用户名: 密码: 验证码:
改性聚四氟乙烯滤膜精细处理油田含油污水技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on the Fine Disposal of Oily Sewage in the Oil Field Using Modified Polytetrafluoroethylene Membrane
  • 作者:蔺爱国
  • 论文级别:博士
  • 学科专业名称:油气储运工程
  • 学位年度:2006
  • 导师:张国忠
  • 学科代码:082003
  • 学位授予单位:中国石油大学
  • 论文提交日期:2006-10-01
摘要
应用物理化学处理、放射处理等技术,研发出了适用于油田含油污水精细处理的改性聚四氟乙烯滤膜。室内研究结果表明,改性聚四氟乙烯滤膜的流动电位稳定在-5 mV/KPa左右,膜面Zeta电位稳定在-20mV左右;膜表面带电特性对膜孔径及温度、流量等操作条件的依赖性不强。改性聚四氟乙烯膜表面带电,使膜具有更强的截留悬浮物颗粒的能力,并且膜的抗污染能力增强。分别以去离子水和油田含油污水为介质,室内试验评价了改性聚四氟乙烯膜材料用于油田含油污水精细处理的过滤特性。测试了操作温度、流量、膜孔径等因素对改性聚四氟乙烯膜材料特性的影响。研究结果表明,操作温度对滤后水含油量的影响最大,流量和孔径次之;操作温度越高,滤后水含油量越大;流量越大,滤后水含油量也越大。研究结果显示,油和悬浮物的去除率超过90%。
     设计了改性聚四氟乙烯膜滤芯,开发出了采用改性聚四氟乙烯膜精细过滤装置(已获相关专利两项,另有一项专利处于审查阶段)。在过滤装置自控及其反洗泵变频调速系统设计方面,提出了一种LOGO型4QC拓扑,其直流侧电压下限值比桥式拓扑降低近50%。对LOGO型4QC进行了状态空间平均建模,采用“平均值分离法”和“半周期平均法”对系统广义对象分别建立了连续时间控制模型和离散化数学模型,并进行大量的理论分析、参数选择、闭环控制系统的设计、仿真与实验研究。研究表明,稳态的仿真、实验波形与稳态理论分析结果吻合得很好,工业现场应用工作稳定、可靠。该精细过滤装置应用于江苏油田低渗透和特低渗透油层含油污水回注,现场测试结果表明,滤后水质量稳定,符合SY/T5329-94标准要求。长期运行实践表明,该过滤装置运行稳定,反洗周期长,再生效果好,适合实际生产需要,基本解决了低渗透油田回注水的技术难题,取得了较大的经济效益和社会效益。
Modified PTFE membrane is developed using techniques such as physicochemical treatment and radio chemotherapy. It’s effective in dealing with the fine disposal of oily waste water in the oil field. Laboratory tests indicate that the stream potential of the membrane surface is about -5mV/Kpa, and the Zeta potential is about-20mV; the electric property of the membrane surface is insensitive to the aperture diameter of the membrane, temperature and flow rate; the Zeta potential of the suspended particle in the waste oily water is also negative. The modified PTFE is surface charged which makes it more capable in trapping suspended particles and improving its anti- contamination function. In this paper, the filtering effects of the modified PTFE membrane in fine disposal of field oily waste water is evaluated using deionized water and oily waste water respectively. The affect of operation temperature, flow rate and the aperture diameter of the membrane to the material behavior of the membrane is also discussed. The results indicate that the oil content after filtering is most influenced by operation temperature with flow rate and the aperature diameter coming secondly; the higher operation temperature and flow rate, the bigger oil content in the waster water after filtering. The tests indicate that the eliminating rate of oil and suspentions exceeds 90%.
     Modified PTFE membrane filtering element is designed and one set of facility has been developed using the modified PTFE membrane(two patents related granted,another one in censorship). In view of the drawback of traditional boost bridge 4QC which need higher DC side operating voltage, a kind of new LOGO type converter topologiy is proposed whose DC side working voltage is reduced to approaching 50%, thus is appropriate for lower voltage applications. A continuous control model and discrete model as to LOGO single phase 4QC system generalized object are established using“average value segregation”and“half period average value method”. Systematic experiments are carried out for the creeping current follow-up control and PI voltage control. SICT current-control and PI digital control are designed directly for the LOGO single phase system. Analog and experimental researches of stable state and various dynamic procedures are carried out. The results indicate that the stable state analog and experiment wave pattern coincide with the stable state theoretical analysis perfectly and apply to commercial uses safely. This fine filtering device is used to the backfilling of the low permeable sublayer and ultra-low permeable sublayer oily waster water of Jiangsu oilfield. Field test results indicate that the water quality after filtering is stable and fits for SY/T5329-94 standard demands. Long term performance tests indicate that this filtering device works well with a long backwashing cycle and good regeneration effect, thus fits for the actual service demand. It essentially resolves the technical problems of backfilling water in the low permeable sublayer. Eeconomic effect and social effect is distinguished.
引文
[1]程爱华,李金华,唐亦川.膜技术在油田采出水回用处理中的应用及研究[J].中国资源综合利用,2004(5):19~21.
    [2] DEMOULIN GUNNAR: Bibliographic data Description Claims Mosaics Original document INPADOC legal status, USA patent, Patent number:PL371726, 2005-06-27.
    [3] MATSUBARA MASAAKI; UCHIDA HIROSHI; NAKADA SEISUKE;TAKAHASHI MADOKA:METHOD FOR WASHING SEPARATION MEMBRANE OF WASTE WATER TREATMENT APPARATUS, USA patent, Patent number: JP2004230222 Publication date: 2004-08-19
    [4]姜凤玖,张传江.油田用膜分离技术的研究与应用进展[J].石油机械,2004,32(7):62-65.
    [5] J. Kong, K. Li. Oil removal from oil-in-water emulsions using PVDF membranes [J]. Separation and Purification Technology, 1999, 16: 83-93.
    [6]郑领英、王学松,膜技术[M].化学工业出版社,北京,2000.
    [7]张玉忠,郑领英,高从皆.液体分离膜技术及应用[M].北京:化学工业出版社,2004.
    [8]任建新.膜分离技术及其应用[M].北京:化学工业出版社,2003,28-48.
    [9]王湛,膜分离技术基础[M].化学工业出版社,北京,2000.4.
    [10] Painmanakul, Pisut; Loubiere, Karine; Hebrard, Gilles; Buffiere, P. Study of different membrane spargers used in waste water treatment: Characterisation and performance. Chemical Engineering and Processing, v 43, n 11, November, 2004, p 1347-1359.
    [11] El-Kosasy, A.M.; Riad, S.M.; Abd El-Fattah, L.E.; Abd El-Kader Ahmad, S. Novel poly matrix membrane electrodes for the determination of phenolic pollutants in waste water. Water Research, v 37, n 8, April, 2003, p 1769-1775
    [12] Huisman, Ingmar H.; Williams, Kevin.Autopsy and failure analysis of ultrafiltration membranes from a waste-water treatment system. Desalination, v 165, n SUPPL., Aug 15, 2004, p 161-164.
    [13]谢磊,胡勇有,仲海涛.含油废水处理技术进展[J].工业水处理,2003,23(7):3-7.
    [14]李发永,李阳初,孙亮,等,含油污水的超滤法处理[J].水处理技术,1995,21(3):145-148.
    [15]王生春,温建志,王海,等.聚丙烯中空纤维微孔滤膜在油田含油污水处理中的应用[J].膜科学与技术,1998,18(2):28-31.
    [16]王怀林,王忆川,姜建胜,等.陶瓷微滤膜用于油田采出水处理的研究[J].膜科学与技术,1998,18(2):59-64.
    [17]樊栓狮,王金渠.无机膜处理含油废水[J].大连理工大学学报,2000,40(1):61-63.
    [18]李发永,徐英,李阳初,等.磺化聚砜超滤膜处理含油污水的实验[J].水处理技术,2000,26(5):285-288.
    [19]张裕卿.聚砜-Al2O3复合膜处理油田含油污水[J].工业水处理,2000,20(2):20-22.
    [20]郭晓,王艺,张敬琳,等.低渗油层石油废水的回用技术[J].中国给水排水,2002,18(4):80-82.
    [21] Chen, A.S.C.,Flynn, J.T.,Cook,R.G.,et al. Removal of oil, grease, andsuspended solids from produced water with ceramic crossflow microfiltration[J]. SPE Production Engineering, 20291, 1991(6):131-136 .
    [22]徐南平,邢卫红,王沛.无机膜在工业废水处理中的应用与展望[J].膜科学与技术,2000,20(3):23-28.
    [23] H.H. Hyun, T.K.Gye. Synthesis of ceramic microfiltration membranes for oil/water separation[J]. Separation Science Technology,1997,32(18):2927-2943.
    [24]骆广生,邹财松,孙永,等.微滤膜破乳技术的研究[J].膜科学与技术,2001,21(2):62-65.
    [25] U.Daiminger, W.Nitsch, P.Plucinski, et al. Novel techniques for oil/water separation [J]. Journal of Membrane Science, 1995, 99:197-203.
    [26] Marc Hlavacek. Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane [J]. Journal of Memebrane Science, 1995, 102:1-7.
    [27]倪邦庆,马新胜,施亚钧.无机微孔膜法对W/O乳状液破乳的研究[J].华东理工大学学报,1999,25(6):641-643.
    [28] LU Wen-feng,Kocherginsky N M, ZHANG Cui-xin, et al. A Novel Method of Breaking Water-in-Oil Emulsion by Using Microporous Membrane [J]. Transactions of Tianjin University,2001,7(3):210-213.
    [29] N.M.Kocherginsky, Chin Lee Tan, Wen Feng Lu. Demulsification of water-in-oil emulsions via filtration through a hydrophilic polymer membrane [J]. Journal of Membrane Science, 2003, 220:117-128.
    [30]李发永,李阳初,蒋成新.超滤法处理低渗透油田回注污水的应用研究[J].油气田环境保护,1995,5(3):7-11.
    [31] Yang Chao,et al. Preparation and application in oil-water separation of ZrO2/Al2O3 MF membrane [J].Journal of Membrane Science,1998,142:235-243.
    [32]王兰娟,张才菁.含乳化油污水的超滤膜分离模型[J].石油大学学报(自然科学版),1998,22(3):79-81.
    [33]王春梅,谷和平,王义刚,等.陶瓷微滤膜处理含油废水的工艺研究[J].南京化工大学学报,2000,22(5):38-41.
    [34]邱运仁,张启修.超滤过程膜污染控制技术研究进展[J].现代化工,2002,22(2):18-21.
    [35]张国胜,谷和平,邢卫红,等.无机陶瓷膜处理冷轧乳化液废水[J].高校化学工程学报,1998,12(3):288-291.
    [36]姚力群,吴光夏,张绍来.流体流动状态对超滤效率及膜污染的影响[J].环境污染治理技术与设备,2000,1(3):61-66.
    [37]王静荣,许成.超滤法处理油田含油污水膜清洗方法的研究[J].膜科学与技术, 2000,20(6):23-25.
    [38]王学松,膜分离技术及其应用,北京,科学技术出版社,1994,P49。
    [39]叶凌碧,马延令.微孔膜的截留作用机理和膜的选用,净水技术,1984(2),6-10
    [40]刘国良,微孔滤膜的孔径指标,净水技术,1988(1),13-17
    [41]蔺爱国,刘培勇,刘刚,张国忠.膜分离技术在油田含油污水处理中的应用进展.工业水处理,2006,26(1):5—8.
    [42] Sdukhin S, Derjaguin B V. Surface and Colloid Science [M]. London : Wiley- Interscience Publication , 1974.
    [43] Lyklema J. Fundamentals of Interface and Colloid Science.Vol.11: Solid-Fluid Interface[M]. London: Academic Press, 1995.
    [44] Bowen W R,Cao X W. Electrokinetic effects in membrane pores and the determination of zetapotential[J],Journal of Membrane Science 1998,140: 267.
    [45] Szymczyk A, Fievet P. Characterization of surface properties of ceramic membranes by streaming and membrane potentials [J]. Journal of Membrane Science. 1998, 146: 277.
    [46] Peeters J M M. Characterization of nanofiltration membranes by streaming potential measurements [J]. Colloids and Surface A: Physicochemical and Engineering Aspects, 1999, 150(1-3): 247-259.
    [47]王建,王晓琳.流动电位法研究聚烯烃微孔膜在电解质溶液中的动电现象[J].高校化学工程学报,2003,17(4):372-376.
    [48]常兆光等.随机数据处理方法.山东东营:石油大学出版社,1997.
    [49]朱军.线性模型分析原理.北京:科学出版社,2000:48~73.
    [50] Nystrom M, Lindstrom M. Streaming potential as a tool in the characterization of ultrafiltration membranes [J]. Colloid Surface, 1989, 36: 297.
    [51]沈钟,王果庭.胶体与表面化学(第二版)[M].化学工业出版社,1997.
    [52]朱孟府,龚承元,苏建勇.荷电微孔滤膜流动电微测量方法的研究[J].医疗卫生装备,1996,1:1-4.
    [53]蔺爱国,张加胜.一种数字存储组合式PWM调制方案[J].现代电子技术,2004,(6)
    [54] Lin Ai-guo,Huang Bing-jia,Cao Jian-sheng,Robert Gardner.Some Results on the Location of Zeros of Analytic Functions[J].Journal of Engineering Mathematics,2004,21(5):785-791
    [55] Bose B.K.电力电子学与交流传动[M].西安:西安交通大学出版社,1990.
    [56]吕金虎.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [57] Bruck J,Blaum M.Nural neural networks,error-correcting codes,and polynomials over the binary ncube.IEEE Trans.,1989,IT-35(5):976-987
    [58] Robert B,Gardner N.K.Govil,On the location of the zeros of a polynomial[J].1994,78(2):286-292
    [59] Titchmarsh E.C.The theory of functions[M].2nd ed Oxford Univ Press,London
    [60] (加)韩家伟,坎伯.数据挖掘:概念与技术[M].范明译.北京:机械工业出版社,2001
    [61]邹启贤,陆正禹.油田废水处理综述[J].工业水处理,2001,21(8):1-3.
    [62] Dixon B P and Newton J L E .Reinjection of large volumes of Produced water in secondary operations.JPT,1965,(7).
    [63] Dorrestin L D. Injection of unfiltered produced water in the Helder Field water management offshore Aberedeen exhibition and conference ,1991.
    [64] Osada Y,Nakagawa T.Membrane Science and Technology[M].New York:Marcel Dekker,Inc,1992.321~326.
    [65] Jerome D,Charles H.Method for gasphase sulfonation of polymer membranes[J].USA,WO Pat:9726284.1997-01-16.
    [66] Higuchi A,Nakagawa T.Surface– modified polysulfone hollow fibers.III.Fiber having a hydroxide group[J].Appl Polym Sci,1990,41:1973~1979.
    [67] Becker W,Schmidt– Naake G.Properties of polymer exchange membranes from irradiation introduces graft polymerization[J].Chem Eng Technol,2001,24(11):1128~1132.
    [68] Ruskov T,Turmanova S,Kostov G.Study of IR and Mossbauer spectroscopy of grafted metal complexs of poly(acrylic acid) and on to low density poly(ethylene) and on to poly(tetrafluroethylene)[J].Eur Polym J,1997,33(8):1285~1288.
    [69] Kobayashi T,Fujii N.Preparation and properties of negative charged ultrafiltration membrane:Photografted sodium styrenesulfonate on brominated polyacrylonitrile membrane[J].J Appl Polym Sci,1992,45(11):1897~1902.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700