用户名: 密码: 验证码:
纤维素酶高产菌选育及固态发酵条件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验采用滤纸平板法从“三北”防护林永寿试验区所采20个人工林表层土样中分离出木霉15株、青霉10株和毛壳菌25株,与本实验室保存的F2(烟曲霉)和A8(黑曲霉)一起进行筛选;对筛选得到6株酶活较高的木霉10、木霉11和A8进行紫外线诱变,青霉1、青霉3和F2进行亚硝酸和紫外线两种方式诱变;通过刚果红染色透明圈法筛选、发酵产物酶活性测定,获得H8和5x6.9 2株酶活较高的优良突变株;对这2个突变株菌进行碳氮源试验;对分离出的25株毛壳菌固体发酵产物进行纤维素酶及蛋白质含量测定;研究了添加复合发酵剂对奶牛原饲料发酵产物蛋白质含量的影响;研究了尿素溶液和饱和石灰水预处理秸秆粉对纤维素酶活性影响。结果表明:
    1 从供试分离源通过滤纸平板法分离所得青霉1、青霉3和木霉10、木霉11是4株优良的产纤维素酶野生真菌,分解纤维素能力较强。
    2 青霉1、青霉3和烟曲霉F2分别经紫外线和亚硝酸诱变,各突变株在微晶纤维素平板上的透明圈直径表现为亚硝酸诱变突变株透明圈平均直径(18.67mm、31.42mm、21.71)大于紫外线诱变突变株平均直径(14.70mm、17.87mm、5.13mm),t检验表明,菌株青霉3和烟曲霉F2的紫外线诱变突变株透明圈直径与亚硝酸诱变变突变株透明圈直径间存在显著性差异(t青3=5.168﹡﹡﹥t0.01=2.690,n=45;tF2=9.221﹡﹡﹥t0.01=2.724,n=37)。
    3 以青霉1、青霉3、木霉10、木霉11、黑曲霉A8和烟曲霉F2为出发菌株进行诱变处理共得到167株突变株,其中的61株菌的微晶纤维素平板透明圈直径与CMC及FPA酶活的相关性分别达到极其显著和显著性水平(tCMC=0.476﹡﹡﹡,tFPA=0.316﹡, n=61,t0.05=0.308,t0.01=0.377)。因此,在筛选纤维素酶活高产菌时可用刚果红染色透明圈直径作初筛指标。
    4 选育所得突变株H8和5x6.9是两株纤维素酶活较高的菌株,其CMC酶活分别是101.83和149.48IU/g,FPA酶活分别是5.58和8.00IU/g。
    5 培养基成分对纤维素酶活有显著影响。突变株H8在小麦秸秆粉和稻草秸秆粉与麸皮比例为6:4时CMC及FPA酶活均达到最高,分别为123.1 IU/g及12.11 IU/g和132.6 IU/g及14.96 IU/g;5x6.9在稻草秸秆粉与麸皮比例为9:1和小麦秸秆粉与麸皮比例为8:2时,CMC及FPA酶活达到分别为133.9 IU/g及15.70 IU/g和142.8 IU/g及12.61 IU/g。采用无机氮源纤维素酶两组酶活大于采用有机氮源;无机氮源中 (NH4)2SO4作为氮源较NH4NO3 作氮源纤维素酶活高。
    6小麦秸秆预处理试验表明,小麦秸秆粉经尿素溶液和饱和石灰水浸泡后发酵能显著提高发酵产物纤维素酶活,其CMC及FPA酶活较对照(清水浸泡)提高300%和91.0%及630%和1270%。其尿素溶液的最适浸泡条件为浓度50g/L、时间48h、温度10℃,饱和石灰水的最适浸泡条件为时间48h、温度10℃。
     7 25株毛壳菌的产酶试验表明,毛壳菌纤维素酶活较低,不适于作为纤维素酶产生菌;但有些毛壳菌(例如13.18、17.46、04.11)在秸秆基质上,菌丝生长旺盛,发酵产物纯蛋含量白提高幅度大,故可作为微生物饲料蛋白生产菌种。
    8 奶牛原饲料经复合发酵剂发酵处理纯蛋白含量明显提高。复合发酵剂添加量、发酵时间和发酵模式对发酵产物纯蛋白含量影响较大,随着复合发酵剂用量增加,发酵产物纯蛋白含量先增后减趋势;向奶牛原饲料中添加复合发酵剂,采用模式Ⅱ低温低含水量加氮发酵,可抑制细菌大量繁殖引起的酸败变质,有利于菌体生长和纯蛋白含量大幅度提高(提高19.2%)。奶牛饲料的最适预发酵条件为复合发酵剂量10g/kg,添加氮素,温度30℃,时间48h.,水:料=2.5:3。
The fifteen Trichoderma fungi、teen penicillium fungi and twenty fifty Chaetomium sp were isolated from soil samples collected from experiment plot in yong shou county. The two mutant strains were obtained from parent strains F2 and A8 though compared with diameters of transparence and cellulase activities. The study on the solid fermentation conditions and properties of mutant strains was carried out. The results showed:
    The four wild fungi named Trichoderma 10、Trichoderma 11、Penicillium1 and Penicillium 3 were obtained with higher cellulase activities.
    The transparent diameter statisticsing of mutations from Penicillium 1、Penicillium 3 and F2 though revulsant of ultraviolet radiation and nitrous acid show that the transparent diameter of mutant strains though revulsant of nitrous acid was bigger than those though revulsant of ultraviolet radiation, examined by t-verify, there were the difference between the transparent diameter of mutations though revulsant of nitrous acid and those though revulsant of ultraviolet radiation.
    Though relativity analysis, related coefficient of the 61 mutations between transparent diameter and two enzyme activities(CMC and FPA) is 0.467﹡﹡ and 0.316﹡(n=61,t0.05=0.308,t0.01=0.377) respectively. Therefore transparent diameter could be used as criterion to ridding fungi with high cellulase.
    The six fungi was induced by ultraviolet radiation and nitrous acid. The mutations H8 and 5x6.9 were illuminated by avicel plate、purification of PDA plate and first、second screening. The cellulase activities of mutations H8 and 5x6.9 were 154.9、14.47 IU/g and 189.1、14.04IU/g respectively.
    The different composition of medium had some certainly effects on cellulase activities. The highest cellulase activities of mutation H8 was obtained when the ration of rice straw、wheat straw and wheat bran were 6/4 respectively, the highest cellulase activities of mutation 5x6.9 was obtained when the ration of rice straw、wheat bran were 9/1 and 8/2. The cellulase activities of two mutations in rice straw was higher than those in wheat straw. The cellulase activities when inorganic nitrogen was used as nitrogen source were lower than when organic nitrogen used as nitrogen source, the cellulase activities when ammonium nitrate was used as nitrogen source were higher than when ammonium sulfate used as nitrogen source.
    The experiment of wheat straw’s pretreatment showed the cellulase activities were increased when wheat straw soak in urea solution or saturated limewaters. the cellulase activities were increased 300%、91.0% and 630%、1270%. Soaking conditions of urea solution were soaking temperature 10℃、soaking time 24 hours、concentration of urea solution 50g/L. Soaking conditions of saturated limewaters were soaking temperature 10℃ and soaking time 48 hours.
    The results of twenty-five kinds of Chaetomium sp.’s solid fermentation showed cellulase activities of Chaetomium sp is lower, the average cellulase activities were 15.78 and 0.602IU/g, hence Chaetomium sp did not fit as good fungi to produce cellulase. But some Chaetomium sp grew well , the protein content of Chaetomium sp13.18 can increase 41.0% compared protein content of material. So Chaetomium sp could use as excellent fungi to ferment fodder.
    
    The composite leavening、fermentation time and mode had greatly affected on the protein content. With increasing of the composite leavening, the protein content changed curviline, earlier increased later fell. The protein content of cow feed increased by adding carbamide and prolong fermentation time become fungi could grow well. The protein content of mode Ⅱ is higher than that of modeⅠ, for ventilated content added up and fungi grew well. Thereby, the optimum fermentation technologies of cow feed is the composite leavening 10g/kg、adding up carbamide、temperature 30℃、fermentation time 48 hours and water/substrate ratio 2.5:3.
引文
1.中国科学院上海植物生理研究所纤维素酶组. 二株高活力纤维素分解菌EA3-867和N2-78获得及其特性的比较. 微生物学报,1978,18(1):27~38
    2. 梁新红. 纤维素酶菌株产酶条件的研究. 江苏调味副食品. 2003(4):10~13
    3.徐春厚. 色木霉x-13株固态发酵产酶优化条件的研究. 云南农业大学学报, 2003, 18(3):286~288
    4.黎海彬,黄日波. 纤维素酶生产菌的筛选及产酶条件. 华南理工大学学报(自然科学版), 2003, 31 (3): 45~48
    5.刘小杰,袁长贵. 康氏木霉液体摇瓶发酵产纤维素酶的初步研究. 食品科学, 2003, 24(1):125~128
    6.张丽萍,甘双友.几种离子对纤维素酶活力的影响. 河北省科学院学报, 2000, 17(4):235~238
    7.单谷, 罗廉. 金属离子对纤维素酶制备的影响,林产化学与工业,1998,18(3):53~57
    8. 杨玉华 刘德海,纤维素酶提高食醋产量的研究. 食品与发酵工业,1999,25(4):67~68
    9.秦江帆, 徐奇友. 维素酵对肉用仔鸡生产性能的影响. 饲料博览, 1996,8(2):12~13
    10.李华, 吴拾荆. 纤维素酶的研制及在动物饲料中的应用. 饲料工业,2001,(80)2:7~9
    11.郭松林. 纤维素酶及其在畜禽生产中的应用. 中国饲料, 2001, 9:23~24
    12.陈侠甫. 应用木10纤维素酶治疗马牛胃肠病. 中国兽医杂志,1988,(2):32~33
    13.尹清强. 纤维素酶对绵羊增重效果的观察. 内蒙古畜牧业,1991,(6):12~14
    14.陈侠甫, 裴相元. 纤维素酶曲添加对鹿茸产量及饲料消化率的影响. 兽医大学学报,1990,(4):382~386
    15. 戴四发等, 纤维素酶研究现状及其在畜牧业中的应用. 安徽技术师范学院学报, 2001,15(3):32~38
    16.汪多仁. 纤维素酶在纺织工业中的应用. 四川化工与腐蚀控制, 2000,5(3):52~53
    17.王瑞红, 侯靖宇等. 纤维素酶在金银花提取中的应用. 黑龙江医药, 2003 No.4:286~287
    18.纵伟. 酶法提取银杏叶中总黄酮的研究. 山西食品工业, 2000,1(3):13~15
    19.李忠兴,焦旭东. 康宁木霉液体深层发酵生产纤维素酶. 微生物学通报,1999,26(6):403~405
    20.高培基, 绿色木霉产生的葡萄糖苷酶类. 生物化学杂志.1992,8(6):735~736
    21.外山信男等. 纤维素酶研究进展(综述).发酵工业杂志. 1969,47(11):714~717
    22.A.N.Pathak and J.K.Ghose. 纤维素酶的来源和工艺. 应用微生物.1974,4:49~50
    23.李涨泉. 微生物处理秸秆的进展. 饲料博览. 1992,(2):46~48
    24.于也. 新型的微生物处理秸秆技术.饲料与畜牧. 1996,(1):22~24
    25.宋显成,王晓春等. 用麦秸氨化青贮饲喂高产奶牛效果.中国奶牛.1998,(2):28~30
    26.石传林, 尿素强化碱溶液浸泡秸秆饲喂肉牛的试验. 饲料博览..1998,10(5):4~7
    27.张海,晋神贞.秸秆类农业废弃物的生物利用:Ⅱ秸秆的现代利用方法.农牧产品开发.1995(6):21~25
    28.王建华,白韵如. 关于秸秆发酵饲料研究与开发若干问题的思考,全国首届“生物肥料.生物饲料研讨会”大会专题报告. 1998:10~15
    29.曲音波,高培基. 造纸厂废物发酵生产纤维素酶、酒精和酵母综合工艺的研究进展.食品与发酵工业.1993.3:62~68
    30.郑宗坤,浦跃武,高孔荣. 蔗渣预处理新方法.工业微生物.1991,3:17~20
    31.钟穗生,纤维素原料预处理技术新发展.化工进展.1989,5:40~43
    32.M.Mes-Hartree.纤维素酶解中的蒸汽和氨预处理之比较.应用微生物学.1989,6:46~48
    33.Isao,Kusakabe等.用酶法从废纤维材料制取结晶葡萄糖.应用微生物.1985,1:31~35
    34.陈洪章,曲音波等.半纤维素蒸汽爆碎水解物连续发酵生产单细胞蛋白的研究.食品与发酵工业.1992,3:7~12
    35.陈洪章,曲音波等.半纤维素蒸汽爆碎水解物生产菌体蛋白的菌种选育及发酵条件.微生物学报.1993,33(3):236~238
    36.陈洪章,曲音波等.纤维性废弃物蒸汽爆碎预处理和半纤维素水解物的水抽提.林产化学与工业.1992,12(3):217~224
    37.S.R.Parekb等.用酶催糖化SO2-预水解木质纤维素发酵来生产乙醇和丁醇.应用微生物.1989.6:43~45
    38.P.Puri等.用高压二氧化碳爆炸法预处理木质纤维素残渣生产发酵底物.应用微生物.1985,4:37~41
    
    39.贺延龄.一个水解纤维素的嗜热厌氧菌新种.微生物学报,1991,31(2):85~89
    40.李安明,赵海等.一株极端嗜热厌氧纤维素分解菌的分离和生理性状研究.太阳能学报.1994.15(4):324~329
    41.谭蓓英.一个嗜热分解纤维素的梭菌新种分离和鉴定.微生物学报.1992,32(3):155~160
    42.于洪日,高培基等.一株热纤梭菌的分离及其纤维素分解、活性的初步研究.山东大学学报(自然版). 1989,24(2):86~92
    43.吴显荣等.纤维素酶分子生物学研究进展及趋向.生物工程进展.1994,14(4):25~27
    44.那安,崔福绵,马建华.纤维素酶系中G1酶性质的研究.微生物学报.1982,22(4):333~338
    45.阎伯旭,高培基.拟康氏木霉中内切葡聚糖苷水解酶的化学修饰,生物化学杂志,1997,13(3):302~306
    46.王沁,赵学慧.黑曲霉纤维素酶的化学组成.微生物学杂志.1994,14(1):6~8
    47.汪天虹,王春卉,高培基.纤维素酶纤维素吸附区的结构和功能.生物工程进展.2000,20(2):37~40
    48.朱雨生,谭常.木霉纤维素酶的诱导形成及其调节(Ⅲ)葡萄糖母液和槐豆荚根提取液对纤维素酶诱导效应的分析.植物生理学报.1978,4(1):19~26
    49.朱雨生,谭常.木霉纤维素酶的诱导形成及其调节(Ⅰ)槐糖对木霉EA3-867洗涤菌丝体纤维素酶形成的诱导作用及降解物阻遏现象.植物生理学报.1978,4(1):1~17
    50.朱雨生,谭常.木霉纤维素酶的诱导形成及其调节(Ⅰ)槐糖对木霉EA3-867纤维素酶形成的诱导作用.微生物学报.1978,18(4):320~331
    51.施曾辉,刘尔教.酶固体生产和应用中的有关问题.中国调味品.1997,10:6~10
    52.勇强.分批添料半连续发酵制备纤维素酶.林产化学与工业.1998,18(2):73~77
    53.余晓斌,具润谟.分批与流加发酵法生产纤维素酶的研究.食品与发酵工业.1999,25(1):16~19
    54.夏黎明,代淑梅.应用固定化里氏木霉糖化玉米秸秆纤维素的研究.微生物学报.1998,38(2):114~119
    55.李树品,李千里.纤维素酶高活力菌株产酶条件的研究.山东科学.1998,11(3):10~13
    56.赵小立,李永泉等.高产复合酶菌株HD-1选育的研究.真菌学报.1995,14(4):21~24
    57.张芩花,王运吉.固态混合发酵生产纤维素酶的研究.中国饲料.1998,2:14~17
    58.曲音波,高培基,王祖农.青霉的纤维素抗降解物阻遏突变株的选育.真菌学报.1984,4:238~243
    59.林开江,阮丽娟.用玉米粉生产纤维素酶的发酵工艺探讨.生物技术.1998,8(2):31~34
    60.邱晓力,吴明等.康氏木霉固体发酵纤维素酶的研究.发酵科技通讯.1998,27(3):3~7
    61.石晶瑜,张功.分解纤维素菌HT3的筛选及酶活力测定.内蒙古师大学报(自科版).1998,27(1):66~68
    62.邬敏辰,李江华.里氏木霉液体发酵纤维素酶的研究.发酵科技通讯.1998,27(1):1~5
    63.楚杰,李树品等.纤维素酶高活性菌株的选育及酶最适作用条件的研究.山东科学.1998,11(2):51~54
    64.刘洁,李宪臻,高培基.纤维素酶活力测定方法评述.工业微生物.1994,24(4):27~32
    65.胡智猛.木霉纤维素酶产生条件的研究.西昌农业科技.1998. 2:10~12
    66. 尹清强等.复合酶制剂对猪增重的影响.饲料研究.1992,3:5~7
    67.尹清强.纤维素酶制剂对奶年产奶量和饲料效率的影响.吉林畜牧兽医.1991,6:1~4
    68.高大威.酶制剂在饲料中的应用.饲料工业.1992,13(1):28~31
    69.朱玉环,陈祖洁.纤维素酶在反刍动物饲料中的应用研究.沈阳农业大学学报.1996,27(专辑):64~69
    70.只兴有.纤维素酶治疗奶牛低酸度酒精阳性乳.黑龙江畜牧兽医.1991,6:33~35
    71.加滕久明等.酶在果蔬加工中的应用.应用微生物.1986,2:19~21
    72.周正红,高孔荣等.纤维素酶在食品发酵工业中的应用及前景.暨南大学学报(自科与医学版).1998,19(5):125~130
    73.朱知难.纤维素酶生产与应用.广东科技.1995:9~10
    74.邱立友,朱德育.黑曲霉酶学特性及其在洒精生产中的应用.河南农业大学学报,1993,27(3):291~295
    75.杜秉海,曲音波等.纤维废渣固态酒精发酵及纤维素-淀粉共发酵的研究.食品与发酵工业.1995,5:15~20
    76.王沁,赵学慧.纤维素酶水解稻草生产单细胞蛋白(SCP):Ⅱ稻草酶解液生产SCP的研究.微生物学杂志.1993,13(2):8~12
    77.张遐耘,张文悦.黄酒糟纤维素酶处理和单细胞蛋白生产的研究.粮食与饲料工业.1998,7:24~25
    
    78.邱立友.两种真菌纤维素酶饲用研究初报.华北农学报.1996,11(2):106~111
    79.龙鸿,朱玉环,辛孝贵.纤维素酶对小麦水稻和高梁茎秆作用研究.沈阳农业大学学报.1996,12(27): 94~97
    80.T.K.Ghose and A.N.Pathak.纤维素酶的应用.应用微生物.1974,4:48~50
    81.上海植物生理研究所纤维素酶组.国外纤维素酶研究概况. 应用微生物.1975,2:5~14
    82.王冬,曲音波等.L-山梨糖提高木霉纤维素酶合成速率机制的研究.真菌学报.1995,14(2):143~147
    83.王兰芬.纤维素酶的作用机理及开发应用.酿酒科技.1997,6:16~19
    84.程丽娟,薛泉宏主编.微生物学实验技术.世界图书出版公司.2000,4
    85.高培基.纤维素酶活力测定方法研究进展.工业微生物.1985,153(6):5~8
    86.周德庆主编.微生物学实验手册.上海科学技术出版社.1986,
    87.乞永立,耿月霞等.纤维素酶的生产及应用.应用技术市场.2000,6:21~22
    88. 南京农业大学.土壤农化分析[M].北京.农业出版社. 1981.
    89.张功、王瑞君等,分解纤维素毛壳菌的筛选, 内蒙古师大学报,2001,2,154~156
    90.肖志壮、王婷等,筛选在非生长条件下突变体酶的新方法, 微生物学通报, 2001,28(5),74~77
    91. Enzymatic Hydrolysis of Cellulose p.38Ed.by L.P.Walker and D.B.wilson, ELSVIER SCIENCE PUBLISHERS LTD 1991
    92.Eveleigh, D.E. The cellulase: a Perpective,Pbil. Trans.R.Soc.Lond A,1987:321~435
    93.Wood, T.m. The cellulase of fusarium solani purification and specificity of the β-(1,4)-glucanase and the β-D-glucosidase components, Biochem.J.1971,121:353~356
    94. Child.J.S.et al. Determination of cellulase activity using Hydroxysalcellulase as substrats ,Can.J.Biochem .1973,51:39~41
    95. Wood, T.M. Cellulolytic enzyme system of T.Koningii, Biochem,J,1968:109~217
    96.Mandel M,Weber J. The production of cellulase [M]/ Hajiny GJ.Reese et Celluloses and Theirs application ,1996
    97.Robson I,M,Anchamblises G H.Cellulases of bacterial Origin [J].Enzyme Microb Technol,1989(11):626~644.
    98.Gibbs M D,R A Reeves and G K Fairington .Multidomin and multifunctional glycosyl hydrolases from the extrem thermophile Caldicellulosiruptor isolate Tok7B.1[J].curr.Microbiol. 2000.40:333~340.
    99.Hulme.M.A.. Viscosimetric determination of cmcase activity In method in qnzymology,1988,160:130~133
    100.Vranska M. and Hiely P. Carbohydr. Research 1992,227:19~27
    101.Cowling E. B.Structural feovtures of cellulose that influence its susceptibility to enzymatic hydrolysis.“Advances in qnzymatic Hyolrolysis of cellulose and Related” ed. by Reese,E. J, Pergamon Press, London(1963)
    102.Reese,E.F., and Mandels, M. Cellulose and cellulose Derivaties edited by Norbert M.Bikales, Part V. P. 1971,1079
    103.Mandels,M., sternberg,D., and Andreotti,R.E. Symp. On qnzymatic Hydrolysis of cellulose Aulanko,Finland,ed.M. Bailey,1975,3:12~14
    104.D.S.Chahal. et al, Progress Development for enzymatic Hydrolysis of cellulose Proc.Fifth. Canadlan Bioenergy:R Q D Seminar,ottarva Canada,1984,3:26~28
    105.Voloch,M,Landisch.M.R,Cantarella.M. Reparation and Cellodextrins Using Sulfuric acid Biotechnology.Bioengeneery, 1984,26(5):557~559
    106.Stewart,B.J.and leather wood,J.M. Depepressed syntbesis of cellnlase by cellulomonas J Bacterial 1976,128:609~615
    107.Suzaki.H. Cellulase formation in Pseudomonas fluorecens Var. Cellulase Symposium on enzymatic hydrolysis of cellulose Aulanko,Helsinki,Finland.1975:155~158
    108.Gama-F.M.,Mota.M..Enzymatic hydrolysis of cellulose(Ⅱ) x-ray Photoelection spectroscopy studies on cellulase adsorption Biocatalysis Biotranstorm 1997,15(3):237~250
    
    109.Gama F. M., Mota. M.. Enzymatic hydrolysis of cellulose(Ⅰ) relationship between kinetics and physical-chemical parameters. Biocatalysis Biotranstorm 1997,15(3):221~236
    110.Jacob,F.and J.Monod.Genetic regulatory mechanisms in the synthesis of proteins, J. Mol.Biol.1987,3:318~321
    111.Spiegelman.Nuclear and cytoplasmic factors controlling enzymatic constitution.Cold spring Harbor Symp.Quant. Biol. 1997,Ⅱ:256~259
    112.Gallo,B.J. et al. Biotechnology and Bioengineering. Symposium Biotechnology in qnergy production and conserration published by Tohn wiley & Sons 1978,8:89~101
    113.Eveleigh,D.E. Cellulase a perspective pbil Trans.R.Soc.Lona.A 1987,321~435
    114.Tilbeurog,H and M.claeysseus.Detection and differentitation of cellulases using on mole cular fluoregenec substrate.FEBS Letters 1985,187:223~238
    115.Mandels.M and E.T.Reese. lnduction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J.Bacterial.1977,73:269~272
    116.Mandels.M.,F.W.parrish and E.T. Reese.Sophorose as an inducer of cellulase in Trichoderma viride.J.Bacterial. 1972,83:400~403
    117.Bisaria, v.s.,and glose T. K, Biodegradation of cellulosic materials microoganisrns. enzymes,substrates and products. Inzyme uicrob. Technology 1981,3:90~104
    118.B.Gallo, R. Andreotti,C. Roche, Ryu and Mandels. cellulase production by a new mutant strain of Trichoderma reesei MCG 77. Biotechnology Bioengeneer 1978,8:89~101
    119.Pardee, A. B. and prestidge, L. S. The initial kinetics of enzyme induction Biochem Biophys.Acta,1981,49:77~80
    120.Wisiman.A.Enzyme induction Basic Life Sciences, ed.by D.V. Parke Plenum Press, London and New York, P.I 1975,6~8
    121.Zahner,H. and W.K. Maas. Biology of Antibiotics. Springer-verlag New York, Heidelberg, Berlin. 1972:86~89
    122.Crombrugghe, B. D., R. L. Perlan, H.E. Varmus and Ⅰ. pastun Regulatio of inducible enzyme synthesis in qschrichia coli by cyclic adenosin 3′, 5′-monophosbhate.J. Biol.chem..1969,244:58~61
    123.Makman, R. S and E. W. Sutherland,Adenosine 3′,5′-phosphate in E. coli J. Biochem. Chern 1985,240:1309~1312
    124.Perlman, R. L., B. D. Crombrugghe and I. Pastqn, cyclic Amp regulates catabolite and transient repression in E. coli. Nature, 1979,223:810~815
    125.Reese.E.T., J.E. Lola and F.W.Parrish Modified substrates and modified products as inducers of carbohydrases.J. Bacterial 1969,100:1151~1158
    126.Toyama,N and K. Ogawa. Sugar production from agricultural Woody Wastes by saccharification with Trichoderma viride cellulase Bioengineering.Symp. 1975,5:225~229

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700