):252–259.
    [78] He E., Tang Y., Wang S., et al., Fluorescent amplifying recognition for DNAG-quadruplex folding with a cationic conjugated polymer: a platform for homogeneouspotassium detection [J]. J. Am. Chem. Soc2005,127(35):12343–12346.
    [79] Wu J.S., Zhou J.H., Zhang X.H., et al., New fluorescent chemosensor based on exciplexsignaling mechanism [J]. Org. Lett.,2005,7(11):2133–2136
    [80] Chen W.B., Elfeky S.A., Nonne Y., A pyridinium cation-π interaction sensor for thefluorescent detection of alkyl halides [J]. Chem. Commun.,2011,47(1):253–255
    [81] Huang Y.-J., Jiang Y.-B., Bull S.D., Diols and anions can control the formation of anexciplex between a pyridinium boronic acid with an aryl group connected via apropylene linker [J]. Chem. Commun.,2010,46(43):8180–8182.
    [82] Lee K.-S., Kim H.-J., et al., Fluorescent chemodosimeter for selective detection ofcyanide in water [J]. Org. Lett.,2008,10(1):49–51.
    [83] Lin W., Long L., Yuan L., et al., A ratiometric fluorescent probe for cysteine andhomocysteine displaying a large emission shift [J]. Org. Lett.,2008,10(24):5577–5580.
    [84] Song E,, Watanabe S., Koide K., et al., Oxidation-resistant fluorogenic probe formercury based on alkyne oxymercuration [J] J. Am. Chem. Soc.,2008,130(49):16460–16461.
    [85] Long L.L., Zhang D.D., Li X.F., A fluorescence ratiometric sensor forhypochlorite based on a novel dual-fluorophore response approach [J]. AnalChim Acta.,2013,775,100–105
    [86] McQuade D. T., Pullen AE., Swager T. M. Conjugated polymer-based chemical sensors[J].Chem. Rev.,2000,100(7):2537–2574.
    [87] Leclerc M. Optical and Electrochemical Transducers Based on FunctionalizedConjugated Polymers [J]. Adv. Mater.,1999,11(18):1491–1498.
    [88] Thomas III S. W, Joly G.D, Swager T. M., Chemical sensors based on amplifyingfluorescent conjugated polymers [J]. Chem. Rev.,2007,107(4):1339–1345.
    [89] Fan L.J., Zhang Y, Jones W.E., et al., Fluorescent conjugated polymer molecular wirechemosensors for transition metal ion recognition and signaling [J]. Coord. Chem. Rev.,2009,253(3-4):410–422
    [90] Kim J., McQuade D.T, Swager T.M., et al., Ion-Specific Aggregation in ConjugatedPolymers: Highly Sensitive and Selective Fluorescent Ion Chemosensors [J].Angew.Chem. Int. Ed.,2000,39(21):3868–3872.
    [91] Maitéra-A.M, Ho H.A,Leclerc M., Functional polythiophenes as optical chemo-andbiosensors [J]. Tetrahedron,2004,60(49):11169–11173.
    [92] Liu H., Wang S., Luo, Y., Xi F., Synthesis and properties of crown ether containing poly(p-phenylenevinylene)[J]. J. Mater. Chem.,2001,11,3063–3067
    [93] Kim I.B., Erdogan B., Bunz U.H.F., et al., Sugar-poly (para-phenylene ethynylene)conjugates as sensory materials: efficient quenching by Hg2+and Pb2+ions.[J]. Chem.Eur. J.,2004,10(24):6247–6254.
    [94] Hussain S., Siddhartha D., and Parameswar K.I., Thiazole-Containing ConjugatedPolymer as a Visual and Fluorometric Sensor for Iodide and Mercury [J]. ACS Appl.Mater. Interfaces,2013,5(6):2234–2240.
    [95] Shi H.-F., Liu S.-J., Huang W., et al., Simple Conjugated Polymers with On-ChainPhosphorescent Iridium(III) Complexes: Toward Ratiometric Chemodosimeters forDetecting Trace Amounts of Mercury(II)[J]. Chem. Eur. J.2010,16(40):12158–12167.
    [96] Zhu L.N., Yang M., Yang C.L., et al., New fluorene-based alternating copolymers withpendent N, N-diethylaniline group: Highly sensitive and selective detection for Hg2+with “Turn-on” fluorescence response [J]. Polymer,2009,50(23):5422–426.
    [97] Huang X.B., Xu Y., Zheng L.F., et al., A highly selective and sensitive fluorescencechemosensor based on optically active polybinaphthyls for Hg2+[J]. Polymer,2009,50(25):5996–6000.
    [98] Balamurugan A., Reddy M.L.P., Jayakannan M., Carboxylic-Functionalized WaterSoluble p-Conjugated Polymer: Highly Selective and Efficient Chemosensor forMercury (II) Ions [J]. Polymer,2009,47(11):5144–5147.
    [99] Zhen F., Pu K.-Y., Liu B., et al., Asymmetric Fluorescence Quenching of Dual-EmissivePorphyrin-Containing Conjugated Polyelectrolytes for Naked-Eye Mercury IonDetection [J]. Macromolecules,2008,41(22):8380–8387
    [100]Shi H.-F., Liu S.-J., Sun H.-B., et al., Simple conjugated polymers with on-chainphosphorescent iridium(III) complexes: toward ratiometric chemodosimeters fordetecting trace amounts of mercury(II)[J]. Chemistry,2010,16(40):12158–12167.
    [101]Wang Y.S., Liu B., Amplified Fluorescence Turn-On Assay for Mercury(II) Detectionand Quantification based on Conjugated Polymer and Silica Nanoparticles [J].Macromol Rapid Commun.2009,30(7)498–503.
    [102]Na Y. K., Kim D., Lee T. S, etal. Simultaneous detection and removal of mercury ions inaqueous solution with fluorescent conjugated polymer-based sensor ensemble [J].Macromol Rapid Commun.,2011,32(14):1061–1065
    [103]Elizabeth S.C., Courtney A.R., Elizabeth J.H., et al., Ratiometric FluorescenceDetection of Mercury Ions in Water by Conjugated Polymer Nanoparticles [J].Anal.Chemi.,2012,84(3):1235–1239
    [104]Lu Y., Li X., Wang G.K., Tang W., et al., A highly sensitive and selective optical sensorfor Pb2+by using conjugated polymers and label-free oligonucleotides [J]. BiosensBioelectron.,2013,39(1):231–235
    [105]Prodi L., Bolletta F., Zaccheroni N., et al., Luminescent chemosensors for transitionmetal ions [J]. Coord.Chem. ReV.,2000,205(1):59–83.
    [106]Wang B., Wasielewski M.R., Design and Synthesis of Metal Ion-Recognition-InducedConjugated Polymers: An Approach to Metal Ion Sensory Materials [J]. J. Am. Chem.Soc.,1997,119(1):12–21
    [107]Liu B., Yu W.-L., Huang W., et al., Design and Synthesis of Bipyridyl-ContainingConjugated Polymers: Effects of Polymer Rigidity on Metal Ion Sensing [J].Macromolecules,2001,34(23):7932–7940
    [108]Ding A.-L., Pei J., Huang W., et al., An efficient fluorescent chemosensor for Mg2+:selective and high sensitive [J]. Thin Solid Films.,2002,417(1-2):198–201
    [109]Pei J., Ding A.-L., Yu W.-L., et al., Structural Dependence of the Selectivity ofFluorescent Chemosensors to Mg2+from Alkali Earth Metal Ions [J]. Macromol. RapidCommun.,2002,23(1):21–25
    [110]Zhang M., Lu P., Shen J., et al., Metal Ionochromic Effects of Conjugated Polymers:Effects of the Rigidity of Molecular Recognition Sites on Metal Ion Sensing [J]. J. Phys.Chem. B2003,107,6535–6538
    [111]Fan Q.L., Zhou Y., Huang W., et al., Water-Soluble Cationic Poly(p-phenyleneeth-ynylene)s (PPEs): Effects of Acidity and Ionic Strength on Optical Behavior [J].Macromolecules,2005,38(7):2927–2936.
    [112]Liu B., Yu W., Huang W., et al., Synthesis of Bipyridine Containing ConjugatedPolymers: Effects of Polymer Rigidity on Metal Ion Recognition [J]. Macromolecules,2001,34(23):7932–7940.
    [113]范曲立,陈轶,高志强等,南京邮电大学学报(自然科学版)[J],2008,28(1):64–69
    [114]Zhang Y., Murphy C.B., Jones W.E. Poly[p-(phenyleneethynylene)-alt-(thienyleneet-hynylene)] Polymers with Oligopyridine Pendant Groups: Highly Sensitive Chemosensors for Transition Metal Ions [J]. Macromolecules,2002,35(3):630–636
    [115]Murphy C.B., Zhang Y., Martin J.J., et al., Probing Fo1rster and DexterEnergy-Transfer Mechanisms in Fluorescent Conjugated Polymer Chemosensors [J]. J.Phys. Chem. B,2004,108(5):1537–543.
    [116]Fan L.-J., Zhang Y., Jones W. E., Design and Synthesis of Fluorescence “Turn-on”Chemosensors Based on Photoinduced Electron Transfer in Conjugated Polymers [J].Macromolecules,2005,38(7):2844–2849.
    [117]Fan L.-J.; Jones W. E., Studies of photoinduced electron transfer and energy migrationin a conjugated polymer system for fluorescence "turn-on" chemosensor applications [J].J. Phys. Chem. B2006,110(15):7777–7782.
    [118] Liu B., Bao Y.Y., Bai R.K., et al., Synthesis and characterization of a fluorescentpolymer containing2,6-bis(2-thienyl)pyridine moieties as a highly efficient sensor forPd2+detection [J]. Chem. Commun.,2011,47(6):1731–1733
    [119]Huang H., Wang K., Jin Y., et al., Design of a modular-based fluorescent conjugatedpolymer for selective sensing [J]. Angew. Chem., Int. Ed.2004,43(42):5635–5638
    [120]李扬,曹利锋,田禾.1,8-萘酰亚胺修饰的卟啉及其作为F-识别化学传感器的研究.化学通报[J],2007,70(2):151–154.
    [121]Aldridge S., Bresner C., Fallis I. A., et al., Multidentate Lewis acids: synthesis, structureand mode of action of a redox-based fluoride ion sensor [J]. Chem. Commun.,2002,(7):740–741
    [122]Miyata M., Chujo Y., π-Conjugated organoboron polymer as an anion sensor [J]. Polym.J.2002,34(12):967-969
    [123]Saxena A., Fujiki M., Kwak G.., et al., Highly Sensitive and Selective Fluoride IonChemosensing, Fluoroalkylated Polysilane [J]. Macromol. Rapid Commun.2004,25(20):1771–1775
    [124]Tong H., Wang L., Wang F., et al., Turn-On”Conjugated Polymer FluorescentChemosensor for Fluoride Iron [J]. Macromolecules2003,36(8):2584–2586
    [125]Zhou G.., Cheng Y., Wang F., et al., Novel Polyphenylenes ContainingPhenol-Substituted Oxadiazole Moieties as Fluorescent Chemosensors for Fluoride Ion[J]. Macromolecules,2005,38(6):2148–2153
    [126]Wu C.-Y., Chen M.-S., Sun S.-S., et al., Photophysical studies of anion-inducedcolorimetric response and amplified fluorescence quenching indipyrrolylquinoxaline-containing conjugated polymers [J]. Chem.-Eur. J.2006,12(8):2263–2269
    [127]Kim T.-H., Swager T.M., A fluorescent self-amplifying wavelength-responsive sensorypolymer for fluoride ions [J]. Angew. Chem. Int. Ed.,2003,42(39):4803–4806
    [128]Kim Y., Lee J.K., Lee T.S., et al., Synthesis of bipyridine polymer linked withcyanostyryl groups for colorimetric and fluorescent anion sensing [J]. Thin Solid Films2005,477(1-2):100–103
    [129]Ho H.A., Leclerc M., New colorimetric and fluorometric chemosensor based on acationic polythiophene derivative for iodide-specific detection [J]. J. Am. Chem. Soc.2003,125(15):4412–4413
    [130]He F., Tang Y., Wang S., et al., Fluorescence-Amplifying Detection of HydrogenPeroxide with Cationic Conjugated Polymers, and Its Application to Glucose Sensing[J]. Adv. Funct. Mater.,2006,16(1):91–94
    [131] He F., Feng F.D., Wang S., et al., Fluorescence ratiometric assays of hydrogenperoxide and glucose in serum using conjugated polyelectrolytes [J]. J. Mater. Chem.,2007,17,3702–3707
    [132] Bao B.Q., Yuwen L.H., Zheng X.N., et al., A Fluorescent Conjugated Polymer forTrace Detection of Diamines and Biogenic Polyamines [J]. J. Mater. Chem.,2010,20(43):9628–9634.
    [133]Yao Z.Y., Bai H., and Shi G.Q., et al., Conjugated polyelectrolyte as a colorimetric andfluorescent probe for the detection of glutathione [J]. Chem Commun,2009(39):5886–5888
    [134]Yao Z.Y., Li Y.G., and Shi G.Q., et al., Disassembly of conjugated polyelectrolyteaggregates and their application for colorimetric detection of surfactants in water [J].Chem Commun,2010,46(45):8639–8641
    [135] Li C., Munenori N., Shinkai S.S., et al., Asensitive colorimetric and fluorescent probebased on a polythiophene derivative for the detection of ATP [J]. Angew. Chem. Int. Ed.2005,44,6371–6374
    [136] Yao Z.Y., Feng X.L., Li C., et al., Show Affiliations, Hide Affiliations, Conjugatedpolyelectrolyte as a colorimetric and fluorescent probe for the detection of glutathione[J]. Chem. Commun.,2009,5886–5888
    [137]Levitsky I.A., Kim J., Swager T.M., Energy Migration in a Poly(phenyleneethynylene):Determination of Interpolymer Transport in AnisotropicLangmuir Blodgett Films [J]. J. Am. Chem. Soc.1999,121(7):1466–14672
    [138]Rose A.; Lugmair C.G.; Swager T.M., Excited-state lifetime modulation intriphenylene-based conjugated polymers [J]. J. Am. Chem. Soc.2001,123(45):11298–11299
    [139]Yamaguchi S., Swager T.M., Oxidative cyclization of bis(biaryl)acetylenes: synthesisand photophysics of dibenzo[g,p]chrysene-based fluorescent polymers [J]. J. Am. Chem.Soc.2001,123(48):12087–12088
    [140]Zahn S., Swager T.M., Three-dimensional electronic delocalization in chiral conjugatedpolymers [J]. Angew. Chem. Int. Ed.2002,41(22):4225–4230
    [141]Lee K., Povlich L.K., Kim J., Recent advances in fluorescent and colorimetricconjugated polymer-based biosensors [J]. Analyst,2010,135(9):2179–2189
    [142]Li K., and Liu B., Polymer encapsulated conjugated polymer nanoparticles forfluorescence bioimaging [J]. J. Mater. Chem.,2012,22,1257–1264
    [143]Zhu C.L., Liu L.B., and Wang S., et al., Water-Soluble Conjugated Polymers for
    Imaging, Diagnosis, and Therapy [J]. Chem. Rev.,2012112(8):4687–4735
    [1] Ratte H.T., Bioaccumulation and toxicity of silver compounds: A review [J]. Environ.Toxicol. Chem.1999,18(1):89–108.
    [2] Firooz A. R., Ensaf A.A., Sharghi H., et al., A highly sensitive and selective bulk optodebased on benzimidazol derivative as an ionophore and ETH5294for the determination ofultra trace amount of silver ions [J]. Talanta,2012,101:171–176;
    [3] Yang Y., Li W.Y., Qi H., et al., Detection of silver(I) ions based on the controlledself-assembly of a perylene fluorescence probe [J]. Anal. Biochem.2012,430(1):48–52.
    [4] Zhang X., Han Z., and Yu R., et al.,5,10,15-Tris (pentafluorophenyl) corrole as highlyselective neutral carrier for a silver ion-sensitive electrode [J]. Anal. Chim. Acta.2006,562(2):210–215.
    [5] Silver S., Bacterial silver resistance: molecular biology and uses and misuses of silvercompounds [J]. FEMS Microbiol. Rev.2003,27(4):341–345.
    [6] Chakrapani G., Mahanta P.L., Gomathy B., et al., Preconcentration of traces of gold, silverand palladium on activated carbon and its determination in geological samples by flameAAS after wet ashing [J]. Talanta,2001,53:1139–1147.
    [7] Dadfarnia S., Shabani A.M.H., Gohari M., Trace enrichment and determination of silverby immobilized DDTC microcolumn and flow injection atomic absorption spectrometry[J]. Talanta,2004,64:682–687.
    [8] Krachler M., Mohl C., Emons H., et al., Analytical procedures for the determination ofselected trace elements in peat and plant samples by inductively coupled plasma massspectrometry [J]. Spectrochimica Acta Part B,2002,57(8):1277–1289;
    [9] Singh R.P., Pambid E.R., Selective separation of silver from waste solutions on chromium(III) hexacyanoferrate(III) ion exchanger [J]. Analyst,1990,115:301–304.
    [10] Coldur T.F., Andac M., Bati H., et al., Ag+-selective poly(vinyl chloride) membraneelectrode based on [N,N'-ethylenebis-(3-methoxy salicylaldimine)][J]. Current. Anal.Chem.,2011,7:136–145.
    [11] Mohammadi S.Z., Afzali D., Baghelani Y.M., et al., Ligandless dispersive liquid–liquidmicroextraction for the separation of trace amounts of silver ions in water samples andflame atomic absorption spectrometry determination [J]. Talanta,2009,80:875–879.
    [12] Lin Q.B., Li B., Wu H.J., et al., Determination of silver in nano-plastic food packagingby microwave digestion coupled with inductively coupled plasma atomic emissionspectrometry or inductively coupled plasma mass spectrometry [J]. Food Addit Contam.Part A,2011,28(8):1123–1128.
    [13] Zejli H., Rodriguez I.N., Temsamani K.R., et al., stripping voltammetry of silver ions atpolythiophene-modified platinum electrodes [J]. Talanta,2007,71:1594–1598.
    [14] Zheng H., Yan M., and Jian Y.B., et al., A heptamethine cyanine-based colorimetric andratiometric fluorescent chemosensor for the selective detection of Ag+in an aqueousmedium [J]. Chem. Commun.,2012,48(16):2243–2245;
    [15] Mirzaei M., Saeed J., et al., Selective and sensitive optical chemosensor for detection ofAg(I) ions based on2(4-hydroxy pent-3-en-2-ylideneamine) phenol in aqueous samples[J]. Spectrochim Acta AMol Biomol Spectrosc.,2011,82(1):351–354.
    [16] Shohei I., Taki M., and Yamamoto Y.K., Rosamine-based fluorescent chemosensor forselective detection of silver(I) in an aqueous solution [J]. Inorg. Chem.,2008,47(10):3946–3948;
    [17] Wang F., Nandhakumar R., and Yoon J.Y., et al., Ratiometric fluorescent chemosensorfor silver ion at physiological pH [J]. Inorg. Chem.,2011,50(6):2240–2245.
    [18] Jang S.J., Thirupathi P., and Lee K.H., et al., Highly sensitive ratiometric fluorescentchemosensor for silver ion and silver nanoparticles in aqueous solution [J]. Org. Lett.,2012,14(18):4746–4749.
    [19] Wang H.-H., Xue L., and Jian H., et al., Novel ratiometric fluorescent sensor for silverions [J]. Org. Lett.,2010,12(2):292–295.
    [20] Park C.S., Lee J.Y., Lee S.S., et al., A highly selective fluorescent chemosensor forsilver(I) in water/ethanol mixture [J]. Tetrahedron. Lett.2009,50(6):671–675.
    [21] Wang M.X., Meng X.M., Guo Q.X., etal., Novel fluorescent chemosensor for Ag+basedon coumarin fluorophore [J]. Chin. Chem. Lett.,2008,19(9):977–980.
    [22] Coskun A. and Akkaya E.U., et al., Ion sensing coupled to resonance energy transfer: Ahighly selective and sensitive ratiometric fluorescent chemosensor for Ag (I) by amodular approach [J]. J.Am.Chem. Soc.,2005,127(30):10464–10465.
    [23] Huang S.S, He S., and Zhao L.C., et al., Highly sensitive and selective fluorescentchemosensor for Ag+based on a coumarin–Se2N chelating conjugate [J]. Chem.Commun.,2011,47(8):2408–2410.
    [24] Kumar M., Kumar R., and Bhalla V., et al., Optical chemosensor for Ag+, Fe3+, andCysteine: information processing at molecular level [J]. Org. Lett.,2011,13(3):366–369.
    [25] Hu M.M., Fan J.L., and Peng X.G., et al., Enhanced fluorescent chemosensor for Ag+inabsolute aqueous solution and living cells: An experimental and theoretical study [J].Analyst,2012,137(9):2107–2111
    [26] Chatterjee A., Santra M., Ahn K.H., et al., Selective fluorogenic and chromogenic probefor detection of silver ions and silver nanoparticles in aqueous media [J]. J.Am.Chem.Soc.,2009,131(6):2040–2041.
    [27] Yang R.H., Chan W. H., Li K. A., et al., A ratiometric fluorescent sensor for Ag(I) withhigh selectivity and sensitivity [J]. J.Am.Chem. Soc.,2003,125(10):2884–2885.
    [28] Xu Z.C., Zheng S.J., Yoon J.Y., etal., Discovery of a highly selective turn-on fluorescentprobe for Ag+[J]. Analyst,2010,135(10):2554–2559.
    [29] He F., Feng F.D., Wang S., et al., Selective and homogeneous fluorescent DNAdetectionby target-induced strand displacement using cationic conjugated polyelectrolytes [J].Anal.Chem.2008,80(6):2239–2243.
    [30] Li B.L., Qin C.J., Dong S.J., et al., Flourescent switch constructed based onhemin-sensitive anionic conjugated polymer and its applications in DNA-related sensors[J]. Anal. Chem.,2009,2009,81(9):3544–3550.
    [31] Dishari S.K., Pu K.Y., Liu B., Combinatorial energy transfer between an end-cappedconjugated polyelectrolyte and chromophore-labeled PNA for strand-specific DNAdetection [J]. Macromol.Rapid.Commun.2009,30(19):1645–1650.
    [32] Nayak R.R., Nag O.K., Woo H.Y., et al., A micellar complex of a conjugatedpolyelectrolyte for efficient FRET to dye-labeled DNA [J]. Macromol.Rapid.Commun.2009,30(8):633–638.
    [33] He F., Tang Y.L., Wang S., et al., Fluorescent amplifying recognition for DNAG-quadruplex folding with a cationic conjugated polymer:a platform for homogeneouspotassium detection [J]. J. Am. Chem. Soc.2005,127(35):12343–12346;
    [34] Liu Y., Schanze K.S., Conjugated polyelectrolyte based real-time fluorescence assay foradenylate kinase [J]. Anal. Chem.,2009,81(1):231–239.
    [35] Feng F.D., Tang Y.L., Wang S., et al., Continuous fluorometric assays foracetylcholinesterase activity and inhibition with conjugated polyelectrolytes [J]. Angew.Chem. Int. Ed. Engl.,2007,46(41):7882–7886.
    [36] Wang Y.Y., Liu B., Conjugated polyelectrolyte-sensitized fluorescent detection ofthrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform[J]. Langmuir.2009,25(21):12787–12793.
    [37] Zou Y.P., Wan M.X., and Li Y.F., et al., An alternative copolymer of carbazole andthieno[3,4b]-pyrazine: synthesis and mercury detection [J]. Adv. Funct. Mater.2008,18(18):2724–2732.
    [38] McQuade D.T., Pullen A. E., Swager T. M., Conjugated polymer-based chemical sensors[J]. Chem. Rev.,2000,100(7):2537–2574.
    [39] Thomas S.W., Joly G.D., Swager T.M., Chemical sensors based on amplifyingfluorescent conjugated polymers [J]. Chem. Rev.,2007,107(4):1339–1386.
    [40] Hu Y.Q., Xiao Y., and Tan W.H., et al., An anion-conjugated polyelectrolyte designed forthe selective and sensitive detection of silver (I)[J]. Chem. Asian. J.,2011,6(6):1500–1504.
    [41] Tong H., Wang L.X., and Wang F.S., et al., Highly selective fluorescent chemosensor forsilver(I) ion based on amplified fluorescence quenching of conjugated polyquinoline [J].Macromolecules,2002,35(19):7169–7171.
    [42] Qin C.J., Wong W.Y., and Wang L.X., A Water-soluble organometallic conjugatedpolyelectrolyte for the direct colorimetric detection of silver ion in aqueous media withhigh selectivity and sensitivity [J]. Macromolecules,2011,44(3)483–489.
    [43] Chaikovskii V.K., Filimonov V.D. Skorokhodov V.I., etal. Superactivity and dualreactivity of the system N-iodosuccinimide-H2SO4in the iodination of deactivatedarenes [J]. Russ. J. Org. Chem.,2007,43(9):1278-1281.
    [44] Fang Z., Pu K.Y., Liu B., Asymmetric fluorescence quenching of dual-emissiveporphyrin-containing conjugated polyelectrolytes for naked-eye mercury ion detection[J]. Macromolecules,2008,41(22):8380–8387.
    [45] Gunin S., Parameswar K.I., Facile C H alkylation in water: enabling defect-freematerials for optoelectronic devices [J]. J. Org. Chem.,2010,75(8):2714–2717.
    [46] Fabiana S.M., Brenno A.D.N., Frank H.Q., et al., Are Molecular5,8-π-ExtendedQuinoxaline Derivatives Good Chromophores for Photoluminescence Applications?[J].Eur. J. Org. Chem.,2006,21:4924–4933.
    [47] Joergensen K.A., Shabana, R., Lawesson S.O., et al., Studies on organophosphoruscompounds. XXXII reactions of2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide with compoundscontaining the N→O function [J]. Bulletin des Societes Chimiques Belges.,1980,89(3):247–253.
    [48] Yang R., Tian R., Hou Q., et al., Deep-red electroluminescent polymers: synthesis andcharacterization of new low-band-gap conjugated copolymers for light-emitting diodesand photovoltaic devices [J]. Macromolecules,2005,38(2):244–253.
    [49] Hong D.J., Lee E.j., and Le M.E., et al., Self-organized spiral columns in laterallygrafted rods [J]. Chem. Commun.,2010,46(47):4896–4898.
    [50] Huang W.K., Cheng C.W., Diau E.W.G., et al., Synthesis and electron-transferproperties of benzimidazole-functionalized ruthenium complexes for highly efficientdye-sensitized solar cells [J]. Chem. Commun.,2010,46(47):8992–8994.
    [51] Satapathy R., Wu Y.H., Lin H.C., Novel Thieno-imidazole based probe for colorimetricdetection of Hg2+and fluorescence turn-on response of Zn2+[J]. Org. Lett.,2012,14(10):2564–2567.
    [52] Bao Y.Y., Wang H., and Bai R., et al.,2,2′-biimidazole-based conjugated polymers as anovel fluorescent sensing platform for pyrophosphate anion [J]. Macromolecules,2012,45(8):33943401.
    [53] Zhou Q., Swager T.M., Fluorescent chemosensors based on energy migration inconjugated polymers: the molecular wire approach to increased sensitivity [J]. J. Am.Chem. Soc.,1995,1179(50):12593–12602
    [54] Ho H.A., Leclerc M., New Colorimetric and fluorometric chemosensor based on acationic polythiophene derivative for iodide-specific detection [J]. J. Am. Chem. Soc.,2003,125(15):4412–4413.
    [55] Ho H.A., Leclerc M., Optical sensors based on hybrid aptamer/conjugated polymercomplexes [J]. J. Am. Chem. Soc.,2004,126(5):1384–1387.
    [56] Liu B., Baudrey S. Jaeger L., Bazan G. C., Characterization of TectoRNA assemblywith.ationic conjugated polymers [J]. J. Am. Chem. Soc.,2004,126(13):4076–4077.
    [57] Fan Q.L., Zhou Y., and Huang W., et al., Water-soluble cationic poly(p-phenyleneethynylene) s (PPEs): effects of acidity and ionic strength on opticalbehavior [J]. Macromolecules,2005,38:2927–2936.
    [58] Tang Y.L., He F., Wang S., et al., Areversible and highly selective fluorescent sensor formercury(II) using poly(thiophene)s that contain thymine moieties [J]. Macromol. Rapid.Commun.2006,27:389–392.
    [59] Kim I.B., Bunz U. F. H., Modulating the sensory response of a conjugated polymer byproteins: an agglutination assay for mercury ions in water [J]. J. Am. Chem. Soc.,2006,128(9)2818–2819;
    [60] Kim I.B., Phillips R., Bunz U.H.F., Forced agglutination as a tool to improve thesensory response of a carboxylated poly(p-phenyleneethynylene)[J]. Macromolecules,2007,40:814–817.
    [1] Hong D.J., Lee E.j., Lee M., et al., Self-organized spiral columns in laterally graftedrods [J]. Chem. Commun.,2010,46(27):4896–4898
    [2] Huang W.K., Cheng C.W., Lee Y.P., et al., E.W.G. Diau, Synthesis andelectron-transfer properties of benzimidazole-functionalized ruthenium complexes forhighly efficient dye-sensitized solar cells [J]. Chem. Commun.,2010,46(47):8992–8994
    [3] Satapathy R., Wu Y.H., Lin H.C., Novel Thieno-imidazole based probe forcolorimetric detection of Hg2+and fluorescence turn-on response of Zn2+[J]. Org. Lett.,2012,14(10):2564–2567.
    [4]柳波,沈永嘉,董黎芬,大stokes位移的荧光化合物[J],感光材料,1995,6:10-13
    [5] Handbook of Photochemistry [M];3rd ed.; CRC Press: Boca Raton. FL,2006
    [6] Drago, R. S. Physical Methods in Chemistry[M]; Saunders: Philadelphia, PA,1998
    [7] He S., Buelt A.A., Rhett C.S., et al., Sterically Encumbered Bipyridyl-DerivatizedConjugated Polymers and Metallopolymers Incorporating Phenylenevinylene,Phenyleneethynylene, and Fluorenylene Segments[J].Macromolecules,2012,45(16):6344–6352
    [8] Liu B.; Yu W.-L.; Huang W., et al., Design and Synthesis of Bipyridyl-ContainingConjugated Polymers: Effects of Polymer Rigidity on Metal Ion Sensing [J].Macromolecules,2001,34(23):7932–7940
    [9] Bredas J.L.; Cornil J.; Heeger A.J., et al., The exciton binding energy in luminescentconjugated polymers [J]. Adv. Mater.1996,8(5):447-452.
    [10] Lemmer U.; Heun S.; Baessler H., et al., Aggregate fluorescence in conjugated polymers,Chem. Phys. Lett.[J].1995,240(4):373-378.
    [11] Hernandez V.; Castiglioni C.; Zerbi G., et al., Confinement potential and pi-electrondelocalization in polyconjugated organic materials[J], Phys. Rev. B: Condens. Matter1994,50(14):9815-9823
    [12] Sigel A., H.SigelandR.K.O.Sigel, Ed., Nickel and Its Surprising Impact in Nature[M]John Wiley&Sons Ltd., U.K.,2007, Vol.2.
    [13] Maroney M.J., Structure/function relationships in nickel metallobiochemistry [J]. CurrOpin Chem Biol.,1999,3(2):188–99.
    [14] Drennan C.L., Doukov T. I. and Ragsdale S.W., The metalloclusters of carbon monoxidedehydrogenase/acetyl-CoA synthase: a story in pictures [J]. J. Biol Inorg. Chem.,2004,9(5):511–515.
    [15] Evans D.J., Chemistry relating to the nickel enzymes CODH and ACS [J]. Coord. Chem.Rev.,2005,249(15-16):1582–1595.
    [16] Fontecilla-Camps J.C., Volbeda A., Nicolet Y., et al., Structure/function relationships of
    [NiFe]-and [FeFe]-hydrogenases [J]. Chem Rev.,2007,107(10):4273–303.
    [17] Lindahl P.A., Implications of a carboxylate-bound C-cluster structure of carbonmonoxide dehydrogenase [J]. Angew. Chem., Int. Ed Engl.2008,47(22):4054–4056.
    [18] Report of the International Committee on Nickel Carcinogenesis in Man.,[M]. Scand.J. Work Environ. Health,1990,16(1Spec No)1–82.
    [19] Salnikow K. and Costa M., Epigenetic mechanisms of nickel carcinogenesis [J]. J.Environ. Pathol. Toxicol.Oncol.2000,19(3):307–318.
    [20] Denkhaus E. and Salnikow K., Nickel essentiality, toxicity, and carcinogenicity [J]. Crit.Rev. Oncol. Hematol.,2002,42(1):35–56.
    [21] Riedel W., Electroless Nickel Plating [M], ASM International, Finishing Publications,Stevenage, Hertfordshire, U.K.,1991;
    [22] Mallory G.O., Haydued J.B., Electroless Plating-Fundamentals and Applications [M],American Electroplaters and Surface Finishers Society, Orlando, FL,1990.
    [23] Falk S.U. and Salkind A. J., Alkaline Storage Batteries [M], Wiley, NewYork,1969.
    [24] Kowal A., Port S.N. and Nichols R.J., Nickel hydroxide electrocatalysts for alcoholoxidation reactions: An evaluation by infrared spectroscopy and electrochemicalmethods [J]. Catal. Today,1997,38(4):483–492.
    [25] Doll R., Matthews J.D. and Morgan L.G., Cancers of the lung and nasal sinuses in nickelworkers: a reassessment of the period of risk [J]. Br. J. Ind. Med.,1977,34(2):102–105.
    [26] Damjanov I., Mitchell J.M. and P.R.Allpass, Induction of testicular sarcomas in Fischerrats by intratesticular injection of nickel subsulfide [J]. Cancer Res.,1978,38(2):268–276.
    [27] Dunnick J.K., Elwell M.R., Hobbs C.H., et al., Comparative carcinogenic effects ofnickel subsulfide, nickel oxide, or nickel sulfate hexahydrate chronic exposures in thelung [J]. Cancer Res.,1995,55(22):5251–5256.
    [28] Dodani S.C, He Q.W., Chang C.J., A turn-on fluorescent sensor for detecting nickel inliving cells [J]. J. Am. Chem., Soc.2009,131(50):18020–18021.
    [29] Li. Z.X., Zhao. W.Y., Zhang. H.Y., et al.,1,8-Naphthyridine-Derived Ni2+/Cu2+-SelectiveFluorescent Chemosensor with Different Charge Transfer Processses [J]. Inorg. Chem.,2012,51(22):12444–12449.
    [30] Li G.-B., Fang H.-C., CaiY.-P., Zhou Z.-Y., et al., Construction of a novel Zn-Nitrinuclear Schiff base and a Ni2+chemosensor [J]. Inorg Chem.,2010,49(16):7241–7243.
    [31] Pearce D.A. Walkup G. K. and Imperiali B. Peptidyl chemosensors incorporating a fretmechanism for detection of Ni(II)[J]. Bioorg. Medi. Chem. Lett.,1998,8(15):1963–1968.
    [32] Khuhawar M.Y., Sarafrazyazdi A., Uden P.C., Capillary gas chromatographicdetermination of copper and nickel using microwave-induced plasma atomic emissiondetection [J]. J. Chromatography1993,636(2):271–276.
    [33] Kumar M.J., Bhalla V., Babu J. N., et al., ANi2+selective chemosensor based on partialcone conformation of calix[4]arene [J]. Dalton Trans.2010,39(42)10116–10121.
    [34] Ponnuswamy T., Chyan O., Detection of Ni2+by a dimethylglyoxime probe usingattenuated total-reflection infrared spectroscopy [J]. Anal Sci.2002,8(4):449–53.
    [35] Demiralay E.C., Andac M., Denizli A., et al., Nickel (II)-Imprinted MonolithicColumns for Selective Nickel Recognition [J]. J. Appli.Polym. Sci.,2010,117(6):3704–3714
    [36] Kaur N., Kumar S. Single molecular colorimetric probe for simultaneous estimation ofCu2+and Ni2+[J]. Chem. Commun.,2007,29,3069–3070
    [37] Joseph R., Ramanujam B., Chebrolu P.R., et al., Lower rim1,3-diamide-derivative ofcalix[4]arene possessing bis-N-(2,2'-dipyridylamide) pendants: a dual fluorescencesensor for Zn2+and Ni2+[J]. Tetrahedron Lett.,2008,49(43):6257–6261
    [38] Fernandez Y. D, Gramatges A. P, Patroni S., et al., Using micelles for a new approach tofluorescent sensors for metal cations [J].Chem. Commun.,2004,63(14):1650–1651
    [39] Latif U., Mujahid A., Dickert F. L, et al., Dual and tetraelectrode QCMs using imprintedpolymers as receptors for ions and neutral analytes [J]. Anal.and Bioanal. Chem.,2011,400(8):2507–2515
    [40] Wang B.Y., Hu Y.L., Su Z.X., Synthesis and photophysical behaviors of a bluefluorescent copolymer as chemosensor for protons and Ni2+ion in aqueous solution [J].React. Funct. Polym.2008,68(7):1137–1143.
    [41]刘宽,功能聚合物的设计,合成及其性能[D],杭州,浙江大学,2008。
    [42] Moghal J., Lynch P., Chambers G., et al., Electrochemical characterisation of polyarylene vinylenes [J]. J. Electroanal. Chem.,2010,650(2):159–162.
    [43] He S.S., Buelt A.A., Smith Rhett C., et al., Sterically Encumbered Bipyridyl-DerivatizedConjugated Polymers and Metallopolymers Incorporating Phenylenevinylene,Phenyleneethynylene, and Fluorenylene Segments [J]. Macromolecular.2012,45(16):6344–6352.
    [44] Wu C-S, Liu C-T and Chen Y., Multifunctional copolyfluorene containg pendantbenzimidazolyl groups: applications in chemical sensors and electuminescent devices[J]. Polym. Chem.,2012,3,3308–3317.
    [1] Mcdonnell G.; Russell D.A. Antiseptics and disinfectants: activity, action, and resistance[J]. Clin. Microbiol. Rev.1999,12(1):147179.
    [2] Alvaro M.; Garcia H., and Palomares E., Abis-benzimidazole-derived N, S macrocycle assensor for transition metal ions in aqueous solution [J]. Chem. Phys. Lett.2001,350(34):240-246.
    [3] Dessingou J., Mitra A. and Rao C.P., et al., Benzimidazole Conjugate of1,1'-Thiobis(2-naphthol) as Switch-On Fluorescence Receptor for Ag+and the Complex asSecondary Recognition Ensemble toward Cys, Asp, and Glu in Aqueous MethanolicSolution: Synthesis, Characterization, Ion and Amino Acid Recognition, ComputationalStudies, and Microscopy Features [J]. J.Org.Chem.2012,77(1):371378.
    [4]黄红梅,王柯敏,肖毅等,基于分子导线效应的聚苯乙炔一毗咤荧光共辘聚合物传感信号放大研究,科学通报[J],2003,48(11):11581162
    [5] Hong D.J., Lee E.j. and Lee M., et al., Self-organized spiral columns in laterally graftedrods [J]. Chem. Commun.,2010,46(27):4896–4898.
    [6]曾文南,聚芳烃二炔类水溶性共轭聚合物的合成及其在传感器中的应用研究[D],广州:华南理工大学,2010。
    [7] Huang W.K., Cheng C.W., Diau E.W.G., et al., Synthesis and electron-transferproperties of benzimidazole-functionalized ruthenium complexes for highly efficientdye-sensitized solar cells [J]. Chem. Commun.,2010,46(47):8992–8994.
    [8] Satapathy R., Wu Y.H., Lin H.C., Novel Thieno-imidazole based probe for colorimetricdetection of Hg2+and fluorescence turn-on response of Zn2+[J]. Org. Lett.,2012,14(10):2564–2567
    [1] Sundvall M.P., Eriksson P., Lehmann A., et al., Neurotoxicity of cysteine: interaction withglutamate [J]. Brain Res.,1995,705(1-2):65–70.
    [2] Heafeld M.T., Fearn S., Sturman S.G., et al., Plasma cysteine and sulphate levels inpatients with motor neurone, Parkinson's and Alzheimer's disease [J]. Neurosci. Lett,1990,110(1-2):216–220.
    [3] Xin L., Jie L., Zhao S.L., et al., Determination of D-Aspartic acid and D-Glutamic acid inmidbrain of parkinson's disease mouse by reversed phase high performance liquidchromatography [J]. Chin. J. Anal. Chem.,2007,35(8):1151–1154.
    [4] Ralph D.M., Robinson S.R., Bishop G.M., et al., Histidine, cystine, glutamine, andthreonine collectively protect astrocytes from the toxicity of zinc [J]. Free Radical Biol.Med.,2010,49(4):649–657.
    [5] Sullivan.Jr D.J., Gluzman I.Y. and Goldberg D.E., Plasmodium hemozoin formationmediated by histidine-rich proteins [J]. Science1996,271(5264):219–222.
    [6] Jones A.L., Hulett M.D and Parish C.R., Histidine-rich glycoprotein: A novel adaptorprotein in plasma that modulates the immune, vascular and coagulation systems [J].Immunol Cell Biol.,2005,83(2):106–118.
    [7] Fang B., Wei Y., Li M., Zhang W., et al., Study on electrochemical behavior of tryptophanat a glassy carbon electrode modified with multi-walled carbon nanotubes embeddedcerium hexacyanoferrate [J]. Talanta,2007,72(4):1302–1306.
    [8] Myint A.M., Kim Y.K., Verkerk R., Kynurenine pathway in major depression: evidence ofimpaired neuroprotection [J]. J. Affect Disord.2007,98(1-2):143–151.
    [9] Matin A., Streete I.M., Jamie J.F., et al., A fluorescence-based assay for indoleamine2,3-dioxygenase [J]. Anal Biochem.2006,349(1):96–102.
    [10] Guo Y., Guo S., Dong S., et al., Gold nanoparticle/carbon nanotube hybrids as anenhanced material for sensitive amperometric determination of tryptophan [J].ElectrochimicaActa2010,55(12):3927–3931.
    [11] Ye D.X., Luo L.Q., Liu X., et al., Fabrication of Co3O4nanoparticles-decoratedgraphene composite for determination of L-tryptophan [J]. Analyst2012,137(12):2840–2845.
    [12] Ma D.L., Wong W.L., Wong K.Y., et al., Ahighly selective luminescent switch-on probefor histidine/histidine-rich proteins and its application in protein staining [J]. AngewChem Int Ed Engl.2008,47(20):3735–3739.
    [13] Andersen J.F.F., Lynch V.M., Anslyn E.V.,“Naked-Eye” detection of histidine byregulation of Cu(II) coordination modes [J]. Chemistry.2005,11(18):5319–5326.
    [14] Liu Y., Fan M.G., and Yao J.N., et al., Basic amino acid induced isomerization of aspiropyran: towards visual recognition of basic amino acids in water [J]. New J. Chem.,2007,31(11):1878–1881;
    [15] Zhang Z., Liao H., Yao S., et al., Stereoselective histidine sensor based on molecularlyimprinted sol-gel films [J]. Anal Biochem.2005,336(1):108–116.
    [16] You J.S., Yu X.Q., Xie R.G., et al., Novel chiral imidazole cyclophane receptors:synthesis and enantiosele ctive recognition for amino acid derivatives [J]. ChemCommun.,2001,18:1816–1817.
    [17] Wong W. L., Huang K.A., Kwong H.L., et al., Anovel chiral terpyridine macrocycle as afluorescent sensor for enantioselective recognition of amino acid derivatives [J]. ChemCommun.,2004,4:384–385.
    [18] Li X.H., Ma H.M., Xiong S.X., et al., A novel fluorescent probe for selective labeling ofhistidine [J]. Anal Chim Acta.,2004,515(2):255–260.
    [19] Wu P. and Yan X.P., Ni2+-modulated homocysteine-capped CdTe quantum dots as aturn-on photoluminescent sensor for detecting histidine in biological fluids [J]. BiosensBioelectron.,2010,26(2):485–490.
    [20] Huang C.C., Tseng W.L., Highly selective detection of histidine usingo-phthaldialdehyde derivatization after the removal of aminothiols through Tween20-capped gold nanoparticles [J]. Analyst,2009,134(8):1699–1705.
    [21] Wang M., Mei Q., Zhang Z., et al., Protein-gold nanoclusters for identification of aminoacids by metal ions modulated ratiometric fluorescence [J]. Analyst,2012,137(7):1618–1623.
    [22] Gao J., Zhan A.G., Severin K., et al., Pattern-based sensing of shortoligodeoxynucleotides with palladium–dye complexes [J]. Chem. Commun.,2010,46(30):5515–5517.
    [23] Rochat S., Severin K.J., Pattern-based sensing with metal dye complexes: sensor arraysversus dynamic combinatorial libraries [J]. J. Comb.Chem.,2010,12(4):595–599.
    [24] Buryak A., Severin K., A chemosensor array for the colorimetric identification of20natural amino acids [J]. JAm Chem Soc.,2005,127(11):3700–3701.
    [25] Zhou Y., Yoon J., Recent progress in fluorescent and colorimetric chemosensors fordetection of amino acids [J]. Chem Soc Rev.,2012,41(1):52–67.
    [26] Sun S.K., Tu K.X., Yan X.P., An indicator-displacement assay for naked-eye detectionand quantification of histidine in human urine [J]. Analyst,2012,137(9):2124–2128.
    [27] Kumar M., Kumar R., Bhalla V., Optical chemosensor for Ag+, Fe3+, and cysteine:information processing at molecular Level [J]. Org Lett.,2011,13(3):366–369.
    [28] Xie W.Y., Huan W.T., Luo H.Q., et al., Silver(I) ions and cysteine detection based onphotoinduced electron transfer mediated by cytosine–Ag+–cytosine base pairs [J].Analyst,2011,136(20):4130–4133;
    [29] He Y., Wang X., Song G.W., et al., Ni2+-modified gold nanoclusters for fluorescenceturn-on detection of histidine in biological fluids [J]. Analyst,2012,137(17):4005–4009.
    [30] Sun S.K., Tu K.X., Yan X.P., An indicator-displacement assay for naked-eye detectionand quantification of histidine in human urine [J]. Analyst2012,137(9):2124–2128.
    [31] Chen Z.G., Wang Z., Chen X., et al., Alizarin red S/copper ion-based ensemble forfluorescence turn on detection of glutathione with tunable dynamic range [J]. BiosensBioelectron.,2012,38(1):202–208.
    [32] Pathak R.K., Tabbasum K., Rao C.P., et al., A Zn2+specific triazole based calix[4]areneconjugate (L) as a fluorescence sensor for histidine and cysteine in HEPES buffer milieu[J]. Analyst,2012,137(17):4069–4075;
    [33] Huang Z., Du J., Pu L., et al., A simple and efficient fluorescent sensor for histidine [J].Chem Commun.,2012,48(28):3412–3414.
    [34] Gooding J.J., Hibbert D.B., and Yang W., Electrochemical metal ion sensors: exploitingamino acids and peptides as recognition elements [J]. Sensors,2001,1:75–90.
    [35] Lee J.H., Kim D.G., Lee T.S., et al., Protein–induced aggregation of fluorescentconjugated polyelectrolytes with sulfonate groups: synthesis and its sensing application[J]. J. Poly. Sci. Part A: Poly. Chem.,2011,49(1):138–146.
    [36] Bao Y., Li Q., Bai R., et al., Conjugated polymers containing a2,2′-biimidazolemoiety–a novel fluorescent sensing platform [J]. Chem. Commun.,2012,48(1):118–120.
    [37] Yao Z., Bai H., Shi G., et al., Colorimetric and fluorescent dual probe based on apolythiophene derivative for the detection of cysteine and homocysteine [J]. ChemCommun2011,47(26):7431–7433.
    [38] Kim D., Jang G., Lee T.S., et al., Cobalt ion-Mediated cysteine detection with ahyperbranched conjugated polyelectrolyte as a new sensing platform [J]. MacromolRapid Commun.2012,33(18):1510–1516.
    [39] Shang L., Qin C.J., Dong S.J., et al., Fluorescent conjugated polymer-stabilized goldnanoparticles for sensitive and selective detection of cysteine [J]. J. Phys. Chem. C2007,111(36):13414–13417.
    [40] Zeng Q., Zhang L.Y., Tang B.Z., et al., New polyacetylene-based chemosensorymaterials for the “turn-on” sensing of α-amino acids [J]. Polymer2009,50(2):434–440.
    [41] Li Z.A., Lou X.D., Qin J.G., et al., ANew approach to fluorescence “turn-on” sensing ofα-amino acids [J]. ACS Appl Mater Interfaces.2009,1(2):232–234.
    [42] He G., Yan N., Fang Y., et al., A Quinoliene-containing conjugated polymer-basedsensing platform for amino acids [J]. Macromolecules2011,44(18):7096–7099.
    [43] Rakesh K., Pathak V.K., Rao C.P., et al., Ultra-high-sensitive extraction-photometricdetermination of sodium ion using flow injection analysis with a chromogeniccalix[4]arene derivative and a laser interferometric photothermal detector [J]. AnalChem.2012,84(15):6907–6913.
    [44] Dessingou J., Mitra A., Rao C.P., et al., Benzimidazole conjugate of1,1’-thiobis(2-naphthol) as switch-on fluorescence receptor for Ag+and the complex as secondaryrecognition ensemble toward Cys, Asp, and Glu in aqueous methanolic solution:synthesis, characterization, ion and amino acid recognition, computational studies, andmicroscopy features [J]. J Org Chem.,2012,77(1):371–378.
    [45] Fang Z., Pu K.Y., Liu B., Asymmetric fluorescence quenching of dual-emissiveporphyrin-containing conjugated polyelectrolytes for naked-eye mercury ion detection[J]. Macromolecules2008,41(21):8380–8387.
    [46] Hong D.J., Lee E.j., Choi M.G.and Lee M., Self-organized spiral columns in laterallygrafted rods [J]. Chem. Commun.,2010,46(27):4896–4898.
    [47] Huang W.K., Cheng C.W., Diau E.W.G., et al., Synthesis and electron-transfer propertiesof benzimidazole-functionalized ruthenium complexes for highly efficientdye-sensitized solar cells [J]. Chem. Commun.,2010,46(47):8992–8994.
    [48] Satapathy R., Wu Y.H., Lin H.C., Novel Thieno-imidazole based probe for colorimetricdetection of Hg2+and fluorescence turn-on response of Zn2+[J]. Org. Lett.,2012,14(10):2564–2567.
    [49] Silva A.P., Moodyb T.S. and Wright G.D., Fluorescent PET (Photoinduced ElectronTransfer) sensors as potent analytical tools [J]. Analyst,2009,134(12):2385-2393.
    [50] Sariciftci N. S. Smilowitz L., Heeger A. J., Wudi F., Photoinduced eletron transfer froma conducting polymer to buckminsterfullerene, Science,1992,258:1474-1478;
    [51] Miller E.W., Lin J.Y., Tsien R.Y., et al., Optically monitoring voltage in neurons byphoto-induced electron transfer through molecular wires [J]. Proc Natl Acad Sci U S A.2011,109(6):2114-2119.
    [52]张明,若干联吡啶类配体及金属配合物的合成,电子结构与光电性质的研究[D],长春,吉林大学,2004
    [53] Holliday B.J., Swager T.M., Conducting metallopolymers: the roles of moleculararchitecture and redox matching [J]. Chem. Commun.,2005,1:23-26;
    [54] He S.S, Buelt A.A., Smith R.C., et al., Sterically Encumbered Bipyridyl-DerivatizedConjugated Polymers and Metallopolymers Incorporating Phenylenevinylene,Phenyleneethynylene, and Fluorenylene Segments [J]. Macromolecules,2012,45(16):6344-6352.
    [55] Joseph R., Ramanujam B., Rao C.P., et al., Lower rim1,3-Di{bis(2-picolyl)}amidederivative of Calix[4]arene(L) as ratiometric primary sensor toward Ag+and thecomplex of Ag+as secondary sensor toward cys: experimental, computational, andmicroscopy studies and INHIBIT logic gate properties of L [J]. J. Org. Chem.,2009,74(21):8181–8190.
    [56] Guo J.H., Kong D.M. and Shen H.X., Design of a fluorescent DNA IMPLICATIONlogic gate and detection of Ag+and cysteine with triphenylmethane dye/G-quadruplexcomplexes [J]. Biosens Bioelectron.,2010,26(2):327–332.
    [57] Zhao C., Qu K., Qu X., et al., A reusable DNA single-walled carbon-nanotube-basedfluorescent sensor for highly sensitive and selective detection of Ag+and cysteine inaqueous aolutions [J]. Chemistry.2010,16(27):8147–8154.
    [58] Feng D.-Q., Liu G., Li D., et al., Ahighly selective and sensitive on–off sensor for silverions and cysteine by light scattering technique of DNA-functionalized goldnanoparticles [J]. Chem Commun.,2011,47(30):8557–8559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700