用户名: 密码: 验证码:
泛三大洋微微型浮游生物的分布及其与环境因子的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋微微型浮游生物是地球上种类最丰富,数量最多的有机体,介导着生物地球化学循环过程,在海洋生态系统中起着极其重要的作用。国际上有关微微型浮游植物、异养细菌和浮游病毒在大尺度范围的分布规律报道很少,且在不同海洋环境条件下,微微型浮游植物、异养细菌和浮游病毒之间的相关性及其与环境因子之间的相关性,特别是浮游病毒与宿主细胞间的相关性研究更少。因此,本论文采用流式细胞仪计数法对西太平洋、印度洋、环南大洋及南极水域原绿球藻、聚球藻、微微型真核浮游植物、异养细菌和浮游病毒丰度的分布特点进行了研究,并利用PCA和Pearson相关系数法分析了微微型浮游生物与水温、盐度、营养盐(磷酸盐、硝酸盐+亚硝酸盐和硅酸盐)等环境因子之间的相互关系,同时还分析了不同水域各微微型浮游生物之间的相关性。本文还利用RFLP技术对南极长城湾微微型真核浮游生物的分子多样性进行了分析。本文的研究有助于探讨微微型浮游生物的分布规律、各生物因子之间及环境因子对其分布的影响,并为海洋生态环境的监测、预警及修复提供基础的数据资料。
     (1)原绿球藻在西太平洋和印度洋的分布分别延伸至~50°S和~46°S,限制其生长的最低温度分别为9.7°C和11.8°C。在赤道地区丰度最高,随着赤道地区向高纬度水体延伸,丰度逐渐减低直至消失。原绿球藻在西太平洋和印度洋水域的丰度分别为~5.4×10~3–4.20×10~5个mL~(-1)和1.45×10~4–3.73×10~5个mL~(-1)。生物量分别为0.16–15.64mg m-3和0.20–11.6mg m-3。在赤道附近海域,原绿球藻对浮游植物生物量的贡献率达到~52.2%,是浮游植物生物量的主要贡献者。在西太平洋,影响原绿球藻分布的主要因素是温度和营养盐(磷酸盐和硅酸盐),与温度和较低的磷酸盐浓度成显著的正相关性(p<0.01);与较高的硅酸盐浓度成负相关性(p<0.01);在印度洋,由于研究海域营养盐水平较高,原绿球藻主要受温度的影响,其生物量与温度呈显著正相关性(p<0.01)。
     (2)聚球藻在西太平洋和印度洋的分布分别延伸至57.1°S和54.1°S,限制它们生长的最低温度分别为4.1°C和6.4°C。中纬度水域聚球藻丰度高于低纬度。聚球藻在西太平洋和印度洋水域的丰度分别为1.10×10~3–2.29×10~5个mL~(-1)和1.54×10~3–2.79×10~5个mL~(-1)。生物量分别为0.26–17.74mg m~(-3)和0.3~5–12.93mgm-3。在西太平洋,聚球藻与温度呈显著负相关性(p<0.01),与硝酸盐+亚硝酸盐和硅酸盐成显著正相关性(p<0.01)。在印度洋,聚球藻主要受温度的影响,其生物量与温度呈显著正相关性(p<0.01)。
     (3)微微型真核浮游植物广泛存在于所研究的海域,在中纬度水域丰度高于低纬度,在高纬度南极水域丰度更低。在南极水域,大陆架水体微微型真核浮游植物的丰度明显低于远洋水体;在垂直分布上,随着水深的增加,它的丰度逐渐减低,直至500m水深完全消失。它在西太平洋、印度洋、环南大洋的丰度分别为5.2×102–4.68×10~4个mL~(-1),4.9×102–1.73×10~4个mL~(-1),7.6×102–1.04×10~4个mL~(-1)和1.42×102–4.00×10~3个mL~(-1)。生物量分别为0.26–17.74mg m-3,0.36–29.8mg m-3,0.99–14.1mg m-3。在中纬度水域,微微型真核浮游植物是浮游植物生物量的主要贡献者。在不同大洋,影响微微型真核浮游植物分布的因素不同。在西太平洋,微微型真核浮游植物的分布主要受营养盐影响,与硝酸盐+亚硝酸盐和硅酸盐成显著正相关性(p<0.01)。在印度洋,它主要受温度的影响,其生物量与温度呈显著正相关性(p<0.01);在环南大洋,磷酸盐和温度是影响微微型真核浮游植物分布的主要因素。微微型真核浮游植物生物量与磷酸盐成显著的正相关性(p<0.01),与温度成显著的负相关性(p<0.01)。在南极水域,微微型真核浮游植物丰度与水深、盐度、溶解氧、硝酸盐+亚硝酸盐、磷酸盐和硅酸盐浓度都有显著的负相关性(p<0.01)。
     (4)异养细菌广泛存在于所研究的海域,在中纬度水域丰度高于低纬度,在高纬度南极水域丰度更低。在南极水域,大陆架水体的异养细菌丰度明显低于远洋水体;在水深较浅的断面,异养细菌丰度在垂直分布上无显著差异,在水深较深的断面,在深层水体的丰度明显低于上层水体。在西太平洋、印度洋、环南大洋和南极水域的丰度分别为2.27×10~5–3.80×10~6个mL~(-1),2.6~5×10~5–1.27×10~6个mL~(-1),8.4×10~5–1.32×10~6个mL~(-1)和1.0~5×10~5–3.69×10~6个mL~(-1)。生物量分别为4.~54–79.55mg m-3,5.31–25.4mg m~(-3),1.68–26.4mg m~(-3)和2.10–73.8mg m~(-3)。在西太平洋,异养细菌的分布主要受营养盐影响,与硝酸盐+亚硝酸盐和硅酸盐成显著正相关性(p<0.01)。在印度洋,异养细菌生物量与硝酸盐+亚硝酸盐浓度呈显著的负相关性(p<0.01)。在南极水域,异养细菌丰度与深度、盐度、磷酸盐和硅酸盐成显著负相关性(p<0.01)。
     (5)浮游病毒广泛存在于所调查的海域,在水平分布上,浮游病毒的丰度与宿主细胞的丰度分布存在密切的联系。在赤道水域存在高值区,与原绿球藻的丰度分布趋势一致;而在中纬度水域,其高值区与聚球藻、微微型真核浮游植物和异养细菌的丰度分布一致。在南极水域浮游病毒在2000m以下水层均有分布,其垂直分布规律与异养细菌类似。在西太平洋、印度洋、环南大洋和南极水域的丰度分别为2.17×10~6–2.49×10~7个mL~(-1),3.80×10~6–2.41×10~7个mL~(-1),1.46×10~6–2.98×10~7个mL~(-1)和1.49×10~6–4.39×10~7个mL~(-1)。生物量分别为0.42–4.95mg m~(-3),0.76–4.82mg m~(-3),0.11–13.3mg m~(-3)和0.25–8.78mg m~(-3)。在西太平洋,浮游病毒与微微型真核浮游植物、聚球藻和异养细菌生物量之间存在显著的正相关性(p<0.01),但在赤道水域与原绿球藻生物量存在显著正相关性(p<0.01);浮游病毒生物量与硝酸盐+亚硝酸盐和硅酸盐成显著正相关性(p<0.01),与温度成显著的负相关性(p<0.01)。在印度洋和环南大洋,浮游病毒的分布仅受异养细菌的影响,与异养细菌生物量成显著正相关性(p<0.01)。在南极水域,浮游病毒与叶绿素a、微微型真核浮游植物丰度及异养细菌丰度成显著正相关性(p<0.01),与水深、盐度、磷酸盐和硅酸盐成显著负相关性(p<0.01)。本文研究表明浮游病毒的分布主要受各海域浮游生物中主要优势类群丰度变化的影响,而营养盐等环境因子通过影响病毒宿主的生长从而间接地影响浮游病毒的空间分布。温度、盐度可能直接或间接地影响病毒的分布。
     (6)不同海域,不同类型的微微型浮游生物对海洋生态系统碳循环所贡献的生物量不同。在西太平洋和环南大洋,异养细菌生物量在微微型浮游生物中占据主导地位。在印度洋,微微型真核浮游植物生物量在微微型浮游生物中占主导地位。本文还发现微微型浮游生物存在拮抗和协调生长的作用。一方面,原绿球藻丰度和聚球藻、微微型真核浮游植物丰度成显著的负相关性(p<0.01),表明原绿球藻与这2者之间存在拮抗作用。在低纬度水域,水温高,营养盐(特别是磷酸盐浓度)较低,体积较小的原绿球藻有更强的生长竞争优势,丰度升高,而聚球藻和微微型真核浮游植物丰度降低;而在中纬度水域,水温降低,营养盐浓度升高,较大个体的藻类生长占优势地位,聚球藻和微微型真核浮游植物丰度升高,而不占竞争优势的原绿球藻丰度急剧降低。另一方面,异养细菌丰度和聚球藻、微微型真核浮游植物丰度之间存在着显著的正相关性(p<0.01),表明异养细菌与聚球藻、微微型真核浮游植物存在协同生长的作用。在中纬度水域,无机营养盐丰富,聚球藻和微微型真核浮游植物利用无机营养物生长,同时将无机营养物转化为有机营养成分,导致了水体中有机营养物的增加。这些增加的有机营养物被异养细菌利用,异养细菌快速生长,导致在中纬度水域异养细菌丰度随之升高。同时,异养细菌又将制造出大量的无机营养物质,这些物质又可以维持聚球藻和微微型真核浮游植物的生长。(7)本文运用PCR-RFLP技术,在国际上首次揭示了南极长城湾海域微微型真核浮游生物的类群,获得了南极长城湾38个微微型真核浮游生物OTUs,主要类群为横裂甲藻纲(Dinophyceae)、真菌类(Fungi)、丝足虫类(Cercozoa)和纤毛虫亚纲(Ciliates)和未获培养的海洋微微型真核浮游生物。各类群的OTUs数分别为2个、16个、~5个、2个和13个,未获培养的海洋微微型真核浮游生物占总OTUs数的33.4%。
Picoplankton plays an important role in marine ecostystem. Over the past decades,much effort has been devoted to understand picoplankton abundance and their spatialdistribution in Pacific Ocean, India Ocean and the encycling southern Ocean.However,distribution of picophytoplankton, heterotrophic bacteria and viruses onlarge-scale pelagic investigations is practically rare. The correlation amongpicophytoplankton, heterotrophic bacteria and viruses and their relationships withenvironmental factors in different marine environmental conditions, especially thecorrelation between viruses and their host cells are rarer. Therefore, Flow cytometrywas used to study the spatial distribution pattern of Prochlorococcus (Pro),Synechococcus (Syn), Picoeukaryotes (Euk), heterotrophic bacteria and virioplanktonin Pacific Ocean, India Ocean, the encircling southern Ocean and Antarctic waters.PCA (Principal component analysis) and Pearson correlation coefficient analysiswere also used to analyze the relationships between picoplankton and watertemperature, salinity, nutrients (phosphate, nitrate+nitrite and silicate), dissolvedoxygen in different marine environmental conditions and study the relationshipsbetween viruses and their host cells. RFLP (Restriction Fragment LengthPolymorphism) method was also applied to analyze genetic diversity of Eukaryoticpicoplankton in the Great Wall Bay, Antarctica. It hopes to investigate thedistribution characteristics of picoplankton and their relationship with environmentalfactors, in order to provide the basic data for monitoring, early warning and repairingthe marine environment.(1) In this paper, spatial distribution of Pro, Syn, Euk, heterotrophic bacteria and virioplankton were detected in the waters (30°N–69°S,155°E–69°W). Euk, heterotrophic bacteria and virioplankton are distributedwidespreadly in the surveyed area, while pico-photosynthetic prokaryotes are not.The latitudinal distribution of pico-photosynthetic prokaryotes was limited by watertemperature. Pro in the western Pacific and the Indian Ocean was distributed to50°Sand46°S from the north, respectively. The minimum temperature limiting theirgrowth was9.7°C and11.8°C, respectively. Pro abundance was the highest in theequatorial regions, it decreased gradually as the latitude increases and finally itdisappears. The range of Pro abundance in the western Pacific and the Indian Oceanwere5.4×10~3-4.20×10~5cells mL~(-1)and1.45×10~4-3.73×10~5cells mL~(-1),respectively. The Biomasses in the western Pacific and the Indian Ocean were0.16-15.64mg m~(-3)and0.20-11.6mg m~(-3), respectively. Pro made up55.2%of theestimated phytoplankton biomass in the equatorial regions and accounted for themain contributor to phytoplankton biomass in the Western Pacific, In the WesternPacific, the major factors affecting the distribution of Pro were temperature andnutrients. Pro biomass correlated positively with temperature and low phosphate(p<0.01), and negatively with high silicate concentration (p<0.01); Due to highlevels of nutrient waters in the Indian Ocean, Pro was mainly affected by temperatureand Pro biomass were significantly positively correlated with temperature (p <0.01).
     (2) Syn in the western Pacific and Indian Ocean distribution was extended to55°S and54.1°S, respectively. The minimum temperatures limiting their growth were4.1°C and6.4°C, respectively. Syn abundance in Mid-latitude waters was higherthan that in the low-latitude waters. Syn in the western Pacific and Indian Oceanwaters abundance were1.10×10~3–2.29×10~5cells mL~(-1)and1.54×10~3–2.79×10~5cells mL~(-1), respectively. The Biomasses were0.26–17.74mg m~(-3)and0.35–12.93mg m~(-3), respectively. In the Western Pacific, Syn was significantly and negativelycorrelated with temperature (p <0.01), and significantly and positively with nitrate+nitrite and silicate (p <0.01). In the Indian Ocean, Syn was mainly affected bytemperature, and syn biomass were significantly and positively correlated withtemperature (p <0.01).
     3) Euk abundance in mid-latitude waters was higher than that of low-latitude watersand the lowest in the high-latitude Antarctic waters. Euk abundance in the continentalshelf waters was lower than that of the open waters. Euk abundance in the westernPacific, Indian Ocean, Central Southern Ocean and Antarctic waters were5.2×102–4.68×10~4cells mL~(-1),4.9×102–1.73×10~4cells mL~(-1),7.6×10~2–1.04×10~4cells mL~(-1)and1.42×10~2–4.00×10~3cells mL~(-1), respectively. Their biomasses were0.26–17.74mg m~(-3),0.36–29.8mg m~(-3),0.99–14.1mg m~(-3)and0.06–3.21mg m~(-3),respectively. Spatial distribution of Euk was effected by different environmentalfactors in different oceans. In the Western Pacific, the distribution of Euk wasprimarily affected by nutrients and Euk biomass showed a significant and positivecorrelation with nitrate+nitrite and silicate (p <0.01). In the Indian Ocean, Euk ismainly influenced by temperature and Euk biomass was significantly and positivelycorrelated with temperature (p <0.01); in the encircling Southern Ocean, Euk biomassshowed a significant and positive correlation with phosphate (p <0.01), and asignificant and negative correlation with temperature (p <0.01). In Antarctic waters,eukaryotic phytoplankton abundance showed significant and negative correlationswith water depth, salinity, nitrate+nitrite, phosphate and silicate concentrations (p<0.01).
     (4) The abundance of heterotrophic bacteria was the lowest in Antarctic waters, Theanalysis on vertical profile of bacterial abundance indicated that there was nosignificant decrease (p>0.05) in the IS Transect, which depth is shallow. Theirabundance in the bottom layer was lower than in the upper layers in those deeptransects, which the viral vertical distribution was similar to in Antarctic waters. Theabundance in the Western Pacific, the Indian Ocean, Southern Ocean and Antarcticwaters were2.27×10~5–3.80×10~6cells mL~(-1),2.65×10~5–1.27×10~6cells mL~(-1),8.4×10~5–1.32×10~6个mL~(-1)and1.05×10~5–3.69×10~6cells mL~(-1), respectively. The biomasseswere4.54–79.55mg m~(-3),5.31–25.4mg m~(-3),1.68–26.4mg m~(-3)and2.10–73.8mgm~(-3), respectively. In the Western Pacific, spatial distribution of heterotrophic bacteriais mainly affected by nutrients and bacteria biomass was significantly and positivelycorrelated with nitrate+nitrite and silicate (p <0.01). In the Indian Ocean, heterotrophic bacteria biomass was significantly and negetively correlated withnitrate+nitrite concentration (p <0.01). In Antarctic waters, heterotrophic bacteriaabundance showed a significant and negative correlation with water depth, salinity,phosphate and silicate (p <0.01).
     (5) Viral abundance in the western Pacific, Indian Ocean, encircling Southern Oceanand Antarctic waters were2.17×10~6–2.49×10~7particles mL~(-1),3.80×10~6–2.41×10~7particles mL~(-1),1.46×10~6–2.98×10~7particles mL~(-1)and1.49×10~6–4.39×10~7particlesmL~(-1), respectively. The biomasses were0.42–4.95mg m~(-3),0.76–4.82mg m~(-3),0.11–13.3mg m~(-3)and0.25–8.78mg m~(-3), respectively. The spatial distribution ofvirus was mainly affected by the distribution of the host cells. In the western Pacific,viral distribution is affected by host cells and environmental factors. Viral biomasscorrelated positively with the Syn, Euk, heterotrophic bacteria biomass, nitrate+nitrite and silicate (p<0.01), and negatively with temperature (p<0.01). In the IndianOcean and Southern Ocean, the distribution of viruses were only affected byheterotrophic bacterial and viral biomass showed a significant and positivecorrelation with heterotrophic bacteria biomass (p <0.01). In Antarctic waters, viralabundance was significantly and positively correlated with chlorophyll a, eukabundance and bacteria abundance (p <0.01), and significantly and negativelycorrelated with water depth, salinity, phosphate and silicate were (p <0.01).
     (6) According to analyze the biomass of each group of picoplankton in the westernPacific, Indian Ocean and encircling Southern Ocean (including the three partitions ofthe Pacific, Indian Ocean and the Atlantic), it was found that heterotrophic bacteriaaccounted for the vast majority of the estimated picoplankton biomass in the Pacificand Atlantic, while the contribution of Euk to total picoplankton biomass dominatedin the Indian Ocean. Our results also suggested that antagonistic and synergisticeffects existed among the groups of picoplankton. In one hand, Pro showed asignificant and negative correlation with Syn, Euk and heterotrophic bacteria (p<0.01), which suggested that pro showed the antagonistic effects with Syn and Euk.In the low-latitude waters, Pro abundance was higher than that of Syn and Eukbecause of high temperature and low nutrients. In the mid-latitude waters, it benifited for the growth of the bigger algae cells with the nutrients increased, then Euk and Synabundance increased while pro growth was limited and its abundance decreased. Onthe other hand, bacteria showed a significant and positive correlation with Syn andEuk (p <0.01), which which suggested that bacteria showed the synergistic effectswith Syn and Euk. In the mid-latitude waters, Syn and Euk utilized inorganicnutrients for the purpose of growth and thereby changed them into organic nutrients,this then leaded to an increase in the level of organic material. This increased level oforganic nutrients was then utilized to the benefit of heterotrophic bacteria, wherebacterial growth turned organic into inorganic matter. Conversely, the producedinorganic nutrients of bacterial origin could further sustain the growth of Syn andEuk.
     (7) In the present study, molecular tools were used to investigate the marineeukaryotic communities of Great Wall Bay, Antarctica.18s rDNA genetic library wasconstructed, and then the library of eukaryotic ribosomal DNA were screened byrestriction fragment length polymorphism analysis. The phylogenetic diversity in thelibrary was rather great,430positive clones and38OTUs have been isolated, whichindicates that hat the microeukaryotes in this area are diverse. The38OTUs arefound to distribute in Fungi, Dinophyceae, Cercozoa Ciliates, and Uncultured marineeukaryote clones. The microeukaryotic groups are arranged from the most diverse tothe least diverse as: uncultured Dinophyceae, Fungi, Cercozoa, Ciliates and marinemicroeukaryotes. And the number of OTU of these groups is:2,16,5,2and13,respectively. And the uncultured marine microeukaryotes amounts33.4%of the totalnumbers.
引文
[1]Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L,and Zettler ER. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marineprokaryote containing divinyl chlorophyll a and b. Archives of Microbiology.1992.157(3):297-300.
    [2]Waterbury JB, Watson SW, Guillard RRL, and Brand LE. Widespread occurrence of a unicellular,marine, planktonic, cyanobacterium. Nature.1979.277:293-294.
    [3]Partensky F, Hess WR, and Vaulot D. Prochlorococcus, a marine photosynthetic prokaryote ofglobal significance. Microbiology and Molecular Biology Reviews.1999.63(1):106.
    [4]Scanlan DJ, and West NJ. Molecular ecology of the marine cyanobacterial generaProchlorococcus and Synechococcus. FEMS microbiology ecology.2002.40(1):1-12.
    [5]Buck KR, Chavez FP, and Campbell L. Basin-wide distributions of living carbon componentsand the inverted trophic pyramid of the central gyre of the North Atlantic Ocean, summer1993. Aquatic Microbial Ecology.1996.10(3):283-298.
    [6]Campbell L, and Vaulot D. Photosynthetic picoplankton community structure in the subtropicalNorth Pacific Ocean near Hawaii (station ALOHA). Deep Sea Research Part I:Oceanographic Research Papers.1993.40(10):2043-2060.
    [7]Moore LR, Rocap G, and Chisholm SW. Physiology and molecular phylogeny of coexisting.Nature.1998.393:465.
    [8]Rocap G, Distel DL, Waterbury JB, and Chisholm SW. Resolution of Prochlorococcus andSynechococcus ecotypes by using16S-23S ribosomal DNA internal transcribed spacersequences. Applied and environmental microbiology.2002.68(3):1180-1191.
    [9]West NJ, and Scanlan DJ. Niche-partitioning of Prochlorococcus populations in a stratified watercolumn in the eastern North Atlantic Ocean. Applied and environmental microbiology.1999.65(6):2585.
    [10]Ahlgren NA, Rocap G, and Chisholm SW. Measurement of Prochlorococcus ecotypes usingreal-time polymerase chain reaction reveals different abundances of genotypes with similarlight physiologies. Environmental microbiology.2006.8(3):441-454.
    [11]Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, and Chisholm SW. Nichepartitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients.Science.2006.311(5768):1737-1740.
    [12]Zinser ER, Coe A, Johnson ZI, Martiny AC, Fuller NJ, Scanlan DJ, and Chisholm SW.Prochlorococcus ecotype abundances in the North Atlantic Ocean as revealed by animproved quantitative PCR method. Applied and environmental microbiology.2006.72(1):723-732.
    [13]Bouman HA, Ulloa O, Scanlan DJ, Zwirglmaier K, Li WKW, Platt T, Stuart V, Barlow R, LethO, and Clementson L. Oceanographic basis of the global surface distribution ofProchlorococcus ecotypes. Science.2006.312(5775):918.
    [14]Zwirglmaier K, Heywood JL, Chamberlain K, Woodward EMS, Zubkov MV, and Scanlan DJ.Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean.Environmental microbiology.2007.9(5):1278-1290.
    [15]Garczarek L, Dufresne A, Rousvoal S, West NJ, Mazard S, Marie D, Claustre H, Raimbault P,Post AF, and Scanlan DJ. High vertical and low horizontal diversity of Prochlorococcusecotypes in the Mediterranean Sea in summer. FEMS microbiology ecology.2007.60(2):189-206.
    [16]Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, and Vaulot D. Globalphylogeography of marine Synechococcus and Prochlorococcus reveals a distinctpartitioning of lineages among oceanic biomes. Environmental microbiology.2008.10(1):147-161.
    [17]Partensky F, and Garczarek L. Prochlorococcus: Advantages and Limits of Minimalism. AnnualReview of Marine Science.2009.2:305-331.
    [18]Johnson PW, and McN J. Chroococcoid cyanobacteria in the sea: a ubiquitous and diversephototrophic biomass. Limnology and Oceanography.1979.928-935.
    [19]Murphy LS, and Haugen EM. The distribution and abundance of phototrophic ultraplankton inthe North Atlantic. Limnology and oceanography.1985.30(1):47-58.
    [20]Gradinger R, Weisse T, and Pillen T. Significance of picocyanobacteria in the Red Sea and theGulf of Aden. Botanica marina.1992.35(3):245-250.
    [21]Partensky F, Blanchot J, Lantoine F, Neveux J, and Marie D. Vertical structure ofpicophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean.Deep Sea Research Part I: Oceanographic Research Papers.1996.43(8):1191-1213.
    [22]Olson RJ, Chisholm SW, Zettler ER, Altabet MA, and Dusenberry JA. Spatial and temporaldistributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep SeaResearch Part A. Oceanographic Research Papers.1990.37(6):1033-1051.
    [23]Gradinger R, and Lenz J. Picocyanobacteria in the high Arctic. Marine Ecology Progress Series.1989.52(1):99-101.
    [24]Liu H, Dagg M, Campbell L, and Urban-Rich J. Picophytoplankton and bacterioplankton in theMississippi River plume and its adjacent waters. Estuaries and Coasts.2004.27(1):147-156.
    [25]Zubkov MV, Sleigh MA, Burkill PH, and Leakey RJG. Bacterial growth and grazing loss incontrasting areas of North and South Atlantic. Journal of Plankton Research.2000.22(4):685-711.
    [26]白晓歌,汪岷, and马晶晶.长江口冬季和春季浮游病毒分布特点的初步研究.海洋与湖沼.2007.38(4):367-372.
    [27]Robineau B, Legendre L, Michel C, Budeus G, Kattner G, Schneider W, and Pesant S.Ultraphytoplankton abundances and chlorophyll a concentrations in ice-covered waters ofnorthern seas. Journal of Plankton Research.1999.21(4):735.
    [28]Waterbury JB, Watson SW, Valois FW, and Franks DG. Biological and ecologicalcharacterization of the marine unicellular cyanobacterium Synechococcus. Photosyntheticpicoplankton.1986.71–120.
    [29]宁修仁, and沃洛D.长江口及毗连东海水域蓝细菌的分布和细胞特性及其环境调节.海洋学报.1991.13:552-559.
    [30]汪岷,白晓歌,梁彦韬,王芳,江雪娇,郭永坚, and杨帆.北黄海夏季微微型浮游植物的分布.植物生态学报.2008.32(5):1184-1193.
    [31]Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, and Scanlan DJ. Clade-specific16Sribosomal DNA oligonucleotides reveal the predominance of a single marineSynechococcus clade throughout a stratified water column in the Red Sea. Applied andEnvironmental Microbiology.2003.69(5):2430.
    [32]Ahlgren NA, and Rocap G. Culture isolation and culture-independent clone libraries reveal newmarine Synechococcus ecotypes with distinctive light and N physiologies. Applied andenvironmental microbiology.2006.72(11):7193.
    [33]Penno S, Lindell D, and Post AF. Diversity of Synechococcus and Prochlorococcus populationsdetermined from DNA sequences of the N-regulatory gene ntcA. Environmentalmicrobiology.2006.8(7):1200-1211.
    [34]Muhling M, Fuller NJ, Somerfield PJ, Post AF, Wilson WH, Scanlan DJ, Joint I, and Mann NH.High resolution genetic diversity studies of marine Synechococcus isolates usingrpoC1-based restriction fragment length polymorphism. Aquatic Microbial Ecology.2006.45(3):263-275.
    [35]Brown MV, Schwalbach MS, Hewson I, and Fuhrman JA. Coupling16S-ITS rDNA clonelibraries and automated ribosomal intergenic spacer analysis to show marine microbialdiversity: development and application to a time series. Environmental microbiology.2005.7(9):1466-1479.
    [36]Ferris MJ, and Palenik B. Niche adaptation in ocean cyanobacteria. Nature.1998.396:226-228.
    [37]Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W,Allen EE, and McCarren J. The genome of a motile marine Synechococcus. Nature.2003.424(6952):1037-1042.
    [38]Keeling PJ. Ostreococcus tauri: seeing through the genes to the genome. TRENDS in Genetics.2007.23(4):151-154.
    [39]Not F, Valentin K, Romari K, Lovejoy C, Massana R, T be K, Vaulot D, and Medlin LK.Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to othereukaryotes. Science.2007.315:253-255.
    [40]Joint IR, and Pipe RK. An electron microscope study of a natural population of picoplanktonfrom the Celtic Sea. Marine ecology progress series.1984.20(1):113-118.
    [41]Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, and Vaulot D. Enumeration of marineviruses in culture and natural samples by flow cytometry. Appl Environ Microbiol.1999.65(1):45-52.
    [42]Liu H, Suzuki K, Minami C, Saino T, and Watanabe M. Picoplankton community structure inthe subarctic Pacific Ocean and the Bering Sea during summer1999. Marine ecology.Progress series.2002.237:1-14.
    [43]Fernandez C, M T, and Denis M. Microbial community structure along18°W (39°N-44.5°N)in the NE Atlantic in late summer2001(POMME programme) Journal of Marine System.2008.71:46-62.
    [44]Fiala M, Kopczynska EE, Jeandel C, Oriol L, and Vetion G. Seasonal and interannualvariability of size-fractionated phytoplankton biomass and community structure at stationKerfix, off the Kerguelen Islands, Antarctica. Journal of Plankton Research.1998.20(7):1341.
    [45]Moon-van der Staay SY, van der Staay GWM, Guillou L, Vaulot D, Claustre H, and Medlin LK.Abundance and diversity of prymnesiophytes in the picoplankton community from theequatorial Pacific Ocean inferred from18S rDNA sequences. Limnology andOceanography.2000.45(1):98-109.
    [46]Anouk MTP, Bolhuis H, Davidson AT, Thomson PG, and Buma AGJ. Diversity and dynamicsof Antarctic marine microbial eukaryotes under manipulated environmental UV radiation.FEMS microbiology ecology.2008.66(2):352-366.
    [47]Not F, Latasab M, Scharek R, Vipreya M, Karleskinda P, Balagueb V, Ontoria-Oviedo I,Cuminob A, Goetzed E, and Vaulota D. Protistan assemblages across the Indian Ocean,with a specific emphasis on the picoeukaryotes. Deep-Sea Research I.2008.1(55):1456-1473.
    [48]Worden AZ. Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquatic MicrobialEcology.2006.43(2):165-175.
    [49]Díez B, Pedrós-Alió C, and Massana R. Study of genetic diversity of eukaryotic picoplanktonin different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appliedand Environmental Microbiology.2001.67(7):2932-2941.
    [50]Massana R, Terrado R, Forn I, Lovejoy C, and Pedrós-Alió C. Distribution and abundance ofuncultured heterotrophic flagellates in the world oceans. Environmental microbiology.2006.8(9):1515-1522.
    [51]Bidigare RR, and Ondrusek ME. Spatial and temporal variability of phytoplankton pigmentdistributions in the central equatorial Pacific Ocean. Deep Sea Research Part II: TopicalStudies in Oceanography.1996.43(4-6):809-833.
    [52]DiTullio GR, Geesey ME, Jones DR, Daly KL, Campbell L, and Smith Jr WO. Phytoplanktonassemblage structure and primary productivity along170°W in the South Pacific Ocean.Mar. Ecol. Prog. Ser.2003.255:55–80.
    [53]Li WKW, Subba Rao DV, Harrison WG, Smith JC, Cullen JJ, Irwin B, and Platt T. Autotrophicpicophytoplankton in the tropical ocean. Science.1983.219(4582):292-295.
    [54]Campbell L, Nolla HA, and Vaulot D. The importance of Prochlorococcus to communitystructure in the central North Pacific Ocean. Limnology and Oceanography.1994.39(4):954-961.
    [55]Stockner JG, and Macisaac EA. British Columbia Lake Enrichment Programme: Two decadesof habitat enhancement for sockeye salmon. Regulated Rivers: Research&Management.1996.12:547-561.
    [56]Porter KG, Paerl H, Hodson R, Pace M, Priscu J, Riemann B, Scavia D, and Stockner J.Microbial interactions in lake food webs. Complex interactions in lake communities: NewYork, Springer-Verlag.1988.209-227.
    [57]Stockner JG, and Porter KG. Microbial food webs in freshwater planktonic ecosystems.Complex interactions in lake communities: New York, Springer-Verlag.1988.69–83.
    [58]Gophen M, and Geller W. Filter mesh size and food particle uptake by Daphnia. Oecologia.1984.64(3):408-412.
    [59]Weisse T, and Stockner JG. Eutrophication: the role of microbial food webs. Memorie dellIstituto italiano di idrobiologia. Verbania Pallanza.1993.52:133-150.
    [60]薛廷耀.海洋细菌学:北京:科学出版社.1962.
    [61]Hobbie JE, Daley RJ, and Jasper S. Use of nuclepore filters for counting bacteria byfluorescence microscopy. Applied and Environmental Microbiology.1977.33(5):1225-1228.
    [62]Cole J, and Pace M. Bacteria production in fresh and saltwater ecosystems: a cross-systemoverview. Marine Ecology Progress Series.1988.43:1-10.
    [63]Azam F, Smith DC, and Carlucci AF. Bacterial transformation and transport of organic matterin the Southern California Bight. Progress in oceanography,30.1992.151-166.
    [64]Fuhrman JA, and Azam F. Bacterioplankton secondary production estimates for coastal watersof British Columbia, Antarctica, and California. Applied and Environmental Microbiology.1980.39(6):1085-1095.
    [65]Kirchman DL, Keel RG, Simon M, and Welschmeyer NA. Biomass and production ofheterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep Sea Research Part I:Oceanographic Research Papers.1993.40(5):967-988.
    [66]Williams PJ. Incorporation of microheterotrophic processes into the classical paradigm of theplanktonic food web. Kiel. Meeresforsch. Sonderh.1981.5: l-28.
    [67]Pomeroy LR. The ocean's food web, a changing paradigm. Bioscience.1974.24(9):499-504.
    [68]Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, and Thingstad F. The ecological role ofwater column microbes in the sea. Marine Ecology Progress Series.1983.10:257-263.
    [69]Pomeroy LR, and Wiebe WJ. Energetics of microbial food webs. Hydrobiologia.1988.159(1):7-18.
    [70]Scavia D. On the role of bacteria in secondary production. Limnology and Oceanography.1988.33(5):1220-1224.
    [71]Pomeroy LR, Williams PJl, Azam F, and Hobbis JE. The Microbial Loop. Oceanography.2007.20(2):28-33.
    [72]Contreras-Coll N, Lucena F, Mooijman K, Havelaar A, Pierzo V, Boque M, Gawler A, H ller C,Lambiri M, and Mirolo G. Occurrence and levels of indicator bacteriophages in bathingwaters throughout Europe. Water research.2002.36(20):4963-4974.
    [73]Wichels A, Biel SS, Gelderblom HR, Brinkhoff T, Muyzer G, and Schutt C. Bacteriophagediversity in the North Sea. Applied and environmental microbiology.1998.64(11):4128.
    [74]Boehme J, Frischer ME, Jiang SC, Kellogg CA, Pichard S, Rose JB, Steinway C, and Paul JH.Viruses, bacterioplankton, and phytoplankton in the southeastern Gulf of Mexico:distribution and contribution to oceanic DNA pools. Marine ecology progress series.1993.97(1):1-10.
    [75]Torrella F, and Morita RY. Evidence by electron micrographs for a high incidence ofbacteriophage particles in the waters of Yaquina Bay, oregon: ecological and taxonomicalimplications. Applied and Environmental Microbiology.1979.37(4):774.
    [76]Hennes KP, and Suttle CA. Direct counts of viruses in natural waters and laboratory cultures byepifluorescence microscopy. Limnology and Oceanography.1995.1050-1055.
    [77]Noble RT, and Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marineviruses and bacteria. Aquatic Microbial Ecology.1998.14(2):113-118.
    [78]Suttle CA, Chan AM, and Cottrell MT. Infection of phytoplankton by viruses and reduction ofprimary productivity. Nature.1990.347:467-469.
    [79]Weinbauer MG, and Peduzzi P. Significance of viruses versus heterotrophic nanofiagellates forcontrolling bacterial abundance in the northern Adriatic Sea. Journal of plankton research.1995.17(9):1851.
    [80]Proctor LM, and Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria.1990.
    [81]Suttle CA. Viruses in the sea. Nature.2005.437(7057):356-361.
    [82]Wen K, Ortmann AC, and Suttle CA. Accurate estimation of viral abundance byepifluorescence microscopy. Applied and environmental microbiology.2004.70(7):3862.
    [83]Ortmann AC, and Suttle CA. High abundances of viruses in a deep-sea hydrothermal ventsystem indicates viral mediated microbial mortality. Deep Sea Research Part I:Oceanographic Research Papers.2005.52(8):1515-1527.
    [84]Parada V, Sintes E, Van Aken HM, Weinbauer MG, and Herndl GJ. Viral abundance, decay, anddiversity in the meso-and bathypelagic waters of the North Atlantic. Applied andenvironmental microbiology.2007.73(14):4429-4438.
    [85]Guixa-Boixereu N, Vaqué D, Gasol JM, Sánchez-Cámara J, and Pedrós-Alió C. Viraldistribution and activity in Antarctic waters. Deep Sea Research Part II: Topical Studies inOceanography.2002.49(4-5):827-845.
    [86]Clasen JL, Brigden SM, Payet JP, and Suttle CA. Viral abundance across marine and freshwatersystems is driven by different biological factors. Freshw. Biol.2008.53:1090-1100.
    [87]Cochlan WP, Wikner J, Steward GF, Smith DC, and Azam F. Spatial distribution of viruses,bacteria and chlorophyll a in neritic, oceanic and estuarine environments. Marine EcologyProgress Series.1993.92:77-77.
    [88]Jiang SC, and Paul JH. Seasonal and diel abundance of viruses and occurrence oflysogeny/bacteriocinogeny in the marine environment. Marine ecology progress series.1994.104(1):163-172.
    [89]Maranger R, and Bird DF. Viral abundance in aquatic systems: a comparison between marineand fresh waters. Marine ecology progress series.1995.121(1):217-226.
    [90]Suttle CA. The significance of viruses to mortality in aquatic microbial communities. MicrobialEcology.1994.28(2):237-243.
    [91]Waterbury JB, and Valois FW. Resistance to co-occurring phages enables marineSynechococcus communities to coexist with cyanophages abundant in seawater. Appliedand Environmental Microbiology.1993.59(10):3393-3399.
    [92]Sawstrom C, Graneli W, Laybourn-Parry J, and Anesio AM. High viral infection rates inAntarctic and Arctic bacterioplankton. Environmental microbiology.2007.9(1):250-255.
    [93]Hara S, Koike I, Terauchi K, Kamiya H, and Tanoue E. Abundance of viruses in deep oceanicwaters. MEPS.1996.145:269-277.
    [94]Proctor LM, and Fuhrman JA. Roles of viral infection in organic particle flux. Marine ecologyprogress series. Oldendorf.1991.69(1):133-142.
    [95]Seymour JR, Seuront L, Doubell M, Waters RL, and Mitchell JG. Microscale patchiness ofvirioplankton. Journal of the Marine Biological Association of the UK.2006.86(03):551-561.
    [96]Brussaard CPD. Optimization of procedures for counting viruses by flow cytometry. Appliedand environmental microbiology.2004.70(3):1506-1513.
    [97]Chen F, Lu J, Binder BJ, Liu Y, and Hodson RE. Application of digital image analysis and flowcytometry to enumerate marine viruses stained with SYBR Gold. Applied andEnvironmental Microbiology.2001.67(2):539.
    [98]Li WKW, and Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in acoastal inlet (Bedford Basin) by flow cytometry. Cytometry Part A.2001.44(3):236-246.
    [99]Suttle CA. Marine viruses-major players in the global ecosystem. Nature ReviewsMicrobiology.2007.5(10):801-812.
    [100] Fuhrman JA. Primary Productivity and Biogeochemical Cycles in the sea.1992,361-383.
    [101]Lawrence JE, and Suttle CA. Effect of viral infection on sinking rates of Heterosigmaakashiwo and its implications for bloom termination. Aquatic Microbial Ecology.2004.37(1):1-7.
    [102]Peduzzi P, and Weinbauer MG. Effect of concentrating the virus-rich2-200-nm size fraction ofseawater on the formation of algal flocs (marine snow). Limnology and Oceanography.1993.38(7):1562-1565.
    [103]Wilhelm SW, and Suttle CA. Viruses and nutrient cycles in the sea. Bioscience.1999.49(10):781-788.
    [104]Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature.1999.399(6736):541-548.
    [105]Tarutani K, Nagasaki K, and Yamaguchi M. Viral impacts on total abundance and clonalcomposition of the harmful bloom-forming phytoplankton Heterosigma akashiwo. Appliedand environmental microbiology.2000.66(11):4916.
    [106]Mann NH, Cook A, Millard A, Bailey S, and Clokie M. Marine ecosystems: Bacterialphotosynthesis genes in a virus. Nature.2003.424(6950):741.
    [107]Weinbauer MG, and Suttle CA. Comparison of epifluorescence and transmission electronmicroscopy for counting viruses in natural marine waters. Aquatic Microbial Ecology.1997.13(3):225-232.
    [108]Bratbak G, Egge JK, and Heldal M. Viral mortality of the marine alga Emiliania huxleyi(Haptophyceae) and termination of algal blooms. Marine Ecology Progress Series.1993.93:39-39.
    [109]Nagasaki K, Ando M, Imai I, Itakura S, and Ishida Y. Virus-like particles in Heterosigmaakashiwo (Raphidophyceae): a possible red tide disintegration mechanism. Marine Biology.1994.119(2):307-312.
    [110]Nagasaki K, Ando M, Itakura S, Imai I, and Ishida Y. Viral mortality in the final stage ofHeterosigma akashiwo (Raphidophyceae) red tide. Journal of Plankton Research.1994.16(11):1595-1599.
    [111]Sieburth JMN, Johnson PW, and Hargraves PE. Ultrastructure and ecology of Aureococcusanophagefferens gen. et sp. nov.(Chrysophyceae): the dominant picoplankter during abloom in Narragansett Bay, Rhode Island, summer1985. Journal of phycology.1988.24(3):416-425.
    [112]Baudoux AC, Noordeloos AAM, Veldhuis MJW, and Brussaard CPD. Virally inducedmortality of Phaeocystis globosa during two spring blooms in temperate coastal waters.Aquatic Microbial Ecology.2006.44(3):207-217.
    [113]Brussaard CPD, Gast GJ, Van Duyl FC, and Riegman R. Impact of phytoplankton bloommagnitude on a pelagic microbial food web. Marine ecology progress series. Oldendorf.1996.14(1):211-221.
    [114]Brussaard CPD, Riegman R, Noordeloos AAM, Cadée GC, Witte H, Kop AJ, Nieuwland G,Van Duyl FC, and Bak RPM. Effects of grazing, sedimentation and phytoplankton celllysis on the structure of a coastal pelagic food web. Marine ecology progress series.Oldendorf.1995.123(1):259-271.
    [115]Van Boekel WHM, Hansen FC, Riegman R, and Bak RPM. Lysis-induced decline of aPhaeocystis spring bloom and coupling with the microbial foodweb. Marine ecologyprogress series. Oldendorf.1992.81(3):269-276.
    [116]Brussaard CPD, Short SM, Frederickson CM, and Suttle CA. Isolation and PhylogeneticAnalysis of Novel Viruses Infecting the Phytoplankton Phaeocystisglobosa(Prymnesiophyceae). Applied and Environmental Microbiology.2004.70(6):3700-3705.
    [117]Brussaard CPD, Kuipers B, and Veldhuis MJW. A mesocosm study of Phaeocystis globosapopulation dynamics:: I. Regulatory role of viruses in bloom control. Harmful algae.2005.4(5):859-874.
    [118]宁修仁,蔡昱明,李国为, and史君贤.南海北部微微型光合浮游生物的丰度及环境调控.海洋学报.2003.25(3):83-97.
    [119]宁修仁,刘子琳, and朱根海等.1989/1990年南极普里兹湾及其毗邻海域浮游植物现存量和生产力的粒度结构及其环境制约,中国海洋学文集.1998.北京:海洋出版社,1-21.
    [120]Baltar F, Arístegui J, Montero MF, Espino M, Gasol JM, and Herndl GJ. Mesoscale variabilitymodulates seasonal changes in the trophic structure of nano-and picoplankton communitiesacross the NW Africa-Canary Islands transition zone. Progress in Oceanography.2009.83(1-4):180-188.
    [121]Calvo-Diaz A, and Morán XAG. Seasonal dynamics of picoplankton in shelf waters of thesouthern Bay of Biscay. Aquatic microbial ecology.2006.42(2):159.
    [122]Calvo-Díaz A, Morán XAG, and Suárez L. Seasonality of picophytoplankton chlorophyll aand biomass in the central Cantabrian Sea, southern Bay of Biscay. Journal of MarineSystems.2008.72(1-4):271-281.
    [123]Worden AZ, Nolan JK, and Palenik B. Assessing the dynamics and ecology of marinepicophytoplankton: the importance of the eukaryotic component. Limnology andOceanography.2004.168-179.
    [124]Ning XR, and Vaulot D. Simultaneous estimates of Synechococcus spp growth and grazingmortality rates in the English Channel. Chin J Oceanol Limnol.1996.14:8-16.
    [125]宁修仁,史君贤, and刘子琳等.南大洋蓝细菌和微微型光合真核生物的丰度与分布.中国科学(C辑).1996.26:164-171.
    [126]Wommack KE, Hill RT, Kessel M, Russek-Cohen E, and Colwell RR. Distribution of virusesin the Chesapeake Bay. Applied and environmental microbiology.1992.58(9):2965-2970.
    [127]Paul JH, Rose JB, Jiang SC, London P, Xhou X, and Kellogg C. Coliphage and indigenousphage in Mamala bay, Oahu, Hawaii. Applied and environmental microbiology.1997.63(1):133.
    [128]Noh JH, Yoo S, and Kong S-H. The summer distribution of picophytoplankton in the WesternPacific. Korean J. Environ. Biol.2006.24(1):67-80.
    [129]Llabres M, and Agusti S. Picophytoplankton cell death induced by UV radiation: evidence foroceanic Atlantic communities. Limnology and Oceanography.2006.51(1):21-29.
    [130]Sommaruga R, Hofer JS, Alonso-Saez L, and Gasol JM. Differential sunlight sensitivity ofpicophytoplankton from surface Mediterranean coastal waters. Applied and environmentalmicrobiology.2005.71(4):2154.
    [131]Cai YM, Ning XR, Liu CG, and Hao Q. Distribution pattern of photosynthetic picoplanktonand heterotrophic bacteria in the northern south China Sea. Journal of Integrative PlantBiology.2007.49(3):282-298.
    [132]Marchant HJ, Davidson AT, and Wright SW. The distribution and abundance of chroococcoidcyanobacteria in the Southern Ocean. Polar Biology.1987.1:1-9.
    [133]Moore LR, Goericke R, and Chisholm SW. Comparative physiology of Synechococcus andProchlorococcus: influence of light and temperature on growth, pigments, fluorescence andabsorptive properties. Marine ecology progress series.1995.116(1):259-275.
    [134]Takahashi M, and Hori T. Abundance of picophytoplankton in the subsurface chlorophyllmaximum layer in subtropical and tropical waters. Marine biology.1984.79(2):177-186.
    [135]Agusti S, and Sanchez MC. Cell viability in natural phytoplankton communities quantified bya membrane permeability probe. Limnology and Oceanography2002.47:818-828.
    [136]Zubkov MV, Sleigh MA, Burkill PH, and Leakey RJG. Picoplankton community structure onthe Atlantic Meridional Transect: a comparison between seasons. Progress inOceanography.2000.45(3-4):369-386.
    [137]Heywood JL, Zubkov MV, Tarran GA, Fuchs BM, and Holligan PM. Prokaryoplanktonstanding stocks in oligotrophic gyre and equatorial provinces of the Atlantic Ocean:evaluation of inter-annual variability. Deep Sea Research Part II: Topical Studies inOceanography.2006.53(14-16):1530-1547.
    [138]Brown SL, Landry MR, Barber RT, Campbell L, Garrison DL, and Gowing MM.Picophytoplankton dynamics and production in the Arabian Sea during the1995SouthwestMonsoon. Deep Sea Research Part II: Topical Studies in Oceanography.1999.46(8-9):1745-1768.
    [139]Bernard L, Courties C, Servais P, Troussellier M, Petit M, and Lebaron P. Relationshipsamong bacterial cell size, productivity, and genetic diversity in aquatic environments usingcell sorting and flow cytometry. Microbial ecology.2000.40(2):148-158.
    [140]Kirchman DL, Meon B, Cottrell MT, Hutchins DA, Weeks D, and Bruland KW. Carbonversus iron limitation of bacterial growth in the California upwelling regime. Limnologyand Oceanography.2000.45(8):1681-1688.
    [141]Tortell PD, Maldonado MT, Granger J, and Price NM. Marine bacteria and biogeochemicalcycling of iron in the oceans. FEMS Microbiology Ecology.1999.29(1):1-11.
    [142]Servais P, Anzil A, and Ventresque C. Simple method for determination of biodegradabledissolved organic carbon in water. Applied and Environmental Microbiology.1989.55(10):2732-2734.
    [143]Danovaro R, Dell'Anno A, Trucco A, Serresi M, and Vanucci S. Determination of virusabundance in marine sediments. Applied and environmental microbiology.2001.67(3):1384-1387.
    [144]Amon RMW, and Benner R. Bacterial utilization of different size classes of dissolved organicmatter. Limnology and Oceanography.1996.41(1):41-51.
    [145]Carlson CA, and Ducklow HW. Growth of bacterioplankton and consumption of dissolvedorganic carbon in the Sargasso Sea. Aquatic Microbial Ecology.1996.10(1):69-85.
    [146]Cherrier J, Bauer JE, and Druffel ERM. Utilization and turnover of labile dissolved organicmatter by bacterial heterotrophs in eastern North Pacific surface waters. Marine EcologyProgress Series.1996.139(1):267-279.
    [147]Kirchman DL. Limitation of bacterial growth by dissolved organic matter in the subarcticPacific. Marine Ecology Progress Series.1990.62(1):47-54.
    [148]赵阳国,任南琪,王爱杰, and万春黎.有机污染物对水体真细菌群落结构的影响.微生物学报.2007.47(2):313-318.
    [149]Cardenas J, Rivas J, Paneque A, and Losada M. Effect of iron supply on the activities of thenitrate-reducing system from Chlorella. Archives of Microbiology.1972.81(3):260-263.
    [150]Rueter JG, and Ades DR. The role of iron nutrition in photosynthesis and nitrogen assimilationin Scenedesmus quadricauda (Chlorophyceae). Journal of phycology.1987.23(3):452-457.
    [151]Gordon RM, Martin JH, and Knauer GA. Iron in north-east Pacific waters. Nature.1982.299(5884):611-612.
    [152]Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L,Nightingale P, Cooper D, and Cochlan WP. A massive phytop ikton bloom Induced by anecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature.1996.383:495-501.
    [153]Landry MR, Barber RT, Bidigare RR, Chai F, Coale KH, Dam HG, Lewis MR, Lindley ST,McCarthy JJ, and Roman MR. Iron and grazing constraints on primary production in thecentral equatorial Pacific: an EqPac synthesis. Limnology and Oceanography.1997.42(3):405-418.
    [154]Morel FMM, Rueter JG, and Price NM. Iron nutrition of phytoplankton and its possibleimportance in the ecology of ocean regions with high nutrient and low biomass.Oceanography.1991.4(2):56-61.
    [155]Mann EL, and Chisholm SW. Iron limits the cell division rate of Prochlorococcus in theeastern equatorial Pacific. Limnology and Oceanography.2000.45(5):1067-1076.
    [156]Wells ML, Price NM, and Bruland KW. Iron limitation and the cyanobacteriumSynechococcus in equatorial Pacific waters. Limnology and Oceanography.1994.39:1481-1486.
    [157]Tortell PD, Maldonado MT, and Price NM. The role of heterotrophic bacteria in iron-limitedocean ecosystems. Nature.1996.383:330-332.
    [158]Pakulski JD, Coffin RB, Kelley CA, Holder SL, Downer R, Aas P, Lyons MM, and JeffreyWH. Iron stimulation of Antarctic bacteria. Nature.1996.383(6596):133-134.
    [159]Wang M, Liang Y, Bai X, Jiang X, Wang F, and Qiao Q. Distribution of microbial populationsand their relationship with environmental parameters in the coastal waters of Qingdao,China. Environ Microbiol.2010.12(7):1926-1939.
    [160]Allgaier M, Riebesell U, Vogt M, Thyrhaug R, and Grossart HP. Coupling of heterotrophicbacteria to phytoplankton bloom development at different pCO2levels: a mesocosm study.Biogeosciences Discussions.2008.5(1):317-359.
    [161]Schulz KG, Riebesell U, Bellerby RGJ, Biswas H, Meyerh fer M, Müller MN, Egge JK,Nejstgaard JC, Neill C, and Wohlers J. Build-up and decline of organic matter duringPeECE III. Biogeosciences.2008.5(3):707-718.
    [162]Tanaka T, Thingstad TF, L vdal T, Grossart HP, Larsen A, Allgaier M, Meyerh fer M, SchulzKG, Wohlers J, and Z llner E. Availability of phosphate for phytoplankton and bacteria andof glucose for bacteria at different pCO2levels in a mesocosm study. Biogeosciences.2008.5(3):669-678.
    [163]Corinaldesi C, Crevatin E, Del Negro P, Marini M, Russo A, Fonda-Umani S, and Danovaro R.Large-scale spatial distribution of virioplankton in the Adriatic Sea: testing the trophic statecontrol hypothesis. Appl Environ Microbiol.2003.69(5):2664-2673.
    [164]Taylor GT, Hein C, and Iabichella M. Temporal variations in viral distributions in the anoxicCariaco Basin. Aquatic Microbial Ecology.2003.30(2):103-116.
    [165]Wommack KE, and Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiologyand Molecular Biology Reviews.2000.64(1):69-114.
    [166]Bettarel Y, Dolan JR, Hornak K, Lemee R, Masin M, Pedrotti ML, Rochelle-Newall E, SimekK, and Sime-Ngando T. Strong, weak, and missing links in a microbial community of theNW Mediterranean Sea. FEMS microbiology ecology.2002.42(3):451-462.
    [167]Ning XR, and Vaulot D. Estimating Synechocccus spp. growth rates and grazing pressure byheterotrophic nanoplankton in the English Channel and the Celtic Sea. Acta oceanologicasinica.1992.11(2):255-273.
    [168]Christaki U, Vázquez-Domínguez E, Courties C, and Lebaron P. Grazing impact of differentheterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryoticpicoautotrophs (Prochlorococcus and Synechococcus). Environmental Microbiology.2005.7(8):1200-1210.
    [169]Gasol JM, Giorgio PA, and Duarte CM. Biomass distribution of marine planktoniccommunities. Limnology and Oceanography.1997.42:1353–1363.
    [170]Rohwer F, and Thurber RV. Viruses manipulate the marine environment. Nature.2009.459(7244):207-212.
    [171]Campbell L, Landry MR, Constantinou J, Nolla HA, Brown SL, Liu H, and Caron DA.Response of microbial community structure to environmental forcing in the Arabian Sea.Deep-Sea Research Part II.1998.45(10-11):2301-2325.
    [172]Jiao N, Yang Y, Hong N, Ma Y, Harada S, Koshikawa H, and Watanabe M. Dynamics ofautotrophic picoplankton and heterotrophic bacteria in the East China Sea. ContinentalShelf Research.2005.25(10):1265-1279.
    [173]Pan LA, Zhang J, and Zhang LH. Picophytoplankton, nanophytoplankton, heterotrohpicbacteria and viruses in the Changjiang Estuary and adjacent coastal waters. Journal ofplankton research.2007.29(2):187.
    [174]Knap A, Michaels A, Close A, Ducklow H, and Dickson A. Protocols for the Joint GlobalOcean Flux Study (JGOFS) core measurements. JGOFS Report.1996.19:155–162.
    [175]Blanchot J, Andre JM, Navarette C, Neveux J, and Radenac MH. Picophytoplankton in theequatorial Pacific: vertical distributions in the warm pool and in the high nutrient lowchlorophyll conditions. Deep Sea Research Part I: Oceanographic Research Papers.2001.48(1):297-314.
    [176]Fukuda R, Ogawa H, Nagata T, and Koike I. Direct determination of carbon and nitrogencontents of natural bacterial assemblages in marine environments. Applied andenvironmental microbiology.1998.64(9):3352-3358.
    [177]Lee S, and Fuhrman JA. Relationships between biovolume and biomass of naturally derivedmarine bacterioplankton. Applied and Environmental Microbiology.1987.53(6):1298-1303.
    [178]Zubkov MV, Sleigh MA, Tarran GA, Burkill PH, and Leakey RJG. Picoplanktonic communitystructure on an Atlantic transect from50degree N to50degree S. Deep-Sea Research(PartI, Oceanographic Research Papers).1998.45(8):1339-1355.
    [179]Liu H, Nolla HA, and Campbell L. Prochlorococcus growth rate and contribution to primaryproduction in the equatorial and subtropical North Pacific Ocean. Aquatic MicrobialEcology.1997.12(1):39-47.
    [180]Vaulot D, Marie D, Olson RJ, and Chisholm SW. Growth of Prochlorococcus, aphotosynthetic prokaryote, in the equatorial Pacific Ocean. Science.1995.268(5216):1480.
    [181]Bruyant F, Babin M, Genty B, Prasil O, Behrenfeld MJ, Claustre H, Bricaud A, Garczarek L,Holtzendorff J, and Koblizek M. Diel variations in the photosynthetic parameters ofProchlorococcus strain PCC9511: Combined effects of light and cell cycle. Limnologyand Oceanography.2005.50(3):850-863.
    [182]Claustre H, Bricaud A, Babin M, Bruyant F, Guillou L, Le Gall F, Marie D, and Partensky F.Diel variations in Prochlorococcus optical properties. Limnology and Oceanography.2002.47(6):1637-1647.
    [183]Landry MR, Kirshtein J, and Constantinou J. Abundance and distributions of picoplanktonpopulations in the central equatorial Pacific from12°N to12°S,140°W. Deep SeaResearch Part II: Topical Studies in Oceanography.1996.43(4-6):871-890.
    [184]Liu H, Campbell L, and Landry MR. Growth and mortality rates of Prochlorococcus andSynechococcus measured with a selective inhibitor technique. Marine ecology progressseries. Oldendorf.1995.116(1):277-287.
    [185]Garcia-Pichel F, Belnap J, Neuer S, and Schanz F. Estimates of global cyanobacterial biomassand its distribution. Archiv für Hydrobiologie: Supplement volume.2003.213-228.
    [186]Massana R, Balagué V, Guillou L, and Pedrós-Alió C. Picoeukaryotic diversity in anoligotrophic coastal site studied by molecular and culturing approaches. FEMSmicrobiology ecology.2004.50(3):231-243.
    [187]Not F, Zapata M, Pazos Y, Campa a E, Doval M, and Rodríguez F. Size-fractionatedphytoplankton diversity in the NW Iberian coast: a combination of microscopic, pigmentand molecular analyses. Aquatic Microbial Ecology.2007.49(3):255-265.
    [188]Lovejoy C, Massana R, and Pedrós-Alió C. Diversity and distribution of marine microbialeukaryotes in the Arctic Ocean and adjacent seas. Applied and environmental microbiology.2006.72(5):3085-3095.
    [189]Romari K, and Vaulot D. Composition and temporal variability of picoeukaryote communitiesat a coastal site of the English Channel from18S rDNA sequences. Limnology andOceanography.2004.784-798.
    [190]Binder BJ, Chisholm SW, Olson RJ, Frankel SL, and Worden AZ. Dynamics ofpicophytoplankton, ultraphytoplankton and bacteria in the central equatorial Pacific. DeepSea Research Part II: Topical Studies in Oceanography.1996.43(4-6):907-931.
    [191]Campbell L, Liu H, Nolla HA, and Vaulot D. Annual variability of phytoplankton and bacteriain the subtropical North Pacific Ocean at Station ALOHA during the1991-1994ENSOevent. Deep Sea Research Part I: Oceanographic Research Papers.1997.44(2):167-192.
    [192]Landry MR, and Kirchman DL. Microbial community structure and variability in the tropicalPacific. Deep Sea Research Part II: Topical Studies in Oceanography.2002.49(13-14):2669-2693.
    [193]陈兴群, and林荣澄.东北太平洋中国合同区的叶绿素a和初级生产力.海洋学报.2007.29(5):146-153.
    [194]Blanchot J, and Rodier M. Picophytoplankton abundance and biomass in the western tropicalPacific Ocean during the1992El Ni o year: results from flow cytometry. Deep SeaResearch Part I: Oceanographic Research Papers.1996.43(6):877-895.
    [195]Fuhrman JA, Sleeter TD, Carlson CA, and Proctor LM. Dominance of bacterial biomass in theSargasso Sea and its ecological implications. Marine ecology progress series.1989.57(3):207-217.
    [196]Grob C, Ulloa O, Li WKW, Alarcón G, Fukasawa M, and Watanabe S. Picoplanktonabundance and biomass across the eastern South Pacific Ocean along latitude32.5S. Mar.Ecol. Prog. Ser.2007.332:53–62.
    [197]Jiao N, Yang Y, Koshikawa H, and Watanabe M. Influence of hydrographic conditions onpicoplankton distribution in the East China Sea. Aquatic Microbial Ecology.2002.30(1):37-48.
    [198]Rivkin RB, and Anderson MR. Inorganic nutrient limitation of oceanic bacterioplankton.Limnology and Oceanography.1997.42(4):730-740.
    [199]Tupas L, and Koike I. Amino acid and ammonium utilization by heterotrophic marine bacteriagrown in enriched seawater. Limnology and Oceanography.1990.35(5):1145-1155.
    [200]Wheeler PA, and Kirchman DL. Utilization of inorganic and organic nitrogen by bacteria inmarine systems. Limnology and Oceanography.1986.31(5):998-1009.
    [201]Cotner JB, Ammerman JW, Peele ER, and Bentzen E. Phosphorus-limited bacterioplanktongrowth in the Sargasso Sea. Aquatic Microbial Ecology.1997.13(2):141-149.
    [202]Pan LA, Zhang LH, Zhang J, Gasol JM, and Chao M. On-board flow cytometric observationof picoplankton community structure in the East China Sea during the fall of differentyears. FEMS microbiology ecology.2005.52(2):243-253.
    [203]Shiah FK, Gong GC, and Chen CC. Seasonal and spatial variation of bacterial production inthe continental shelf of the East China Sea: possible controlling mechanisms and potentialroles in carbon cycling. Deep Sea Research Part II: Topical Studies in Oceanography.2003.50(6-7):1295-1309.
    [204]Shiah FK, Liu KK, Kao SJ, and Gong GC. The coupling of bacterial production andhydrography in the southern East China Sea: Spatial patterns in spring and fall. ContinentalShelf Research.2000.20(4-5):459-477.
    [205]Allanson BR, Hart RC, and Lutjeharms JRE. Observations on the nutrients, chlorophyll andprimary production of the Southern Ocean south of Africa. South African Journal ofAntarctic Research.1981.10(11):3-14.
    [206]Legendre L. Flux of particulate organic material from the euphotic zone of oceans: Estimationfrom phytoplankton biomass. Journal of Geophysical Research.1998.103(C2):2897-2903.
    [207]Nelson DM, DeMaster DJ, Dunbar RB, and Smith Jr WO. Cycling of organic carbon andbiogenic silica in the Southern Ocean: estimates of water-column and sedimentary fluxeson the Ross Sea continental shelf. Journal of Geophysical Research.1996.101(C8):18519-18532.
    [208]Smith WO, and Lancelot C. Bottom-up versus top-down control in phytoplankton of theSouthern Ocean. Antarctic Science.2004.16(04):531-539.
    [209]Wright SW, Ishikawa A, Marchant HJ, Davidson AT, van den Enden RL, and Nash GV.Composition and significance of picophytoplankton in Antarctic waters. Polar biology.2009.32(5):797-808.
    [210]Maranger R, Bird DF, and Juniper SK. Viral and bacterial dynamics in Arctic sea ice duringthe spring algal bloom near Resolute, N. W. T., Canada. Marine ecology progress series.Oldendorf.1994.111(1):121-127.
    [211]张子占,陆洋,许厚泽, and陈红霞.联合卫星重力和卫星测高确定南极绕极流.极地研究.2008.20(1):14-22.
    [212]Casjens S. The diverse and dynamic structure of bacterial genomes. Annual review of genetics.1998.32(1):339-377.
    [213]Mullins TD, Britschgi TB, Krest RL, and Giovannoni SJ. Genetic comparisons reveal thesame unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities.Limnology and oceanography.1995.148-158.
    [214]蒲书箴, and董兆乾.普里兹湾附近物理海洋学研究进展.极地研究.2003.15(1):53-64.
    [215]蒲书箴, and董兆乾.普里兹湾海域的夏季上层水及其北向运动.极地研究.2000.12(3):157-168.
    [216]史久新, and赵进平.中国南大洋水团,环流和海冰研究进展(1995-2002).海洋科学进展.2002.20(4):116-126.
    [217]Smith NR, Zhaoqian D, Kerry KR, and Wright S. Water masses and circulation in the regionof Prydz Bay, Antarctica. Deep Sea Research Part A. Oceanographic Research Papers.1984.31(9):1121-1147.
    [218]蒲书箴, and董兆乾.普里兹湾附近绕极深层水和底层水及其运动特征.海洋学报.2002.24(3):1-8.
    [219]Cailliau C, Claustre H, and Giannino S. Chemotaxonomic analysis of phytoplanktondistribution in the Indian sector of the Southern Ocean during late austral summer.Oceanologica acta.1997.20(5):721-732.
    [220]Von Brockel K. The importance of nanoplankton with in the pelagic Antarctic ecosystem.Kieler Meeresforschungen, Sonderh.1981.5:61-67.
    [221]Allanson BR. The South African SffiEX I Cruise to the Prydz Bay region,1984: VII. Light,chlorophyll a and primary production in the survey area. South African Journal of AntarcticResearch.1985.15:24.
    [222]Lancelot C, Billen G, and Mathot S. Ecophysiology of phytoplankton and bacterioplanktongrowth in the Southern Ocean. Belgian Scientific Research Programme on Antarctica.Scientific results of phase one (Oct85-Jan89).1989.1:1-97.
    [223]刘子琳, and蔡昱明.1998/1999年南极夏季普里兹湾及北部海区叶绿素a和初级生产力的分布特征.极地研究.2002.14(1):12-21.
    [224]刘子琳, and史君贤.南极夏季普里兹湾邻近海域浮游植物,粒度分级叶绿素a和初级生产力的分布.极地研究.1997.9(1):18-27.
    [225]邱雨生,黄奕普,刘广山, and陈敏.南极普里兹湾及邻近海域初级生产力的时空变异.厦门大学学报(自然科学版).2004.43(5).
    [226]朱根海,宁修仁,刘子琳,蔡昱明,刘诚刚, and潘建明.2000年夏季南极普里兹湾及邻近海域浮游植物研究.海洋学报.2006.28(1):118-126.
    [227]Jochem FJ, Mathot S, and Quéguiner B. Size-fractionated primary production in the openSouthern Ocean in austral spring. Polar biology.1995.15(6):381-392.
    [228]Kosaki S, Takahashi M, Yamaguchi Y, and Aruga Y. Size characteristics of chlorophyllparticles in the Southern Ocean. Transactions of the Tokyo University of Fisheries (Japan).1985.
    [229] Odate T, and Fukuchi M. Distribution and community structure of picophytoplankton in theSouthern Ocean during the late austral summer of1992.1995,100.
    [230]Shiomoto A, Kawaguchi S, Imai K, and Tsuruga Y. Chla-specific productivity ofpicophytoplankton not higher than that of larger phytoplankton off the South ShetlandIslands in summer. Polar Biology.1998.19(5):361-364.
    [231]Weber LH, and El-Sayed SZ. Contributions of the net, nano-and picoplankton to thephytoplankton standing crop and primary productivity in the Southern Ocean. Journal ofPlankton Research.1987.9(5):973.
    [232]Garrison DL, and Mathot S. Pelagic and sea ice microbial communities. Foundations forecological research west of the Antarctic Peninsula.1996.70:155–172.
    [233]Vanucci S, and Bruni V. Presence or absence of picophytoplankton in the western Ross Seaduring spring1994: a matter of size definition? Polar Biology.1998.20(1):9-13.
    [234]Agawin NSR, Agustí S, and Duarte CM. Abundance of Antarctic picophytoplankton and theirresponse to light and nutrient manipulation. Aquatic Microbial Ecology.2002.29(2):161-172.
    [235]Detmer AE, and Bathmann UV. Distribution patterns of autotrophic pico-and nanoplanktonand their relative contribution to algal biomass during spring in the Atlantic sector of theSouthern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography.1997.44(1-2):299-320.
    [236]Ishikawa A, Wright S, van den Enden R, Davidson A, and Marchant H. Abundance, sizestructure and community composition of phytoplankton in the Southern Ocean in theaustral summer1999/2000. Polar Biosci.2002.15:11-26.
    [237]Glover HE, Smith AE, and Shapiro L. Diurnal variations in photosynthetic rates: comparisonsof ultraphytoplankton with a larger phytoplankton size fraction. Journal of planktonresearch.1985.7(4):519-535.
    [238]Kuosa H. Occurrence of autotrophic picoplankton along an open sea-inner archipelagogradient in the Gulf of Finland, Baltic Sea. Ophelia.1988.28(2):85-93.
    [239]郑天凌.小定鞭金藻的抗菌活性研究.厦门大学学报(自然科学版).1988.27(2):220-223.
    [240]Kirchner M, Sahling G, Uhlig G, Gunkel W, and Klings KW. Does the red tide-formingdinoflagellate Noctiluca scintillans feed on bacteria? Sarsia.1996.81(1):45-55.
    [241]郑天凌,田蕴,苏建强,王艳丽,连玉武, and洪华生.海洋赤潮生物与厦门海域几种细菌的生态关系研究.生态学报.2002.22:12.
    [242]Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, and Karl DM. Abundanceand distribution of planktonic Archaea and Bacteria in the waters west of the AntarcticPeninsula. Limnology and Oceanography.2003.48(5):1893-1902.
    [243]Hewson I, and Fuhrman JA. Viriobenthos production and virioplankton sorptive scavengingby suspended sediment particles in coastal and pelagic waters. Microbial ecology.2003.46(3):337-347.
    [244]Tarran GA, Zubkov MV, Sleigh MA, Burkill PH, and Yallop M. Microbial communitystructure and standing stocks in the NE Atlantic in June and July of1996. Deep SeaResearch Part II: Topical Studies in Oceanography.2001.48(4-5):963-985.
    [245]Li WKW, Jellett JF, and Dickie PM. DNA distributions in planktonic bacteria stained withTOTO or TO-PRO. Limnology and Oceanography.1995.40(8):1485-1495.
    [246]Heinanen A, Raateoja M, Lahdes E, and Leppanen JM. Relationships betweenbacterioplankton, Chl a and temperature in Antarctic surface waters in summer. PolarBiology.1997.18(1):62-69.
    [247]Magagnini M, Corinaldesi C, Monticelli LS, De Domenico E, and Danovaro R. Viralabundance and distribution in mesopelagic and bathypelagic waters of the MediterraneanSea. Deep-Sea Research Part I: Oceanographic Research Papers.2007.54(8):1209-1220.
    [248]Bird DF, Maranger R, and Karl D. Palmer LTER: aquatic virus abundances near the AntarcticPeninsula. Antarct. JUS.1993.28:234-235.
    [249]Marchant H, Davidson A, Wright S, and Glazebrook J. The distribution and abundance ofviruses in the Southern Ocean during spring. Antarctic Science.2004.12(04):414-417.
    [250]Smith DC, Steward GF, Azam F, and Hollibaugh JT. Virus and bacteria abundance in theDrake Passage during January and August1991. Antarctic Journal of the United States.1992.27(5):125-127.
    [251]刘艳鸣,张奇亚, and袁秀平.武汉东湖浮游病毒的丰度及多样性.水生生物学报.2005.29(1):1-6.
    [252]Marie D, Partensky F, Jacquet S, and Vaulot D. Enumeration and cell cycle analysis of naturalpopulations of marine picoplankton by flow cytometry using the nucleic acid stain SYBRGreen I. Applied and Environmental Microbiology.1997.63(1):186-193.
    [253]Moon-van der Staay SY, De Wachter R, and Vaulot D. Oceanic18S rDNA sequences frompicoplankton reveal unsuspected eukaryotic diversity. Nature.2001.409(6820):607-610.
    [254]Marie D, Zhu F, Balagué V, Ras J, and Vaulot D. Eukaryotic picoplankton communities of theMediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR).FEMS microbiology ecology.2006.55(3):403-415.
    [255]Zeidner G, and Béjà O. The use of DGGE analyses to explore eastern Mediterranean and RedSea marine picophytoplankton assemblages. Environmental microbiology.2004.6(5):528-534.
    [256]汪岷,梁彦韬,白晓歌,江雪娇,王芳, and乔倩.青岛近海及其临近海域冬季微微型浮游植物的分布.应用生态学报.2008.19(11):2428-2434.
    [257]焦念志.海洋微型生物生态学,北京:科学出版社.2006.
    [258]Yuan J, Chen MY, Shao P, Zhou H, Chen YQ, and Qu LH. Genetic diversity of smalleukaryotes from the coastal waters of Nansha Islands in China. FEMS microbiology letters.2004.240(2):163-170.
    [259]鲍磊,陈纪新, and黄邦钦.应用变性梯度凝胶电泳研究厦门西海域超微型真核浮游生物多样性.海洋环境科学.2007.26(6):504-509.
    [260]杨秋明,蔡慧农,宋思扬, and苏文金.海洋红酵母产虾青素培养基优化的初步研究.微生物学杂志.2007.27(1):72-75.
    [261]金静, and李宝笃.海洋真菌的研究概况.菌物学报.2005.24(4):620-626.
    [262]王朝晖,陈菊芳,徐宁, and齐雨藻.大亚湾澳头海域硅藻,甲藻的数量变动及其与环境因子的关系.海洋与湖沼.2005.36(2):186-192.
    [263]宋微波, and马洪钢.我国海洋纤毛虫原生动物的研究进展.生物学通报.2000.35(5):10-11.
    [264]Massana R, Karniol B, Pommier T, Bodaker I, and Béjà O. Metagenomic retrieval of aribosomal DNA repeat array from an uncultured marine alveolate. Environmentalmicrobiology.2008.10(5):1335-1343.
    [265]Piganeau G, Desdevises Y, Derelle E, and Moreau H. Picoeukaryotic sequences in theSargasso Sea metagenome. Genome Biology.2008.9(1): R5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700