用户名: 密码: 验证码:
基于柔性丝传动的腹腔微创手术器械设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学技术的不断发展推动了医疗领域的微创外科手术也在不断进步。微创手术器械有效地拓展了手术医生的能力,目前已成为研究热点。微创手术器械的机械结构、传动方式等方面的设计合理性,将直接影响其适用性、灵活性、操作性、控制精确性等性能及手术效果。本论文对新型腹腔微创手术器械进行了概念设计及详细设计,对器械中的机械结构、柔性丝传动(钢丝传动)等进行了理论分析和结构参数优化,并通过了仿真和实验验证。
     论文运用旋量理论,对新型腹腔微创手术机器人系统‘妙手A’中的主动机械臂进行了分析。通过运动分解,确定了该机构可实现远端中心点运动,确定了不动点位置及雅克比矩阵,不但简化了运动学分析,使参数含义更明确,而且避免了直接应用运动旋量获取雅克比矩阵时出现的偏差。
     采用柔性丝(钢丝)与杆件相结合的设计方案,设计了具有多自由度的新型手持式手动手术工具‘Easy Grasp’,该工具结构简单,操作端和末端同构结构和平行四边形的应用使其实现了直观操作。结合旋量理论和微分流形理论,对旋转矩阵的两个参数化方法欧拉角和矩阵指数积的特性进行了研究,并以全局条件数为优化目标,确定了手术工具‘Easy Grasp’中的钢丝布局和结构参数。
     针对丝传动,论文从几何角度对垂直钢丝进行了数学建模,根据钢丝的螺旋捻制特点,对钢丝进行了结构、受力等方面的研究。对于钢丝未弯曲和弯曲时的状态,分别推导了不同位置的金属丝的结构方程,得到了钢丝的曲率、挠率及受力公式,为钢丝导向轮的设计提供了理论依据。
     对易断裂的钢丝弯曲部分进行了受力分析,针对‘妙手A’机器人系统手术工具中的钢丝传动系统,确定了导向轮的槽尺寸,推导了有限空间内导向轮轴线互相垂直时的轮直径与轮间距之间的关系。仿真与针对机器人用器械和手持式手动工具的性能实验,验证了本文的理论分析和结构设计的正确性及合理性。
With the development of science and technology, the minimally invasive surgery(MIS) has been steadily progressing. The MIS equipment can assist surgeons inmicrosurgery and have become a research focus. The mechanical structure and drivenmode of the surgical equipment will directly impact its applicability, flexibility,operability, accurate controllability, and the surgical result. In the dissertation,conceptual and detail design are proposed for novel laparoscopic surgical equipment.The mechanical structure and driven mode of the active manipulator of a novelsurgical robot and the manual instrument are theoretically analyzed using screwtheory. Structures parameter optimization is also performed. The simulated andexperimental verifications of the analysis results and the design scheme are presented.
     A method combining screw theory and motion decomposition is used todetermine the position of fixed point and Jacobian matrix for the active manipulator ofthe novel MIS robot system ‘MicroHand A’. The method simplifies kinematic analysisand the parameters used are clearer in meaning than those in conventional methods.The Jacobian matrix is more exact than that directly obtained by screw theory.
     A hybrid-driven system that consists of cables and rigid link is used to design themulti-degree of freedom manual instrument, which is named ‘Easy Grasp’. Thestructure of the instrument is simple. Isomorphic mechanism configurations andparallelogram frame are applied to achieve intuitive control. Characteristics of theparameters of the Euler angles (EA) and the matrix exponential (ME) are studiedusing screw theory and the theory of differentiable manifolds. Cable layout andstructure parameters are optimized using Global Condition Index (GCI).
     For cable-driven system, the vertical cables are mathematically modelled from ageometric point of view. The cable structure and tension on the calbe are analyzedaccording to the characteristics of screw twist. The structural equations of the cablesin different positions are derived for both non-bent cable and bent cable, respectively.The formulas of tension, cable curvature and torsion are obtained.
     The tension on the cable is analyzed for the bent part. The slot size of the guidepulley of transmission system is determined for the calbe transmission system in theinstrument of ‘MicroHand A’. Meanwile, formulas that represent the relationship between diameter and the spacing of the mutually perpendicular guide pulleys inlimited space are also derived. The theoretical analysis and the mechanism design areverified by the simulation and experiments.
引文
[1] Wayand W. The history of minimally invasive surgery. Global Surgery,2004:37-38.
    [2] http://www-kismet.iai.fzk.de/TRAINER/mic_def1.html
    [3] Dario P, Guglielmelli E, Allotta B, et al. Robotics for medical applications.IEEE Robotics and Automation Magzine,1996,3(3):44-56
    [4] Li J M, Wang S X, Wang X F, et al. Optimization of a novel mechanism for aminimally invasive surgery robot. The International Journal of MedicalRobotics and Computer Assisted Surgery,2010,6(1):83-90
    [5] Mcleod I K. Da Vinci robot-assisted excision of a vallecular cyst: a case report.Ear, Nose and Throat Journal,2005,84(3):170-173
    [6] Li Q H, Zamorano L, Pandya A, et al. The application accuracy of theNeuroMate robot—a quantitative comparison with frameless and frame-basedsurgical localization systems. Computer Aided Surgery,2002,7(2):90-98
    [7]唐粲,王田苗,丑武胜,等.脑外科机器人控制系统的设计和实现.机器人,2004,26(6):543-552
    [8] Taylor R, Jensen P, Whitcomb L, et al. Steady-hand robotic system formicrosurgical augmentation. The International Journal of Robotics Research,1999,18(12):1201-1210
    [9]王田苗,李伟,刘达,等.机器人技术在中医正骨手术中的应用研究.机器人,2003,25(3):255-258
    [10] Luo H, Ding J, Wang S. A master-slave robot system for minimally invasivelaryngeal surgery. In: Proceedings of the IEEE International Conference onRobotics and Biomimetics, Guilin, China,2009:782-787
    [11] Brian L D, Roger D H, Wan S N, et al. The development of a surgeon robot forprostatectomies. Proceedings of the Institution of Mechanical Engineers, PartH: Journal of Engineering in Medicine,1991,205(1):35-38
    [12] Shew S B, Ostlie D J, Iii G W H. Robotic telescopic assistance in pediatriclaparoscopic surgery. Pediatric Endosurgery&Innovative Techniques,2003,7(4):371-376
    [13] Kraft B M, J ger C, Kraft K, et al. The AESOP robot system in laparoscopicsurgery: increased risk or advantage for surgeon and patient? SurgicalEndoscopy,2004,18:1216-1223
    [14] Mettler L, Ibrahim M, Jonat W. One year of experience working with the aid ofa robotic assistant (the voice-controlled optic holder AESOP) ingynaecological endoscopic surgery. Human Reproduction,1998,13(10):2748-2750
    [15] Butner S E, Ghodoussi M. Transforming a surgical robot for human telesurgery.IEEE Transactions on Robotics and Automation,2003,19(5):818-824
    [16] http://investor.intuitivesurgical.com/phoenix.zhtml?c=122359&p=irol-irhome
    [17] Bedem L V, Hendrix R, Rosielle N, et al. Design of a minimally invasivesurgical teleoperated master-slave system with haptic feedback. In:Proceedings of the IEEE International Conference on Mechatronics andAutomation, Changchun, China,2009:60-65
    [18] http://medgadget.com/2010/10/sophie_surgical_robot_provides_haptic_feedback_to_surgeons.html
    [19] Hagn U, Konietschke R, Tobergte A, et al. DLR MiroSurge: a versatile systemfor research in endoscopic telesurgery. The International Journal of ComputerAssisted Radiology and Surgery,2010,5(2):183-193
    [20] Lum M J, Friedman D C, Sankaranarayanan G, et al. The RAVEN: design andvalidation of a telesurgery system. The International Journal of RoboticsResearch,2009,28(9):1183-1197
    [21] Lum M J, Friedman D C, Sankaranarayanan G, et al. Objective assessment oftelesurgical robot systems: Telerobotic FLS. In: Proceeding of Medicine MeetsVirtual Reality, Long Beach, CA, USA,2008:263-265
    [22] Mitsuishi M. Medical robot and master slave system for minimally invasivesurgery. In: Proceedings of the IEEE International Conference on ComplexMedical Engineering, Beijing, China,2007:8-13
    [23] Lee Y, Kim J, Ko S, et al. Design of a Compact Laparoscopic Assistant Robot:KaLAR. In: Proceedings of the IEEE International Conference on ControlAutomation and Systems, Gyeongju, Korea,2003:2648-2653
    [24]王树新,王晓菲,张建勋,等.辅助腹腔微创手术的新型机器人‘妙手A’.机器人技术与应用,2011,4:17-21
    [25]王树新,何超,桑宏强,等.一种微创外科丝传动、四自由度手术工具.国家发明专利,专利号: ZL200910306053.5
    [26] Kaouk J H, Goel R K, Haber G, et al. Robotic single-port transumbilicalsurgery in humans: initial report. BJU International,2009,103(3):366-369
    [27] Abbott D J, Becke C, Rothstein R I, et al. Design of an endoluminal NOTESrobotic system. In: Proceedings of the IEEE International Conference onIntelligent Robots and Systems, San Diego, CA, USA,2007:410-416
    [28] Harada K, Susilo E, Menciassi A, et al. Wireless reconfigurable modules forrobotic endoluminal surgery. In: Proceedings of the IEEE InternationalConference on Robotics and Automation, Kobe, Japan,2009:2699-2704
    [29]丁杰男.具有缝合功能的喉部微创手术机器人系统设计及实现:[博士学位论文],天津:天津大学,2008
    [30] Tsai L. Robot analysis: the mechanics of serial and parallel manipulators. NewYork: Wiley,1999
    [31] Morley T A, Wallace D T. Roll-pitch-roll surgical tool.美国发明专利,专利号: US7914522B2
    [32] Diolaiti N. Minimally invasive surgical system.美国发明专利,专利号:US7725214B2
    [33] Simaan N, Taylor R, Flint P. A dexterous system for laryngeal surgery. In:Proceedings of the IEEE International Conference on Robotics andAutomation, New Orleans, LA, USA,2004:351-357
    [34] http://www.physorg.com/news85843787.html
    [35] Xu K, Goldman R E, Ding J, et al. System design of an insertable roboticeffector platform for single port access (SPA) surgery. In: Proceedings of theIEEE International Conference on Intelligent Robots and Systems, St. Louis,MO, USA,2009:5546-5552
    [36] Ding J, Xu K, Goldman R, et al. Design, simulation and evaluation ofkinematic alternatives for insertable robotic effectors platforms in single portaccess surgery. In: Proceedings of the IEEE International Conference onRobotics and Automation, Anchorage, Alaska, USA,2010:1053-1058
    [37] Hagn U, Nickl M, Jorg S, et al. The DLR MIRO: a versatile lightweight robotfor surgical applications. Industrial Robot,2008,35(4):324-336
    [38] Tobergte A, Passig G, Kuebler B, et al. MiroSurge-advanced user interactionmodalities in minimally invasive robotic surgery. Presence: Teleoperators andVirtual Environments,2010,19(5):400-414
    [39] Zahraee A H, Paik J K, Szewczyk J, et al. Toward the development of ahand-held surgical robot for laparoscopy. IEEE/ASME Transactions onMechatronics,2010,15(6):853-861
    [40] Piccigallo M, Focacci F, Tonet O, et al. Hand-held robotic instrument fordextrous laparoscopic interventions. The International Journal of MedicalRobotics and Computer Assisted Surgery,2008,4(4):331-338
    [41] Lange D, Gossot G. Deflectable and rotatable endoscopic instrument withintuitive control. Minimally Invasive Therapy&Allied Technologies,2001,10(6):295-299
    [42] Huang T, Li Z, Li M, et al. Conceptual design and dimensional synthesis of anovel2-DOF translational parallel robot for pick-and-place operations. ASMEJournal of Mechanical Design,2004,126(3):449-455
    [43] Duffy J. Analysis of mechanisms and robot manipulators. New York: JohnWiley&Sons,1980
    [44] Denavit J, Hartenberg R S. A kinematic notation for lower pair mechanismsbased on matrices. ASME Journal of Applied Mechanics,1955,22:215-221
    [45] Selig J M. Geometric Fundamentals of Robotics. London: Springer,2004
    [46] Murray R M, Li Z, Sastry S S, et al. A mathematical introduction to roboticmanipulation. Florida: CRC Press,1994
    [47]于靖军,刘辛军,丁希仑,等.机器人机构学的数学基础.北京:机械工业出版社,2008
    [48] Park F C, Bobrow J E, Ploen S R. A Lie group formulation of robot dynamics.The International Journal of Robotics Research,1995,14(6):609-618
    [49] Selig J M. Lie groups and Lie algebras in robotics. ComputationalNoncommutative Algebra and Applications,2004:101–125
    [50] Brockett R. Robotic manipulators and the product of exponentials formula.New York: Springer,1984
    [51] Selig J M. Introductory Robotics. London: Prentice Hall,1992
    [52] Hunt K H. Kinematic geometry of mechanisms. London: Oxford UniversityPress,1978
    [53] Dai J S. An historical review of the theoretical development of rigid bodydisplacements from Rodrigues parameters to the finite twist. Mechanism andMachine Theory,2006,41(1):41-52
    [54] Rico J M, Gallardo J, Duffy J. Screw theory and higher order kinematicanalysis of open serial and closed chains. Mechanism and Machine Theory,1999,34(4):559-586
    [55] Huang T, Whitehouse D J, Chetwynd D G. A unified error model for tolerancedesign, assembly and error compensation of3-DOF parallel kinematicmachines with parallelogram struts. CIRP Annals,2002,51(1):297-301
    [56]黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社,2006
    [57]赵景山,冯之敬,褚福磊.机器人机构自由度分析理论.北京:科学出版社,2009
    [58] Angeles J. Fundamentals of robotic mechanical systems: theory, methods, andalgorithms. New York: Springer,1997.
    [59] Gosselin C, Angeles J. A global performance index for the kinematicoptimization of robotic manipulators. ASME Journal of Mechanical Design,1991,113(3):220-226
    [60] Velinsky S A, Anderson G L, Costello G A, et al. Wire rope with complexcross sections. Journal of Engineering Mechanics,1987,110(3):380-391
    [61]王时龙,萧红,周杰,等.多股螺旋弹簧的微分几何研究.中国机械工程,2009,20(17):2089-2099
    [62]廖红卫.钢丝绳的疲劳行为特征与损伤机理研究:[博士学位论文],武汉:武汉理工大学,2006
    [63]李群智.面向喉部微创外科手术的机器人系统设计与实验研究:[博士学位论文],天津:天津大学,2008
    [64] Lee Y, Lee J. Modeling of the dynamics of tendon-driven robotic mechanismswith flexible tendons. Mechanism and Machine Theory,2003(38):1431-1447
    [65] Salisbury J K, Craig J J. Articulated hands. The International Journal ofRobotics Research,1982,1(1):4-17
    [66]周宁新.机器人微创外科手术探索与实践.北京:人民军医出版社,2010
    [67] http://www.bb.ustc.edu.cn/jpkc/guojia/dxwlsy/kj/part1/4-11.html
    [68] Mcbeth P B, Louw D F, Rizun P R, et al. Robotics in neurosurgery. TheAmerican Journal of Surgery,2004,188(4):68-75
    [69] http://www.gundluth.org/?id=3542&sid=1
    [70] http://www.cityofhope.org/patient_care/treatments/surgical-services/Pages/minimally-invasive-surgery.aspx
    [71]柯重伟,郑成竹.腹腔镜外科手术学.上海:上海科学技术出版社,2005
    [72] Lum M J, Rosen J, Sinanan M N, et al. Optimization of a spherical mechanismfor a minimally invasive surgical robot: theoretical and experimentalapproaches. IEEE Transactions on Biomedical Engineering,2006,53(7):1440-1445
    [73] Kwon D, Woo K Y, Song S K, et al. Microsurgical telerobot system. In:Proceedings of the IEEE Conference on Intelligent Robots and Systems,Victoria, Canada,1998:945-950
    [74] Cavusoglu M C, Tendick F, Cohn M, et al. A laparoscopic telesurgicalworkstation. IEEE Transactions on Robotics and Automation,1999,15(4):728-739
    [75] Cavusoglu M C. Telesurgery and surgical simulation: design, modeling, andevaluation of haptic interfaces to real and virtual surgical environments:[博士学位论文], Berkeley: University of California,2000
    [76] Wang X F, Wang S X, Li J M, et al. Kinematic analysis of a novel3-DoFmanipulator for a laparoscopic surgery robot. In: Proceedings of the IEEEInternational Conference on Complex Medical Engineering, Harbin, China,2011:369-374
    [77]陈维桓.微分流形初步.北京:高等教育出版社,2001
    [78] Fecko M. Differential geometry and lie groups for physicisys. Cambridge:Cambridge University Press,2008
    [79] Boothby W M. An introduction to differentiable manifolds and riemanniangeometry. London: Academic Press,2003
    [80] Morita S, By T, Nagase T, et al. Geometry of differential forms. Providence:American Mathematical Society,2001
    [81] Chirikjian G S, Kyatkin A B. Engineering applications of noncommutativeharmonic analysis: with emphasis on rotation and motion groups. Florida:CRC Press,2001
    [82] Bonev I A, Gosselin C M. Singularity loci of spherical parallel mechanisms. In:Proceedings of the IEEE International Conference on Robotics andAutomation, Barcelona, Spain,2005:2957-2962
    [83] Mccarthy J M. An introduction to theoretical kinematics. London: MIT Press,1992
    [84] Gogu G. Mobility of mechanisms: a critical review. Mechanism and MachineTheory,2005,40(9):1068-1097
    [85] Zhao J, Zhou K, Feng Z. A theory of degrees of freedom for mechanisms.Mechanism and Machine Theory,2004,39(6):621-643
    [86] Davidson J K, Hunt K H. Robot and screw theory: application of kinematicsand statics to robotics. New York: Oxford University Press,2004
    [87]熊有伦.机器人学.北京:机械工业出版社,1993
    [88] Yoshikawa T. Manipulability of robotic mechanisms. The International Journalof Robotics Research,1985,4(2):3-9
    [89] Chiu S L. Kinematic characterization of manipulators: an approach to definingoptimality. In: Proceedings of the IEEE International Conference on Roboticsand Automation, Philadelphia, PA, USA,1988:828-833
    [90] Klein C A, Blaho B E. Dexterity measures for the design and control ofkinematically redundant manipulators. The International Journal of RoboticsResearch,1987,6(2):72-83
    [91] Kircanski M V. Robotic isotropy and optimal robot design of planarmanipulators. In: Proceedings of the IEEE International Conference onRobotics and Automation, San Diego, CA, USA,1994:1100-1105
    [92]熊有伦.机器人技术基础.武汉:华中科技大学出版社,1996
    [93] Craig J J. Introduction to robotics: mechanics and control. New Jersey:Prentice Hall,2004
    [94] Kim J, Khosla P. Dexterity measures for design and control of manipulators. In:Proceedings of the IEEE International Workshop on Intelligent Robots andSystems, Osaka, Japan,1991:758-763
    [95] Lee W, Chamorro A. Surgical instrument.美国发明专利,专利号:US7338513B2
    [96] Danitz D J. Articulating mechanisms with joint assembly and manual handlefor remote manipulation of instruments and tools.美国发明专利,专利号:US20060201130A1
    [97]辛华泉.人类工程设计.湖北:湖北美术出版社,2006
    [98]张策.机械原理与机械设计.北京:机械工业出版社,2004
    [99]李育锡,李继庆.机械设计基础.北京:高等教育出版社,2006
    [100] Chang S, Lee J, Yen H. Kinematic and compliance analysis for tendon-drivenrobotic mechanisms with flexible tendons. Mechanism and Machine Theory,2005,40(6):728-739
    [101] Costello G A. Theory of wire rope. New York: Springer,1997
    [102] Elata D, Eshkenazy R, Weiss M P. The mechanical behavior of a wire ropewith an independent wire rope core. International Journal of Solids andStructures,2004,41(5-6):1157-1172
    [103]杨万年.微分流形及其应用.重庆:重庆大学出版社,1992
    [104] Love A E. A treatise on the mathematical theory elasticity. New York: DoverPublications,1944
    [105]单辉祖.材料力学.北京:高等教育出版社,2004
    [106] http://www.globalsecurity.org/military/library/policy/army/fm/55-501/chap12.htm#12-4
    [107] Kumar V. Instantaneous kinematics of parallel-chain robotic mechanisms.ASME Journal of Mechanical Design,1992,114(3):349-358
    [108] http://paleo-tech.com/microscribeg2.aspx
    [109] http://www.ati-ia.com
    [110] http://www.tl17.com/ArticleShow.asp?ArticleID=1097

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700