用户名: 密码: 验证码:
抗磷脂抗体对Th细胞亚型影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分不同浓度抗磷脂抗体对外周血单个核细胞中Th细胞亚型表达的调节
     目的:探讨不同浓度aPL抗体对外周血中Th1、Th2、Th17、Treg细胞调节作用。
     方法:分离健康人外周血单个核细胞,与不同浓度的抗磷脂抗体共同培养孵育48小时后,检测外周血单个核细胞中Th1、Th2、Th17、 Treg四种亚型的表达。我们采用流式细胞检测技术直接从数量上检测抗磷脂抗体干预后的Th1、Th2、Th17、Treg四种亚型细胞分化情况,并通过实时定量PCR检测转录因子的表达,从Th细胞分化的上游过程中探讨抗磷脂抗体干预后的Th1、Th2、Th17、Treg四种亚型细胞分化状态。
     结果:本研究发现aPL干预后Th1细胞及其T-bet mRNA表达均出现下调;Th2细胞及其GATA3mRNA表达上调,Th1/Th2比值下降,平衡向Th2偏移;Th17细胞及其ROR-γ t mRNA表达上调,Treg细胞及其Foxp3mRNA表达下调,Th17/Treg失衡。且本实验发现Th细胞亚型变化与aPL抗体浓度相关,高浓度的aPL抗体导致Th细胞亚型分化的紊乱。
     结论:
     1.aPL导致PBMCs中Th1、Th2、Th17、Treg细胞表达发生改变,导致Th1/Th2失衡,Th17/Treg失衡,导致免疫紊乱,可能参与aPL介导的组织损伤。
     2.Th细胞亚型变化与aPL浓度存在剂量关系。
     第二部分探讨抗磷脂抗体对外周血单个核细胞表达协同刺激分子PD-L1的影响
     目的:探讨不同浓度抗磷脂抗体对协同刺激分子PD-L1表达的调节作用以及PD-L1在aPL导致Th细胞亚型分化紊乱中的作用。
     方法:分离健康人外周血单个核细胞,与不同浓度的抗磷脂抗体共同培养孵育48小时后,检测采用流式细胞技术检测外周血单个核细胞中PD-L1蛋白表达强度,并通过实时定量PCR检测PD-L1mRNA转录因子的表达。同时分析PD-L1表达与Th细胞分化的相关情况。观察并比较经PD-L1-Ig预处理后,致病浓度的aPL抗体对Th1、Th2、 Th17、Treg四种Th亚型细胞分化的影响。
     结果:本研究发现aPL干预后PD-L1蛋白及mRNA表达均呈上调趋势,各组间表达有统计学差异(F=9.391,p=0.000;F=15.344,p=0.000),且上调与抗体浓度显著正相关(r=0.713,p=0.000;r=0.756,p=0.000)。PD-L1蛋白表达与Th1细胞,Treg细胞以及Thl/Th2比例负相关,而与Th2细胞及Th17细胞表达无相关性。而PD-L1mRNA表达与T-bet mRNA, Foxp3mRNA以及T-bet/GATA3比例显著负相关,与GATA3mRNA及ROR-γ t mRNA表达显著正相关。但是给予PD-L1-Ig阻断协同刺激信号通路后,研究发现高浓度的aPL组与阻断抗体组Th细胞亚型变化无显著差异(p>0.05)。
     结论:
     1.aPL可导致PD-L1表达上调,且与抗体浓度正相关。协同刺激分子PD-L1可能在APS发病中发挥作用。
     2.协同刺激分子PD-L1可能在aPL导致的Th细胞分化紊乱中发挥作用。
     3.抑制PD-L1协同刺激信号通路对Th亚型分化无明显影响。
     第三部分卡介菌多糖核酸对aPL干预后的PBMGs中Th细胞亚型的影响
     目的:探讨卡介菌多糖核酸治疗APS的可能机制
     方法:分离健康人外周血单个核细胞,与致病浓度的抗磷脂抗体、治疗浓度的卡介菌多糖核酸溶液共同培养孵育48小时后,采用流式细胞技术检测外周血单个核细胞中Th1、Th2、Th17、Treg四种Th亚型细胞表达情况,并通过实时定量PCR检测Th1、Th2、Th17、Treg四种Th亚型细胞mRNA表达的变化情况。
     结果:本研究发现卡介菌多糖核酸溶液干预后Thl细胞及其T-bet mRNA表达均出现显著上调(p=0.000;p=0.000);Th2细胞及其GATA3mRNA表达变化无统计学差异(p>0.05);Th1/Th2比值上调,平衡向Th1偏移。Treg细胞及其Foxp3mRNA表达上调,均有统计学差异(p=0.016;p=0.024);而Th17细胞及其ROR-γt mRNA表达无统计学差异(p>0.05)。
     结论:卡介菌多糖核酸溶液可以有效逆转Th细胞的分化,卡介菌多糖核酸溶液可能在临床治疗APS中发挥作用。
Chapter One The expression of Th cell subtypes in cultured PBMCs with different concentrations of aPL
     Objective:To evaluate the Thl/Th2/Th17/Treg cells expression in APS, and whether they are related to the aPL titers.
     Method:Peripheral mononuclear cells (PBMCs) were isolated from health doners, and incubated with different titers of aPL. After incubated48hours, PBMCs were collected, and the Th cell subsets were detected by Flow Cytometry and the transcription factors were detected by Real-time PCR.
     Results:It was showed that after incubated with aPL, there was a significant decrease in Thl frequencies and T-bet mRNA, a significant increase in Th2frequencies and GATA3mRNA. Th1/Th2ratio was decreased. The Th17frequencies and ROR-yt mRNA was increased, but Treg frequencies and Foxp3mRNA was decreased. And also we found the Th subsets expression were positively correlated with the antibodies titers, especially at higher concentrations.
     Conclusion:
     1. aPL may change Thl/Th2/Thl7/Treg expression, result Thl/Th2and Th17/Treg imbalance, and result immune disorders. All these may participate in the aPL mediated tissue damage.
     2. The expression of Th cell subsets were correlated with the aPL titers.
     Chapter Two The expression of costimulatory molecules PD-L1in cultured PBMCs with aPL
     Objective:To evaluated the costimulatory molecules PD-L1expression with different titers of aPL, and to explore the possible mechanisms about Th cell differentiation disorder with PD-L1.
     Method:Peripheral mononuclear cells (PBMCs) were isolated from health doners, and incubated with different titers of aPL. After incubated48hours, PBMCs were collected, and the PD-L1was detected by Flow Cytometry and Real-time PCR. And we analysed the relationships between PD-L1expression and Th cells differentiation. We also compared the Th1/Th2/Th17/Treg cells expression with PD-L1-Ig pretreated or not by Flow Cytometry and Real-Time PCR.
     Results:It was showed that incubated with aPL can induce significant increase in PD-L1proten and mRNA expression (F=9.391, p=0.000; F=15.344,p=0.000), and were positively correlated with the antibodies titers (r=0.713,p=0.000; r=0.756, p=0.000).PD-L1protein expression has negative correlation with Thl frequencies, Treg frequencies and Th1/Th2proportion, but had no correlation with Th2frequencies and Th17frequencies. In the same, PD-Ll mRNA expression has negative correlation with T-bet mRNA, Foxp3mRNA and T-bet/GATA3proportion, but had positive correlation with GATA3mRNA and ROR-yt mRNA. However pretreated with PD-L1-Ig had no function in Th differentiation (p>0.05).
     Conclusion:
     1. aPL may result PD-L1upregulated, and were positive correlated with the aPL titers. The costimulatory molecules PD-L1may be play a role in the development of APS.
     2. The costimulatory molecules PD-L1may participate in Th cell differentiation disorder in APS.
     3. Block the costimulatory pathway of PD-L1had no function in Th differentiation.
     Chapter Three The expression of Th cell subtypes in incubated PBMCs with with aPL treated by Polysaccharide nucleic acid fraction of Bacillus Calmette Guerin
     Objective:To evaluate the positive mechanism of Polysaccharide nucleic acid fraction of Bacillus Calmette Guerin in treating APS
     Method:Peripheral mononuclear cells (PBMCs) were isolated from health doners, and incubated with high titers of aPL and Polysaccharide nucleic acid fraction of Bacillus Calmette Guerin. After incubated48hours, PBMCs were collected, and the Th cell subsets were detected by Flow Cytometry and the transcription factors were detected by Real-time PCR.
     Results:It was showed that after treated with Polysaccharide nucleic acid fraction of Bacillus Calmette Guerin, there was significant increase in Th1frequencies and T-bet mRNA (p=0.000; p=0.000); but no different in Th2frequencies and GATA3mRNA (p>0.05); Th1/Th2ratio was significant increased; Treg frequencies and Foxp3mRNA was significant increased (p=0.016; p=0.024), but no different in Th17frequencies and ROR-yt mRNA (p>0.05).
     Conclusion:
     Polysaccharide nucleic acid fraction of Bacillus Calmette Guerin can effectively reversed Th cells differentiation, it could be make sense in treating APS.
引文
1. Mialdea M, Sangle S R, D'Cruz D P. Antiphospholipid (Hughes) syndrome: beyond pregnancy morbidity and thrombosis [J]. J Autoimmune Dis.2009,6,3. doi:10.1186/1740-2557-6-3
    2.林其德,周涵春,赵爱民.复发性流产与自身抗体关系探讨[J].中华妇产科杂志.1993,28,(11),674-6.
    3.刘学明,陈学力,于雅亭,侯云峰.健康妊娠和非妊娠妇女非器官特异性自身抗体的研究[J].中国免疫学杂志.1998,14,(2),142-3..
    4. Yadin O, Sarov B, Naggan L, Slor H, Shoenfeld Y. Natural autoantibodies in the serum of healthy women--a five-year follow-up [J]. Clin Exp Immunol.1989,75, (3),402-6.
    5. Topping J, Quenby S, Farquharson R, Malia R, Greaves M. Marked variation in antiphospholipid antibodies during pregnancy:relationships to pregnancy outcome [J]. Hum Reprod.1999,14, (1),224-8.
    6. Cervera R, Font J, Lopez-Soto A, Casals F, Pallares L, Bove A et al. Isotype distribution of anticardiolipin antibodies in systemic lupus erythematosus:prospective analysis of a series of 100 patients [J]. Ann Rheum Dis.1990,49, (2),109-13.
    7. Merkel P A, Chang Y, Pierangeli S S, Convery K, Harris E N and Polisson R P. The prevalence and clinical associations of anticardiolipin antibodies in a large inception cohort of patients with connective tissue diseases [J]. Am J Med.1996, 101, (6),576-83.
    8. Katano K, Aoki K, Ogasawara M, Sasa H, Hayashi Y, Kawamura M et al. Specific antiphospholipid antibodies (aPL) eluted from placentae of pregnant women with aPL-positive sera [J]. Lupus.1995,4, (4),304-8.
    9. Silver R M, Porter T F, van Leeuween I, Jeng G, Scott J R and Branch D W. Anticardiolipin antibodies:clinical consequences of "lowtiters"[J]. Obstet Gynecol. 1996,87, (4),494-500.
    10. Levine S R, Salowich-Palm L, Sawaya K L, Perry M, Spencer H J, Winkler H J et al. IgG anticardiolipin antibody titer> 40 GPL and the risk of subsequent thrombo-occlusive events and death. A prospective cohort study [J]. Stroke.1997, 28, (9),1660-5.
    11. Erkan D, Barbhaiya M, George D, Sammaritano L, Lockshin M. Moderate versus high-titer persistently anticardiolipin antibody positive patients:are they clinically different and does high-titer anti-beta 2-glycoprotein-I antibody positivity offer additional predictive information? [J] Lupus.2010,19, (5),613-9.
    12. Tuhrim S, Rand J H, Wu X X, Weinberger J, Horowitz D R, Goldman M E et al. Elevated anticardiolipin antibody titer is a stroke risk factor in a multiethnic population independent of isotype or degree of positivity [J]. Stroke.1999,30, (8), 1561-5.
    13. Ferrara D E, Swerlick R, Caspe K, Meroni P L, Vega-Ostertag M E, Harris E N et al. Fluvastatin inhibits up-regulation of tissue factor expression by antiphospholipid antibodies on endothelial cells [J]. J Thromb Haemost.2004,2, (9),1558-63.
    14. Mulla M J, Brosens J J, Chamley L W, Giles I, Pericleous C, Rahman A et al. Antiphospholipid antibodies induce a pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway[J]. Am J Reprod Immunol.2009,62, (2), 96-111.
    15. Miyakis S, Lockshin M D, Atsumi T, Branch D W, Brey R L, Cervera R et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS) [J]. J Thromb Haemost.2006,4, (2), 295-306.
    16. Bakimer R, Fishman P, Blank M, Sredni B, Djaldett M and Shoenfeld Y. Induction of primary antiphospholipid syndrome in mice by immunization with a human monoclonal anticardiolipin antibody (H-3) [J]. J Clin Invest.1992,89, (5), 1558-63.
    17. Pierangeli S S and Harris E N. Induction of phospholipid-binding antibodies in mice and rabbits by immunization with human beta 2 glycoprotein 1 or anticardiolipin antibodies alone [J]. Clin Exp Immunol.1993,93, (2),269-72.
    18. Blank M, Krause I, Lanir N, Vardi P, Gilburd B, Tincani A et al. Transfer of experimental antiphospholipid syndrome by bone marrow cell transplantation. The importance of the T cell [J]. Arthritis Rheum.1995,38, (1),115-22.
    19. Kuwana M. Beta2-glycoprotein I:antiphospholipid syndrome and T-cell reactivity [J]. Thromb Res.2004,114, (5-6),347-55.
    20. Arai T, Yoshida K, Kaburaki J, Inoko H, Ikeda Y, Kawakami Y et al. Autoreactive CD4(+) T-cell clones to beta2-glycoprotein I in patients with antiphospholipid syndrome:preferential recognition of the major phospholipid-binding site[J]. Blood. 2001,98,(6),1889-96.
    21. Akkerman A, Huang W, Wang X, Ramanujam M, Schiffer L, Madaio M et al. CTLA4Ig prevents initiation but not evolution of anti-phospholipid syndrome in NZW/BXSB mice [J]. Autoimmunity.2004,37, (6-7),445-51.
    22. Kahn P, Ramanujam M, Bethunaickan R, Huang W, Tao H, Madaio M P et al. Prevention of murine antiphospholipid syndrome by BAFF blockade [J]. Arthritis Rheum.2008,58, (9),2824-34.
    23.黄曙光,吴桂芳,王兆平,程宁,范燕燕,唐敏红等.抗心磷脂抗体阳性产妇胎盘的病理观察[J].中华妇产科杂志.1998,33,(2),77-9..
    24.龚懋明.用连续Percoll密度梯度离心沉降法分离人血单核细胞和淋巴细胞[J].国际检验医学杂志.1981,2,(2),61-2.
    25. Szabo S J, Kim S T, Costa G L, Zhang X, Fathman C G and Glimcher L H. A novel transcription factor, T-bet, directs Thl lineage commitment [J]. Cell.2000, 100, (6),655-69.
    26. Szabo S J, Sullivan B M, Stemmann C, Satoskar A R, Sleckman B P and Glimcher L H. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells [J]. Science.2002,295, (5553),338-42.
    27. Wei-ping Zheng and R A F. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells [J]. cell.1997,89,10.
    28. Ouyang W, Lohning M, Gao Z, Assenmacher M, Ranganath S, Radbruch A et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment [J]. Immunity.2000,12, (1),27-37.
    29. Jinfang Zhu, H Y, Javier Cote-Sierra, Liying Guo and William E Paul. GATA-3 promotes Th2 responses through three different mechanisms:induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Thl cell-specific factors [J]. Cell Res.2006,16,8.
    30. Hwang E S, Szabo S J, Schwartzberg P L and Glimcher L H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3 [J]. Science.2005, 307, (5708),430-3.
    31. Lee H J, Takemoto N, Kurata H, Kamogawa Y, Miyatake S, O'Garra A et al. GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Thl cells [J]. J Exp Med.2000,192, (1),105-15.
    32. Lin H, Mosmann T R, Guilbert L, Tuntipopipat S and Wegmann T G Synthesis of T helper 2-type cytokines at the maternal-fetal interface [J]. J Immunol.1993,151, (9),4562-73.
    33. Marzi M, Vigano A, Trabattoni D, Villa M L, Salvaggio A, Clerici E et al. Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy [J]. Clin Exp Immunol.1996,106, (1),127-33.
    34. Sugiura-Ogasawara M, Furukawa T A, Nakano Y, Hori S, Aoki K and Kitamura T. Depression as a potential causal factor in subsequent miscarriage in recurrent spontaneous aborters [J]. Hum Reprod.2002,17, (10),2580-4.
    35. Yokoo T, Takakuwa K, Ooki I, Kikuchi A, Tamura M and Tanaka K. Alteration of TH1 and TH2 cells by intracellular cytokine detection in patients with unexplained recurrent abortion before and after immunotherapy with the husband's mononuclear cells [J]. Fertil Steril.2006,85, (5),1452-8.
    36. Krause I, Blank M, Levi Y, Koike T, Barak V and Shoenfeld Y. Anti-idiotype immunomodulation of experimental anti-phospholipid syndrome via effect on Th1/Th2 expression [J]. Clin Exp Immunol.1999,117, (1),190-7.
    37. Fischer K, Collins H, Taniguchi M, Kaufmann S H and Schaible U E. IL-4 and T cells are required for the generation of IgGl isotype antibodies against cardiolipin [J]. J Immunol.2002,168, (6),2689-94.
    38. Soltesz P, Der H, Veres K, Laczik R, Sipka S, Szegedi G et al. Immunological features of primary anti-phospholipid syndrome in connection with endothelial dysfunction [J]. Rheumatology (Oxford).2008,47, (11),1628-34.
    39. Amital H, Gilburd B and Shoenfeld Y. Probiotic supplementation with Lactobacillus casei (Actimel) induces a Th1 response in an animal model of antiphospholipid syndrome [J]. Ann N Y Acad Sci.2007,1110,661-9.
    40. Karakantza M, Theodorou G L, Meimaris N, Mouzaki A, John E, Andonopoulos A P et al. Type 1 and type 2 cytokine-producing CD4+and CD8+ T cells in primary antiphospholipid syndrome [J]. Ann Hematol.2004,83, (11),704-11.
    41. Visvanathan S and McNeil H P. Cellular immunity to beta 2-glycoprotein-1 in patients with the antiphospholipid syndrome [J]. J Immunol.1999,162, (11), 6919-25.
    42. McKenzie B S, Kastelein R A and Cua D J. Understanding the IL-23-IL-17 immune pathway [J]. Trends Immunol.2006,27, (1),17-23.
    43. Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage [J].Nat Med.2007,13, (2),139-45.
    44. Ivanov Ⅱ, McKenzie B S, Zhou L, Tadokoro C E, Lepelley A, Lafaille J J et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells [J]. Cell.2006,126, (6),1121-33.
    45. Zhang F, Meng G and Strober W. Interactions among the transcription factors Runxl, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells [J].Nat Immunol.2008,9, (11),1297-306.
    46. Damsker J M, Hansen A M and Caspi R R. Thl and Th17 cells:adversaries and collaborators [J]. Ann N Y Acad Sci.2010,1183,211-21.
    47. El-behi M, Rostami A and Ciric B.Current views on the roles of Thl and Th17 cells in experimental autoimmune encephalomyelitis[J]. J Neuroimmune Pharmacol. 2010,5,(2),189-97.
    48. Zhao X F, Pan H F, Yuan H, Zhang W H, Li X P, Wang G H et al. Increased serum interleukin 17 in patients with systemic lupus erythematosus [J]. Mol Biol Rep.2010,37, (1),81-5.
    49. Appel H, Maier R, Wu P, Scheer R, Hempfing A, Kayser R et al. Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response [J]. Arthritis Res Ther.2011,13, (3), R95.
    50. Jadidi-Niaragh F and Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis [J]. Scand J Immunol.2011,74, (1), 1-13.
    51. Wang W J, Hao C F, Qu Q L, Wang X, Qiu L H and Lin Q D. The deregulation of regulatory T cells on interleukin-17-producing T helper cells in patients with unexplained early recurrent miscarriage [J]. HumReprod.2010,25, (10),2591-6.
    52. Liu Y S, Wu L, Tong X H, Wu L M, He G P, Zhou G X et al. Study on the relationship between Th17 cells and unexplained recurrent spontaneous abortion[J]. Am J Reprod Immunol.2011,65, (5),503-11.
    53. Nakashima A, Ito M, Shima T, Bac N D, Hidaka T and Saito S. Accumulation of IL-17-positive cells in decidua of inevitable abortion cases [J]. Am J Reprod Immunol.2010,64,(1),4-11.
    54. Hori S, Nomura T and Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3 [J]. Science.2003,299, (5609),1057-61.
    55. Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S and Amoura Z. Human FoxP3+regulatory T cells in systemic autoimmune diseases [J]. Autoimmun Rev.2011,10, (12),744-55.
    56. Bonelli M, Savitskaya A, von Dalwigk K, Steiner C W, Aletaha D, Smolen J S et al. Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE) [J]. Int Immunol.2008,20, (7),861-8.
    57. Behrens F, Himsel A, Rehart S, Stanczyk J, Beutel B, Zimmermann S Y et al. Imbalance in distribution of functional autologous regulatory T cells in rheumatoid arthritis [J]. Ann Rheum Dis.2007,66, (9),1151-6.
    58. Li X, Qian L, Wang G, Zhang H, Wang X, Chen K et al. T regulatory cells are markedly diminished in diseased salivary glands of patients with primary Sjogren's syndrome [J]. J Rheumatol.2007,34, (12),2438-45.
    59. Libera D D, Mitri D D, Bergami A, Centonze D, Gasperini C, Grasso M G et al. T regulatory cells are markers of disease activity in multiple sclerosis patients [J] PLoS One.2011,6, (6), e21386.
    60. Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A and Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases [J]. Mol Hum Reprod.2004,10, (5),347-53.
    61. Fraccaroli L, Alfieri J, Larocca L, Calafat M, Mor G, Leiros C P et al. A potential tolerogenic immune mechanism in a trophoblast cell line through the activation of chemokine-induced T cell death and regulatory T cell modulation [J]. Hum Reprod. 2009,24,(1),166-75.
    62. Arruvito L, Sotelo A I, Billordo A and Fainboim L. A physiological role for inducible FOXP3(+) Treg cells. Lessons from women with reproductive failure [J]. Clin Immunol.2010,136, (3),432-41.
    63.付嘉,方艳秋,司传平,熊斌,赵帅,谭岩等.实验性抗磷脂综合征小鼠CD4+CD25+调节性细胞及foxp3表达的变化[J].中国妇幼保健.2010,6,(4),821-4..
    64. Chen W, Jin W, Hardegen N, Lei K J, Li L, Marinos N et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3 [J]. J Exp Med.2003,198, (12),1875-86.
    65. Fantini M C, Becker C, Monteleone G, Pallone F, Galle P R and Neurath M F. Cutting edge:TGF-beta induces a regulatory phenotype in CD4+CD25" T cells through Foxp3 induction and down-regulation of Smad7 [J]. J Immunol.2004,172, (9),5149-53.
    66. Ogura H, Murakami M, Okuyama Y, Tsuruoka M, Kitabayashi C, Kanamoto M et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction [J]. Immunity.2008,29, (4),628-36.
    67. Nistala K and Wedderburn L R. Th17 and regulatory T cells:rebalancing pro-and anti-inflammatory forces in autoimmune arthritis[J]. Rheumatology (Oxford).2009, 48, (6),602-6.
    68. Ochs H D, Oukka M and Torgerson T R. TH17 cells and regulatory T cells in primary immunodeficiency diseases [J]. J Allergy Clin Immunol.2009,123, (5), 977-83; quiz 984-5.
    69. Liu L L, Qin Y, Cai J F, Wang H Y, Tao J L, Li H et al. Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome [J]. Clin Immunol.2011, 139, (3),314-20.
    70. Dong H, Zhu G, Tamada K and Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion [J]. Nat Med.1999,5, (12),1365-9.
    71. Petroff M G, Chen L, Phillips T A, Azzola D, Sedlmayr P and Hunt J S. B7 family molecules are favorably positioned at the human maternal-fetal interface [J]. Biol Reprod.2003,68, (5),1496-504.
    72. Rodig N, Ryan T, Allen J A, Pang H, Grabie N, Chernova T et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+T cell activation and cytolysis [J]. Eur J Immunol.2003,33, (11),3117-26.
    73. Mazanet M M and Hughes C C. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis [J]. J Immunol.2002,169, (7),3581-8.
    74. Brown J A, Dorfman D M, Ma F R, Sullivan E L, Munoz O, Wood C R et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production [J]. J Immunol.2003,170, (3),1257-66.
    75. Liang S C, Latchman Y E, Buhlmann J E, Tomczak M F, Horwitz B H, Freeman G J et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses [J]. Eur J Immunol.2003,33, (10),2706-16.
    76. Tamura H, Dong H, Zhu G, Sica G L, Flies D B, Tamada K et al. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function [J]. Blood.2001,97, (6),1809-16.
    77. Subudhi S K, Zhou P, Yerian L M, Chin R K, Lo J C, Anders R A et al. Local expression of B7-H1 promotes organ-specific autoimmunity and transplant rejection [J]. J Clin Invest.2004,113, (5),694-700.
    78. Freeman G J, Long A J, Iwai Y, Bourque K, Chernova T, Nishimura H et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation[J]. J Exp Med.2000,192, (7), 1027-34.
    79. Dong H, Strome S E, Salomao D R, Tamura H, Hirano F, Flies D B et al. Tumor-associated B7-H1 promotes T-cell apoptosis:a potential mechanism of immune evasion [J].Nat Med.2002,8, (8),793-800.
    80. Ishida Y, Agata Y, Shibahara K and Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death [J]. EMBO J.1992,11, (11),3887-95.
    81. Butte M J, Keir M E, Phamduy T B, Sharpe A H and Freeman G J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses [J]. Immunity.2007,27, (1),111-22.
    82. Haile S T, Bosch J J, Agu N I, Zeender A M, Somasundaram P, Srivastava M K et al. Tumor cell programmed death ligand 1-mediated T cell suppression is overcome by coexpression of CD80 [J]. J Immunol.2011,186, (12),6822-9.
    83. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with EFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway [J]. Blood.2007,110, (1),296-304.
    84. Berthon C, Driss V, Liu J, Kuranda K, Leleu X, Jouy N et al. In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon-gamma and can be reversed using MEK inhibitors [J] Cancer Immunol Immunother.2010,59, (12),1839-49.
    85. Kondo A, Yamashita T, Tamura H, Zhao W, Tsuji T, Shimizu M et al. Interferon-gamma and tumor necrosis factor-alpha induce an immunoinhibitory molecule, B7-H1, via nuclear factor-kappaB activation in blasts in myelodysplastic syndromes [J]. Blood..2010,116,(7),1124-31.
    86. Wagner C J, Huber S, Wirth S and Voehringer D. Chitin induces upregulation of B7-H1 on macrophages and inhibits T-cell proliferation [J]. Eur J Immunol.2010, 40, (10),2882-90.
    87. Hamel K M, Cao Y, Wang Y, Rodeghero R, Kobezda T, Chen L et al. B7-H1 expression on non-B and non-T cells promotes distinct effects on T-and B-cell responses in autoimmune arthritis [J]. Eur J Immunol 2010.
    88. Sandner S E, Clarkson M R, Salama A D, Sanchez-Fueyo A, Domenig C et al. Role of the programmed death-1 pathway in regulation of alloimmune responses in vivo [J]. J Immunol.2005,174, (6),3408-15.
    89. Ge W, Ma X, Li X, Wang Y, Li C, Meng H et al. B7-H1 up-regulation on dendritic-like leukemia cells suppresses T cell immune function through modulation of IL-10/IL-12 production and generation of Treg cells [J]. Leuk Res.2009,33, (7), 948-57.
    90. Good-Jacobson K L, Szumilas C G, Chen L, Sharpe A H, Tomayko M M and Shlomchik M J. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells [J].Nat Immunol.2010,11, (6),535-42.
    91.丁涵露,吴雄飞,刘宏,张建国,李开龙,何娅妮等.Ⅳ型狼疮肾炎患者肾组织中程序性死亡配体-1-程序性死亡-1的表达及其意义[J].中华风湿病学杂志.2004,12,(6),723-6..
    92. Liu M F, Weng C T and Weng M Y. Variable increased expression of program death-1 and program death-1 ligands on peripheral mononuclear cells is not impaired in patients with systemic lupus erythematosus[J]. J Biomed Biotechnol.2009,2009, 406136.
    93. Her M, Kim D, Oh M, Jeong H and Choi I. Increased expression of soluble inducible costimulator ligand (ICOSL) in patients with systemic lupus erythematosus [J]. Lupus.2009,18, (6),501-7.
    94. Mozaffarian N, Wiedeman A E and Stevens A M. Active systemic lupus erythematosus is associated with failure of antigen-presenting cells to express programmed death ligand-1 [J].Rheumatology (Oxford).2008,47, (9),1335-41.
    95.李永喜,邓云华,陈兴平,周礼义,陈映玲.斯奇康注射液对正常及免疫抑制小鼠T淋巴细胞亚群的影响[C].第一届全国变态反应学术研讨会论文汇编.2001.
    96.杨玉成,洪苏玲,黄江菊,王祎琴,孙荣,钱迪等.卡介苗多糖核酸对变应性鼻炎病人Th_1/Th_2失衡状态的调节[J].第三军医大学学报.2005,12,(27),1279-81..
    97.田庆玲,金江,庞保东,吴家骅,刘瑞兰,刘凤珍等.卡介苗多糖核酸与减毒活卡介苗治疗哮喘患儿疗效比较及治疗前后细胞因子的变化[J].实用儿科临床杂志.2006,16,(21),1072-4.
    98. Sayers I, Severn W, Scanga C B, Hudson J, Le Gros G and Harper J L. Suppression of allergic airway disease using mycobacterial lipoglycans [J]. J Allergy Clin Immunol.2004,114, (2),302-9.
    99. Tapping R I and Tobias P S. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling[J]. J Endotoxin Res.2003, 9, (4),264-8.
    100. Means T K, Wang S, Lien E, Yoshimura A, Golenbock D T and Fenton M J. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis [J]. J Immunol.1999,163, (7),3920-7.
    101. Bulut Y, Michelsen K S, Hayrapetian L, Naiki Y, Spallek R, Singh M et al. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals [J]. J Biol Chem.2005,280, (22), 20961-7.
    102. Bafica A, Scanga C A, Feng C G, Leifer C, Cheever A and Sher A. TLR9 regulates Thl responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis [J]. J Exp Med.2005,202, (12),1715-24.
    103. Means T K, Jones B W, Schromm A B, Shurtleff B A, Smith J A, Keane J et al. Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses [J]. J Immunol.2001,166, (6), 4074-82.
    104. Davila S, Hibberd M L, Hari Dass R, Wong H E, Sahiratmadja E, Bonnard C et al. Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis [J]. PLoS Genet.2008,4, (10), e1000218.
    105. Kleinnijenhuis J, Oosting M, Joosten L A, Netea M G and Van Crevel R. Innate immune recognition of Mycobacterium tuberculosis [J]. Clin Dev Immunol. 2011,2011,405310.
    106.郭亚南.卡介菌多糖核酸对小鼠特应性皮炎模型的影响[D].湖南:中南大学.2010.
    107. 文海泉,宋艳丽.斯奇康(BCG-PSN)调节特应性皮炎患者PBMC中NF-κB和Th1/Th2细胞因子表达的研究[C].中华医学会第十二次全国皮肤性病学术会议论文集.2006.
    108. 刘光辉.卡介菌多糖核酸对NF-κB的活化调控[J].中国医院药学杂志.2005,4,(25),308-10.
    109. Power C A, Wei G and Bretscher P A. Mycobacterial dose defines the Thl/Th2 nature of the immune response independently of whether immunization is administered by the intravenous, subcutaneous, or intradermal route [J]. Infect Immun 1998,66, (12),5743-50.
    110.王晓菲,蒋莉,石晓彤,赵丽娟.斯奇康在SLE治疗中免疫调节作用的临床研究[C].第一届全国变态反应学术研讨会论文汇编.2001.
    111. Silveira L H, Hubble C L, Jara L J, Saway S, Martinez-Osuna P, Seleznick M J et al. Prevention of anticardiolipin antibody-related pregnancy losses with prednisone and aspirin [J]. Am J Med.1992,93, (4),403-11.
    112.Sebire N J, Fox H, Backos M, Rai R, Paterson C and Regan L. Defective endovascular trophoblast invasion in primary antiphospholipid antibody syndrome-associated early pregnancy failure [J]. Hum Reprod.2002,17, (4), 1067-71.
    113.Stephenson M D, Ballem P J, Tsang P, Purkiss S, Ensworth S, Houlihan E et al. Treatment of antiphospholipid antibody syndrome (APS) in pregnancy:a randomized pilot trial comparing low molecular weight heparin to unfractionated heparin [J]. J Obstet Gynaecol Can.2004,26, (8),729-34.
    114.Ghazeeri G S and Kutteh W H. Immunological testing and treatment in reproduction:frequency assessment of practice patterns at assisted reproduction clinics in the USA and Australia [J]. Hum Reprod.2001,16, (10),2130-5.
    115.Branch D W, Peaceman A M, Druzin M, Silver R K, El-Sayed Y, Silver R M et al. A multicenter, placebo-controlled pilot study of intravenous immune globulin treatment of antiphospholipid syndrome during pregnancy. The Pregnancy Loss Study Group [J]. Am J Obstet Gynecol.2000,182, (1 Pt 1),122-7.
    [1]Maria Mialdea, Shirish R Sangle and David P D'Cruz. Antiphospholipid (Hughes) syndrome:beyond pregnancy morbidity and thrombosis. Journal of Autoimmune Diseases 2009 May 19; 6:3.
    [2]Chen XX, Gu YY, Li SJ et al. Some Plasmin-Induced Antibodies Bind to Cardiolipin, Display Lupus Anticoagulant Activity and Induce Fetal Loss in Mice.The Journal of Immunology,2007, Apr 15;178(8):5351-6.
    [3]陆才生,Kwan-Ki Hwang, Arash A. Hotizon et al.抗磷脂抗体综合征患者单克隆与多克隆抗t-PA抗体的研究.首届全国中青年风湿病学学术大会.2004,38-39.
    [4]Pierangeli SS, Colden-Stanfield M, Liu X et al. Antiphospholipid Antibodies From Antiphospholipid Syndrome Patients Activate Endothelial Cells In Vitro and In Vivo.Circulation.1999 Apr 20;99(15):1997-2002.
    [5]Kornberg A, Renaudineau Y, Blank M et al. Anti-Beta2-Glycoprotein I antibodies and Anti-Endothelial Cell Antibodies Induce Tissue Factor in Endothelial Cells. IMAJ 2000 Jul:2 Suppl:27-31.
    [6]Graham A, Ford I, Morrison R et al. Anti-endothelial Antibodies Interfere in apoptotic cell clearance and promote thrombosis in Patients with Antiphospholipid Syndrome. The Journal of Immunology,2009 Feb 1;182(3):1756-62.
    [7]Rand JH, Wu XX, Quinn AS et al. Human monoclonal antiphospholipid antibodies disrupt the annexin A5 anticoagulant crystal shield on phospholipid bilayers:evidence from atomic force microscopy and functional assay. Am J Pathol 2003 Sep; 163(3):1193-200.
    [8]Joseph JE, Harrison P, Mackie IJ et al. Increased circulating platelet-leucocyte complexes and platelet activation in patients with antiphospholipid syndrome, systemic lupus erythematosus and rheumatoid arthritis. Br J Haematol.2001 Nov; 115(2):451-9.
    [9]Fanopoulos D, Teodorescu MR, Varga J et al.High frequency of abnormal levels of IgA anti-P-2glycoprotein I antibodies in patients with systemic lupus erythematosus:relationship with antiphospholipid syndrome. J Rheumatol 1998 Apr;25(4):675-80.
    [10]Blank M, Krause I, Lanir N et al. Transfer of experimental antiphospholipid syndrome by bone marrow cell transplantation:the importance of the T cell. Arthritis Rheum 1995 Jan;38(1):115-22.
    [11]Kuwana M.Beta2-glycoprotein I:antiphospholipid syndrome and T-cell reactivity. Thromb Res.2004;114(5-6):347-55.
    [12]Arai T, Yoshida K, Kaburaki J et al. Autoreactive CD4+T-cell clones to β2-glycoprotein I in patients with antiphospholipid syndrome:preferential recognition of the major phospholipid-binding site. Blood.2001Sep 15;98(6):1889-96.
    [13]Tsagalis G, Psimenou E, Nakopoulou L et al. Effective treatment of antiphospholipid syndrome with plasmapheresis and rituximab. Hippokratia. 2010 Jul; 14(3):215-6.
    [14]Akkerman A, Huang W, Wang X, Ramanujam M et al. CTLA4Ig prevents initiation but not evolution of anti-phospholipid syndrome in NZW/BXSB mice. Autoimmunity.2004 Sep-Nov;37(6-7):445-51.
    [15]Kahn P, Ramanujam M, Bethunaickan R et al. Prevention of murine antiphospholipid syndrome by BAFF blockade. Arthritis Rheum.2008 Sep;58(9):2824-34.
    [16]Krause I, Blank M, Levi Y et al. Anti-idiotype imrnunomodulation of experimental anti-phospholipid syndrome via effect on Th1/Th2 expression. Clin Exp Immunol 1999 Jul; 117(1):190-7.
    [17]Karakantza M, Theodorou GL, Meimaris N et al. Type 1 and type 2 cytokine-producing CD4+and CD8+T cells in primary antiphospholipid syndrome. Ann Hematol.2004 Nov; 83(11):704-11.
    [18]叶志中,李富荣,庄俊汉等.系统性红斑狼疮患者Th1/Th2淋巴细胞类型与疾病活动指数的相关性.中华风湿病学杂志2001.5(4):216-219.
    [19]付嘉等.实验性抗磷脂综合征小鼠CD4+CD25+调节性细胞及foxp3表达的变化.中国妇幼保健.2010,25:821-824.
    [20]黄曙光,吴桂芳,王兆平,程宁等.抗心磷脂抗体阳性产妇胎盘的病理观察.中华妇产科杂志1998,33(2):77-79.
    [21]Salmon JE, Girardi G. Antiphosphilipid syndrome revisited:a disorder initiated by inflammation. Trans Am Clin Climatol Assoc.2007,118:99-114..
    [22]Shamonki JM, Salmon JE,Hyjek E et al. Excessive complement activation is associated with placental injury in patients with antiphospholipid antibodies. Am J Obstet Gynecol.2007 Feb; 196(2):167.e1-5.
    [23]Holers VM, Girardi G, Mo L et al. Complement C3 Activation Is Required for Antiphospholipid Antibody-induced Fetal Loss. J. Exp. Med.2002 Jan 21;195(2): 211-20.
    [24]Girardi G, Berman J, Redecha P et al. Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J Clin Invest.2003 Dec;112(11):1644-54.
    [25]Stewart MW, Etches WS, Gordon PA. Antiphospholipid antibody-dependent C5b-9 formation. Br J Haematol.1997 Mar;96 (3):451-7.
    [26]Girardi G, Mackman N. Tissue factor in antiphospholipid antibody-induced pregnancy loss:a pro-inflammatory molecule. Lupus.2008 October; 17(10): 931-6.
    [27]Girardi G, Bulla R, Salmon JE et al. The complement system in the pathophysiology of pregnancy. Mol Immunol.2006 Jan;43 (1-2):68-77.
    [28]Francis J, Rai R, Sebire NJ et al. Impaired expression of endometrial differentiation markers and complement regulatory proteins in patients with recurrent pregnancy loss associated with antiphospholipid syndrome.Mol Hum Reprod.2006 Jul;12(7):435-42.
    [29]Di Simone N, Meroni PL, Del Papa N et al. Antiphospholipid antibodies affect trophoblast gonadotropin secretion and invasiveness by binding directly and through adhered β2-glycoprotein LArthritis Rheum 2000 Jan;43(1):140-50.
    [30]Di Simone N, Meroni PL, Del Papa N et al. Antiphospholipid antibodies affect trophoblast gonadotropin secretion and invasiveness by binding directly and through adhered β2-glycoprotein I.Arthritis Rheum 2000 Jan;43(1):140-50.
    [31]Mulla MJ, Brosens JJ, Chamley LW et al. Antiphospholipid antibodies induce a pro-inflammatory response in first trimester trophoblast via the TLR4/MyD88 pathway. Am J Reprod Immunol.2009 Aug; 62(2):96-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700