用户名: 密码: 验证码:
红外成像电子学理论及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外成像技术已经成为当今世界发达国家大力发展的军民两用新兴高科技之一;尽管红外成像技术的研究近年来取得了很大进步,但是红外成像还存在一些共性问题限制着成像质量的提高:一是红外成像受到红外焦平面阵列探测器非均匀性及无效像元的影响,实际温度分辨率不高;第二,红外成像受到材料和制作工艺的限制,阵列规模不大,像元尺寸不够小,红外焦平面阵列空间采样频率不能达到红外成像系统尼奎斯特频率,形成混淆效应,导致红外成像空间分辨率低;第三,红外成像普遍存在图像对比度低、灰度范围窄的现象。红外成像的这些不足有待于从基本理论及成像原理上进行分析突破,建立更加精确的理论模型,对产生这些现象的机理进行准确的描述,进而提出更好的解决方法,这正是本文研究的目的。
     本论文就是从分析红外成像的共性问题入手,通过对红外成像机理和红外焦平面阵列探测器材料、器件的光电响应原理以及系统固有缺陷产生机理的理论分析和实验研究,建立了一系列新的红外成像电子学理论模型。这些理论模型包括:基于目标场景和环境辐射的红外焦平面阵列的二元非线性的非均匀性理论模型、红外焦平面阵列探测器响应的统计特征理论模型和红外焦平面阵列二维微扫描成像消除混淆效应理论模型。通过大量实验测试、仿真和数理统计学假设检验理论的x~2检验法验证了这些模型。根据这些理论模型,研究提出了几项红外成像电子学处理新方法和关键技术。它们有基于环境温度补偿的非均匀性校正技术,该方法不仅解决了红外焦平面阵列探测器响应特性的非线性带来的校正精度不高的问题,还可以消除红外焦平面探测器响应随使用环境温度变化的影响;基于多温度匹配的红外焦平面阵列无效像元检测技术,它能有效的避免无效像元的漏检和误判,提高检测精度;非均匀性校正精度的提高,无效像元的准确检测与补偿,可以提高红外成像系统的温度分辨率。微扫描的插值重建可以消除红外焦平面阵列探测器成像因欠采样产生的混淆效应,在探测器阵列规模和像元尺寸不变的情况下,提高红外成像的空间分辨率。还有自适应红外图像直方图分段修正技术和基于无效灰度剔除的红外成像对比度增强技术,它们通过红外图像灰度直方图的统计分析自适应地剔除红外图像中的无效灰度级,再将有效灰度级均匀地映射到整个灰度范围,从而增强相邻灰度像数的对比度,扩大整个红外图像的灰度动态范围,增强对比度。为了更好的了解红外焦平面阵列探测器性能参数,以便有的放矢地进行成像电子学处理算法研究和红外成像系统设计,研究了红外焦平面阵列探测器性能参数测试技术,构建了多模式红外焦平面阵列探测器性能参数测试评估系统。为了直观地评价红外成像电子学处理技术的成像效果,给红外成像系统的设计仿真、验证、修改到定型提供方便快捷的手段,研究了红外成像电子学处理算法动态仿真技术,设计并建立了基于虚拟仪器的红外成像电子学处理算法成像演示系统。
     本文建立了较完整的红外成像电子学理论模型,提出了提高红外成像温度和空间分辨率以及扩展红外成像灰度动态范围的几项关键技术,研究开发了红外焦平面探测器性能参数测试评估和红外成像电子学处理技术成像演示技术与系统。在此基础上,通过大量的试验测试、仿真和理论计算,验证了本论文建立的理论模型。对本文提出的红外成像电子学关键技术:基于环境温度补偿的非均匀性校正技术、基于多温度匹配的无效像元检测技术、自适应红外图像直方图分段修正技术和基于无效灰度剔除的红外图像对比度增强技术等,一一与现有的技术进行了比较试验测试和仿真。测试数据的定量评估和仿真结果的定性评估都表明本文提出的新技术与现有技术比较具有一定的优势。这些新技术还应用到进口凝视非致冷红外焦平面阵列探测器和国产扫描型致冷红外焦平面阵列探测器成像,得到了满意的成像效果,展示了这些关键技术对解决红外成像存在的三大共性问题具有一定的应用价值。文章最后结合本文研究的不足之处给出了今后研究方向和红外成像电子学研究展望。
     本文红外成像电子学理论及其关键技术研究为我国研制高水平的红外成像电子学组件和高性能的红外成像系统打下了理论基础。
Infrared imaging technique has become one of the most promising high techniquesaround the developed countries today. Infrared imaging technique has achieved muchprogress during the past decade. But there are still some commonness problems, whichhave become the bottleneck of image quality improvement for infrared imaging system.The first commonness problem is that infrared imaging system possesses low temperatureresolution actually due to nonuniformity and non-effective pixels. Secondly, the size ofinfrared focal panel arrays (IRFPA) are limited and the detector pixel cannot be madesmall enough due to the material and producing process limitation. So that, the IRFPAspatial sampling frequency is lower than the Nyquist frequency of imaging systemnormally. This causes aliasing and the spatial resolution of infrared imaging system iscommonly low. Another commonness problem of infrared imaging is narrow grey rangeand low contrast. Above mentioned drawback of infrared imaging are waiting forbreakthrough from basic theory and principle analysis. Setting up exact theory model,which describes those problems more precise, and developing novel solution for infraredimaging inherent drawback are the motivation of this dissertation.
     This work studies on those commonness problems of infrared imaging. Focusing onthe imaging mechanism and inherent disadvantages of IRFPA detector, thephotoresponsive principle of IRFPA materials and detectors are analyzed. Several exacttheory models on processing electronics of infrared imaging are proposed in thisdissertation, namely, binary nonlinear nonuniformity theory model based on scene andsurrounding infrared radiation, non-effective pixel statistic character theory model andmicroscanning infrared imaging elimination aliasing theory model. Some novel processingelectronics algorithms and key techniques are present under the guidance of these theorymodels. The nonuniformity correction (NUC) based on surrounding temperaturecompensation not only improves the low correction precision of normal calibration-basedNUC caused by the nonlinearity of IRFPA responsive curve but also eliminates theinfluence of the detector responsive drift with Surrounding temperature. Non-effectivepixel detection based on multi-temperature matching improves the detection precision byavoiding misjudgment. Both the nonuniformity correction precision elevation and thenon-effective pixel accurate detection do benefits to the temperature resolutionimprovement of infrared imaging. Interpolation reconstruction infrared image based on microscanning eliminates aliasing resulting from sub-sampling of infrared imaging. Thismethod improves the spatial resolution of infrared imaging based on existing IRFPAtechnology. Self-adaptive histogram subsection modification can preserve the original graylevels mostly during extending the dynamic range of grey levels in infrared image.Self-adaptive infrared image contrast enhancement based on non-effective grey leveleliminating can enlarge the dynamic range of infrared image by grey histogram statisticand analysis. This method eliminates the grey levels, which possess zero possibility density,and then maps the effective grey levels to the whole grey range equality. Hence, thistechnique expands the dynamic range of infrared scene and enhances the contrast ofinfrared image without losing any grey levels and image detail. In order to measure keyparameters and evaluate the performance of IRFPA, characteristic parametersmeasurement and evaluation system for IRFPA is developed. An infrared imagingsimulation and demo system based on visible and multi-mode drive technology isestablished to simulate, validate, revise and finalize the design of processing electronicstechniques. It ensures designers evaluate infrared imaging effect directly.
     An integrated set of infrared imaging electronics theory models are set up in thisdissertation. Several novel techniques are present to elevate both temperature and spatialresolution and extend the dynamic range of infrared image. IRFPA charactistic parametermeasurement technology and system are developed. Infrared imaging electronicsprocessing algorithm simulation technology and demo system are studied and established.A comprehensive theoretical deduction and experimental test analysis is performed toprove the theory models and evaluate the novel electronics processing techniques.
     Based on above ground works, these theory models present in this dissertation arevalidated with plentiful experimental test, simulation ,and the chi-square test method ofdistribution hypothesis test theory in mathematical statistics. Furthermore, novel infraredimaging electronics processing method proposed in this dissertation are evaluated andcompared with existed method one by one. Both quantitative test and qualitativesimulation results show that these new technologies are excelled method in existence. Thehigh-quality processing abilities of presented key techniques are atso demonstrated throughapplication to real infrared imaging both cryogenically cooled and uncooled IRFPAsensors. The results are well pleasing. In conclusion, all experimental test, simulationcomparison and application results indicate that these key techniques deduced from noveltheory models proposed in this dissertation are effective to settle these commonnessdrawbacks of infrared imaging. Finally, avenues of future work are considered including possible infrared imaging electronics key technique extensions.
     This work smoothes the way to develop high-level infrared imaging electronicsmodules and advanced thermal imaging system in our country.
引文
1.刘继琨.固体摄像器件的物理基础,成都:电子科技大学出版社,1989.
    2.王永仲.现代军用光学技术,北京:科学出版社,2003.
    3.常本康,蔡毅.红外成像阵列与系统,北京:科学出版社,2006.
    4.蔡毅,汤锦亚.对红外热成像技术发展的几点看法.红外技术,2000,22(2):2~6.
    5.蔡毅,潘顺臣.红外技术在未来军事技术中的地位和作用.红外技术,1999,21(3):1~6.
    6.吴诚,苏君红,潘顺臣,冯生荣,金伟其.对中波与长波红外焦平面热成像的一些探讨.红外技术.2002,24(2):6~8.
    7.陈伯良.红外焦平面成像器件发展现状.红外与激光工程.2005,34(1):1~7.
    8. Scribner D A et al. Infrared focal plane array technology. Proc of IEEE, 1991, 79(1): 66-85.
    9. J. A. Ratches, W. R. Lawson. Night Vision Laboratory static performance model for thermal viewing system, U.S.A.E.C. Report, ECOM-7043, 1975.
    10. F. Rosell, et al. The fundamentals of thermal imaging system, Report AD-A073763, 1979.
    11. Howard V. Kennedy. Modeling second-generation thermal imaging systems. OPTICAL ENGINEERING, 1991, 30(11): 1771~1778.
    12.王春勇.红外系统中的扫描型和凝视型FPA,红外技术,2000.1,25(1):1~6.
    13. R. Murphy et al. Recent Developments in Uncooled IR Technology, PROCEEDINGS OF SPIE. 2000, 4028: 12~16.
    14. Hanson et al. Advances in monolithic ferroelectric uncooled IRFPA technology. PROCEEDINGS OF SPIE. 1998(3379): 60~68.
    15. R. Amantea, et al. Progress towards an uncooled IR Imager with 5mK NETD. PROCEEDINGS OF SPIE. 1998(3436): 647~659.
    16. Richard Blackwell, Steven Geldart, Margaret Kohin, et al. Recent technology advancements and applications of advanced uncooled imagers. PROCEEDINGS OF SPIE. 2004(5406): 422~427.
    17. Margaret Kohin, James E. Miller, Arthur R. Leary, et al. Uncooled microbolometer sensors for unattended applications, PROCEEDINGS OF SPIE. 2003(5090):257~264.
    18. 320×240 LWIR UNCOOLED MICROBOLOMETER DETECTOR TECHNICAL SPECIFICATION, ID ML073-V3, SOFRADIR, 2002.03.
    19. Eric MOTTIN et al. Enhanced amorphous silicon technology for 320×240 microbolometer arrays with. a pitch of 35μm. PROCEEDINGS OF SPIE. 2001(4369): 250~256.
    20. Jean-Luc Tissot, Jean-Pierre Chatard, Bruno Fieque, et al. High-performance and low-thermal time constant amorphous silicon-based 320×240 uncooled microbolometer IRFPA. PROCEEDINGS OF SPIE. 2004(5640): 94~99.
    21. Chien J. Han, Christopher G. Howard, Philip E. Howard. Progress in DRS production line for uncooled focal plane arrays. PROCEEDINGS OF SPIE. 2004(5406): 483~490.
    22. Daniel F. Murphy, Michael Ray, Richard Wyles, et al. High-sensitivity 25-μm microbolometer FPAs. PROCEEDINGS OF SPIE. 2002(4721):99~110.
    23.顾聚兴.第三代红外成像器(上).红外.2002(8):30~32.
    24.苏君红,郑为建.红外线200年.红外技术.2001,23(1):1~2.
    25.吴宗凡,柳美琳等.红外与微光技术,北京:国防工业出版社,1998.
    26.R.D.Hudson.Infrared System Engineering,John Wiley & Sons,Inc,1969(中译本),北京:国防工业出版社,1975.
    27.J.M.Leoyd.Thermal Imaging System,Plenum Press,1975(中译本),北京:国防工业出版社,1981.
    28.何丽.走向新世纪的红外热成像技术.激光与光电子学进展.2002,12(39):48~51.
    29.顾聚兴.第三代红外成像器(下).红外.2002(9):33~37.
    30.顾聚兴.德国AIM公司的第三代焦平面列阵红外探测组件.红外.2003,3(3):30~33.
    31.孙志君.红外焦平面阵列技术的军用市场展望.传感器技术.1999,5(5):1~8.
    32.吴宗凡.红外热像仪的原理和技术发展.现代科学仪器.1997(2):28~30.
    33.陈伯良,陆微,王正官.64×64元InSb光伏红外探测器阵列性能表征.红外与毫米波学报.2000,19(2):89~92.
    34.梁平治,江美玲,张学敏.64×64元InSb红外焦平面阵列读出电路的研制进展.红外与激光工程.2002,31(5):424~427.
    35.袁祥辉,黄友恕,吕果林.128×128元IRFPA CMOS读出电路.红外技术.2002,24(3):34~37.
    36.孙志军.红外焦平面探测器技术的发展现状与趋势.光机电信息.2002(3):8~13.
    37.高国龙.第三代红外系统所需的探测器.红外.2003(7):29~31.
    38. David J Clarke, Peter Knowles. High Performance Thermal Imaging for the 21st Century. Proceedings of SPIE. 2003(4820):350~358.
    39. Nicholas I. Rummelt, Todd Cicchi and J. P. Curzan. A Combined Non-uniformity and Bad Pixel Correction Method for Superpixelated Infrared Imagery. Proceedings of SPIE. 2006(6206):62060V-1~8.
    40. Wilhelm Isoz. Thomas Svensson and Ingmar Renhorn. Nonuniformity correction of infrared focal plane arrays. Proceedings of SPIE. 2005 (5783):949-960.
    41.候和坤,张新.红外焦平面阵列非均匀性校正技术的最新进展.红外与激光工程,2004,33(2):79-82.
    42.刘志才,李志广.红外热像仪图像处理技术综述.红外技术.2000,22(6):27~32.
    43.张晓飞.基于DSP的红外焦平面阵列非均匀性校正技术研究,重庆大学博士论文,2002.
    44.陈锐,谈新权.红外图像均匀性校正方法综述.红外技术.2002,24(1):1~3.
    45.石岩,毛海岑,张天序,曹治国.一种新的基于特征直方图分解的红外焦平面阵列无效像元判别方法.红外与毫米波学报.2005,24(2):119~124.
    46. J.M. Lopez-Alonso and J. Alda. Bad pixel identification by means of principal components analysis. Opt. Eng. 2002, 41(9):2152~2157.
    47. B. Dierickx and Guy Meynants. Missing pixel correction algorithm for image sensors. Proceedings of SPIE. 1998(3410):200~203.
    48.范洪波.基于288×4红外焦平面热成像系统盲元补偿的研究.昆明理工大学硕士论文,2002.
    49. Virgil M, Vickers E. Plateau equalization algorithm for real-time display of high-quality infrared imagery. Optical Engineering. 1996, 35(7): 1921-1926.
    50.陈钱,柏连发,张保民.红外图像直方图双向均衡技术研究.红外与毫米波学报.2003,6(22):428~430.
    51. I. Ramesh Babu, I.V. Murali Krishna. Contrast Enhancement of IRS-1C LISS Data. IEEE. 1997(3836):1778~1780.
    52. SUN Shao-yuan, JING Zhong-liang, LI Zhen-hua, et al. Infrared image enhancement based on two-dimensional histogram analysis. Proceedings of SPIE. 2003(5203): 729~736.
    1.张建奇,方小平.红外物理.西安:西安电子科技大学出版社,2004.
    2.吴宗凡,柳美琳,张绍举,赵裕泽,李汉宾 编著.红外与微光技术.北京:国防工业出版社,1998.
    3.张敬贤,李玉丹,金伟其 编著.微光与红外热成像技术.北京:北京理工大学出版社,1995.
    4.陈玻若 编著.红外系统.北京:兵器工业出版社,1995.
    5.常本康,蔡毅 编著.红外成像阵列与系统.北京:科学出版社,2006.
    6.胡家升 著.光学工程导论.大连:大连理工大学出版社,2005.
    7.冯克成,刘景生 主编.红外光学系统.北京:兵器工业出版社,1994.
    8.徐之海,李奇 编著.现代成像系统.北京:国防工业出版社,2001.
    9.刘继琨.固体摄像器件的物理基础.成都:电子科技大学出版社,1989.
    10.白廷柱,金伟其 编.光电成像原理与技术.北京:北京理工大学出版社,2006.
    11. Hui-xin Zhou, Rui Lai, Shang-qian Liu, Guang Jiang. New improved nonuniformity correction for infrared focal plane arrays. Optics Communications. 2005 (245):49~53.
    12.阳丽珍,李庆辉,刘上乾.一种非均匀校正的新算法.应用光学.2000,21(2):4~6.
    13. Greg Matis, Jack Grigor, Jay James, Steve McHugh, Paul Bryant. Radiance Calibration of Target Projectors for Infrared Testing. Proceedings of SPIE. 2006 (6207):62070N1~11.
    14. Jan Baars and Max Schulz. Performance characteristics, measurement procedures, and figures of merit for infrared focal plane arrays. Proceedings of SPIE. 1995 (2470):141~155.
    15.石岩,张天序,李辉,曹治国.一种考虑红外焦平面器件非线性响应的非均匀性校正方法.红外与毫米波学报.2004,23(4):251~256.
    16. QU Hui-ming, CHEN Qian, et al. Accurate Non-effective Pixel Detection and Replacement Based on Multi-Temperature Matching, Proceedings of SPIE. 2007(6279):62796X-1~8.
    17. J.M. Lopez-Alonso and J. Alda. Bad pixel identification by means of principal components analysis. Opt. Eng. 2002, 41(9):2152-2157.
    18. Mooney J M. 1/f noise measurement on PtSi focal plane arrays. Proceedings of SPIE. 1990(1308):122~131.
    19. Rogalski A. Infrared detectors: An overview. Infrared Physics & Technology. 2002(43): 187~210.
    20. Olivier RIOU, Stephane BERREBI and Pierre BREMOND. Non Uniformity Correction and thermal drift compensation of thermal infrared camera. Proceedings of SPIE. 2004(5405):294-302.
    21. Bart Dierickx, Guy Meynants. Missing pixel correction algorithm for image sensors. Proceedings of SPIE. 1998(3410):200~203.
    22. Hans S. Bloss, Juergen D. Ernst, Heidrun Firla etc. High-Speed-Camera based on a CMOS active pixel sensor. Proceedings of SPIE.. 2000(3968):31~38.
    23. Anthony A. Tanbakuchi, Arjen van der Sijde, Bart Dillen etc. Adaptive pixel defect correction. SPIE-IS&T Electronic Imaging. 2003(5017):360~370.
    24.刘会通,马红伟.红外焦平面非均匀性校正若干方案的设计和分析.激光与红外.2003,33(4):277~279.
    25. Jeremy M. hemer, Thomas Hierl and Max Schulz. Correctability and long-term stability of infrared focal plane arrays. Opt. Eng. 1999, 38(5):862-869.
    26. Wilhelm Isoz. Thomas Svensson and Ingmar Renhorn. Nonuniformity correction of infrared focal plane arrays. Proceedings of SPIE. 2005(5783): 949-960.
    27. Nicholas I. Rummelt, Todd Cicchi and J.P. Curzan. A Combined Non-uniformity and Bad Pixel Correction Method for Superpixelated Infrared Imagery. Proceedings of SPIE. 2006(6206):62060V-1-8.
    28. B. Dierickx and Guy Meynants. Missing pixel correotion algorithm for image sensors. Proceedings of SPIE. 1998(3410):200-203.
    29.屈惠明,陈钱.红外焦平面阵列微扫描成像方案比较.激光与红外.2006,36(3):161-164.
    30. E. Watson, R. Muse, F. Blomme. Aliasing and blurring in microscanned imagery. Proc. SPIE. 1992(1689):242-250.
    31. J. Fortin, P. Chevrette, R. Plante. Evaluation of the microscanning process. Proceedings of SPIE. 1994(2269):271-279.
    32. John M. Wiltse, John L. Miller. Imagery improvements in staring infrared imagers by employing subpixel microscan. Optical Engineering. 2005, 44 (5): 56401-1~9.
    33. K.J. Barnard, E.A. Watson, P.F. McManamon. Nonmechanical microscanning using optical space-fed phased arrays. Proceedings of SPIE. 1994(2224): 168~179.
    34. F.P. Blommel, P.N.J. Dennis, Bradley and Derek. The Effects of microscan operation on staring infrared sensor imagery. Proceedings of SPIE. 1991(1540): 653-664.
    35. K. Awamoto, Y. Ito, H. Ishizaki, et al. Resolution improvement for HgCdTe IRCCD. Proceedings of SPIE. 1992(1685): 213-220.
    36. Jean Fortin, Paul Chevrette. Realization of a fast microscanning device for infrared focal plane arrays. Proceedings of SPIE. 1996(2743): 185~196.
    37. George R. Armstrong, Paul D. Packard. CMT and PtSi FLIR Systems for EUCLID RTP 8.1. Proceedings of SPIE. 1996(2774): 257~266.
    38. W. Cabanski, R. Breiter, K-H. Mauk. Miniaturized High Performance Starring Thermal Imaging System. Proceedings of SPIE. 2000(4028): 208~219.
    39. J. L. Miller, D.J. Wiltse. Benefits of microscan for staring infrared imagers. Proceedings of SPIE. 2004(5407): 127~138.
    40. E. A. Watson, R. A. Muse, F.P. Blommel. Aliasing and blurring in microscanned imagery. Proceedings of SPIE. 1992(1689): 242-250.
    41. T. Stadtmiller, J. Gillette, R. Hardie. Reduction of Allising in Staring Infrared Imagers Utilizing Subpixel Techniques. IEEE, 1995: 874~880.
    42.屈惠明,陈钱.红外焦平面阵列微扫描成像插值重建研究.半导体光电.2006,27(5):631-634.
    43.J.D.加斯基尔.线性系统·傅里叶变换·光学.北京:人民教育出版社,1981.
    44.屈惠明,陈钱.微扫描消除红外成像混淆效应的理论模型.首届江苏省青年科学家年会论文集.南京,2006:315~322.
    45. ZiKuan Chen, M. Mayat. Elimination of higher order aliasings by multiple interlaced sampling. Opt. Eng. 1999, 38(5): 879~885.
    46. W.A. Cabanski and M.J. Schulz. Electronic and optical properties of silicide/silicon ir detectors. Proceedings of SPIE. 1991(1484): 81~97.
    1. Bradley M. Ratliff, Majeed M. Hayat, and Russell C. Hardie. Algebraic scene-based nonuniformity correction in focal-plane arrays. Proceedings of SPIE. 2001 (4372): 114~124.
    2. J.M. Lopez-Alonso and J. Alda. Bad pixel identification by means of principal components analysis. Opt. Eng. 2002, 41(9): 2152~2157.
    3. Jerry Silverman. Signal processing algorithms for display and enhancement of IR images. Proceedings of SPIE. 1993 (2020): 440~450.
    4.屈惠明,陈钱等.红外焦平面阵列性能参数测试系统.激光与红外.2006,36(10):950~952.
    5. R.H. Fugerer, D.J. Hervig, L.L. Holt, et al. The development of a focal plane array data system for component-level characterization and real-time mission simulation testing. IEEE. 1995: 2.1~2.10.
    6.周慧鑫,殷世民,刘上乾等.红外焦平面器件无效像元检测及补偿算法.光子学报.2004,33(5):598~600.
    7. Nicola Liberatore, Andrea Pifferi, Silvio Perri, et al. Test bench for IRFPA based on CMT and microbolometer. Infrared Physics&Technology. 2002 (43): 291~296.
    8.红外焦平面阵列特性参数测试技术规范.中华人民共和国国家标准.GB/T 17444-1998:209~222.
    9. Hui-xin Zhou, Rui Lai, Shang-qian Liu, et al. New improved nonuniformity correction for infrared focal plane arrays. Optics Communications. 2005 (245): 49~53.
    10.屈惠明,陈钱等.红外焦平面阵列成像动态仿真系统.红外与激光工程.2006,35(5):608~611.
    11.黄星明,余国文,王宏远.一种改进的红外焦平面非均匀多点校正方法.红外与激光工程.2005,34(1):62~65.
    12. M. Schulz, L. Caidwell. Nonuniformity correction and Correctability of infrared focal plane arrays. SPIE Infrared Imaging Systems: Design, Analysis, Modeling, and Testing Ⅵ. 1995(5): 200~211.
    13.石岩,毛海岑,张天序,等.一种新的基于特征直方图分解的红外焦平面阵列无效像元判别方法.红外与毫米波学报.2005,24(2):119~124.
    14.侯和坤,张新.红外焦平面阵列非均匀性校正技术的最新进展.红外与激光工程. 2004,33(1):79~82.
    15.候国屏,王坤,叶齐鑫.LABVIEW7.1编程与虚拟仪器设计.北京:清华大学出版社,2005.
    16. Jeremy M. Lemer, Lewis A. Drake. Hyperspectral imaging in a LabVIEW environment. SPIE Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing Ⅵ. 1999(5): 264~272.
    17. QU Hui-ming, CHEN Qian, et al. A General Image Processing Algorithm Demo and Evaluation System for Infrared Imaging. Proceedings of SPIE. 2007 (6279): 62793G-1~7.
    18. David L. Perry. Linear theory of nonuniformity cortection in platinum suicide focal plane arrays. SPIE Infrared Technology ⅩⅧ. 1992 (1762): 60~69.
    19. YASIJJJRO KIYOTA. Most suitable non-uniformity correction method for PtSi SBD detector. Proceedings of SPIE. 1998 (3377): 114~121.
    20.王跃明,陈建新,刘银年,薛永祺.红外焦平面器件二点多段非均匀性校正算法研究.红外与毫米波学报.2003,22(6):415~418.
    21. Sergio N. Torres, Majeed M. Hayat, Ernest E. Armstrong, and Brian Yasuda. A Kalman.-Filtering Approach for Non-Uniformity Correction in Focal-Plane Array Sensors. Proceedings of SPIE. 2000 (4030): 196~205.
    22. Jing Sui, Wei-qi Jin, Li-quan Dong, Xia Wang. A New Nonuniformity Correction Algorithm for Infrared Line Scanners. Proceedings of SPIE. 2006 (6207): 62070Y-1~8.
    23. Sergio N. Torres, Esteban M. Vera, Rodrigo A. Reeves, Sergio K. Sobarzo. Adaptive Scene-Based Non-Uniformity Correction Method for Infrared-Focal Plane Arrays. Proceedings of SPIE. 2003 (5076): 130~139.
    24.刘志才,李志广.红外热像仪图像处理技术综述.红外技术.2000,22(6):27~32.
    25.陈锐,谈新权.红外图像均匀性校正方法综述.红外技术.2002,24(1):1~3.
    26. Harris J G. Nonuniformity correction using the constant statistics constraint: analog and digital implementations. Proceedings of SPIE. 1997 (3061): 895~905.
    27. Scribner D A. Adaptive nonuniformity correction for IR focal plane arrays using neural networks. Proceedings of SPIE. 1991(1541): 100~108.
    28.曹治国,魏洛刚,张天序,桑农.基于神经网络法的焦平面器件非均匀性校正技术研 究.红外与激光工程.2000,29(1):65~68.
    29. Li-quan Dong, Wei-qi Jin and Jing Sui. Summarize on the Scene-Based Nonuniformity Correction Algorithms for IRFPA. Proceedings of SPIE. 2005(5881): 58810P-1~10.
    30. John G. Harris and Yu-Ming Chiang. Nonuniformity Correction of Infrared Image Sequences Using the Constant-Statistics Constraint. IEEE TRANSACTIONS ON IMAGE PROCESSING. 1999, 8(8): 1148~1151.
    31. Nicholas I. Rummelt. A Combined Non-uniformity and Bad Pixel Correction Method for Superpixelated Infrared Imagery. Proceedings of SPIE. 2006(6206): 62060V-1~8.
    32. Jose Manuel LopezAlonso, Javier Alda. Principal component analysis of noise in an image-acquisition system Bad pixel extraction. Proceedings of SPIE. 2003(5036): 353~357.
    33.范宏波,李志广,杨帆。线阵红外焦平面成像系统中失效元检测及补偿的计算机模拟研究,红外技术,2002,6(24):54~57.
    34.周慧鑫,殷世民,刘上乾,赖睿.红外焦平面器件盲元检测及补偿算法.光子学报.2004,33(5):598~600.
    35. Olivier RIOU, Stephane BERREBI and Pierre BREMOND. Non Uniformity Correction and thermal drift compensation of thermal infrared camera. Proceedings of SPIE. 2004(5405): 294~302.
    36.郭继昌,陈敏俊,李锵,关欣.红外焦平面失效元处理方法及软硬件实现.光电工程.2006,33(6):57~60.
    37. DIERICKX B, MEYNANTS G. Missing pixel correction algorithm for image sensors. Proceedings of SPIE. 1998(3410): 200-203.
    38. XU Youqing, YU Shengsheng, ZHOU Jingli etc. Detection and Compensation of Bad Pixel for CMOS Image Sensor. Proceedings of SPIE. 2000(4077): 208~212.
    39. QU Hui-ming, CHEN Qian, et al. Accurate Non-effective Pixel Detection and Replacement Based on Multi-Temperature Matching. Proceedings of SPIE. 2007(6279): 62796X-1~8.
    40. SUN Shao-yuan, JING Zhong-liang, LI Zhen-hua, et al.. Infrared image enhancement based on two-dimensional histogram analysis. Proceedings of SPIE. 2003(5203): 729~736.
    41. Virgil M, Vickers E. Plateau equalization algorithm for real time display of high equality infrared imagery. Optical Engineering. 1996, 35 (7): 1921~1926.
    42. Vasile Buzuloiu, Mihai Ciuc. Adaptive-neighborhood histogram equalization of color images. Journal of Electronic Imaging. 2001, 10(2): 445~459.
    43. Paranjape R B. Adaptive-neighborhood histogram equalization for image enhancement. CV GIP: Graphical Models and Image Processing. 1992, 54 (3): 259~267.
    44. QU Hui-ming, CHEN Qian, Adaptive Histogram Subsection Modification for Infrared Image Enhancement. Proceedings of SPIE. 2006(6233): 623310-1~7.
    45.陈钱,柏连发,张保民.红外图像直方图双向均衡技术研究.红外与毫米波学报.2003,6(22):428~430
    46. I. Ramesh Babu, I.V. Murali Krishna. Contrast Enhancement of IRS-IC LISS Data. IEEE. 1997(3836): 1778~1780.
    47.马林立,沈云峰.基于灰度修正的星图增强方法.红外技术.2003,25(3):29~31.
    48.王炳健,刘上乾,周慧鑫等.基于平台直方图的红外图象自适应增强算法.光子学报.2005,34(2):299~301.
    1.候国屏,王坤,叶齐鑫.LABVIEW7.1编程与虚拟仪器设计.北京:清华大学出版社,2005.
    2.杨乐平,李海涛,杨磊编著.LabVIEW程序设计与应用.北京:电子工业出版社,2005.
    3.王家文,李仰军编著.MATLAB 7.0图形图像处理.北京:国防工业出版社,2006.
    4.张明照,何玉彬,刘政波等编著.应用MATLAB实现信号分析和处理.北京:科学出版社,2006.
    5.杨淑莹编著.图像模式识别:VC++技术实现.北京:清华大学出版社,2005.
    6.刘维编著.精通Matlab与C/C++混合程序设计.北京:北京航空航天大学出版社,2005.
    7.屈惠明,陈钱等.红外焦平面阵列性能参数测试系统.激光与红外.2006,36(10):950~952.
    8.红外焦平面阵列特性参数测试技术规范.中华人民共和国国家标准.GB/T 17444-1998:209~222.
    9.屈惠明,陈钱.红外焦平面阵列微扫描成像插值重建研究.半导体光电.2006,27(5):631-634.
    10.屈惠明,陈钱等.红外焦平面阵列成像动态仿真系统.红外与激光工程.2006,35(5):608~611.
    11.范金城,吴可法编著.统计推断导论.北京:科学出版社,2001.
    12.林元烈,梁宗霞编著.随机数学引论.北京:清华大学出版社,2003.
    13. QU Hui-ming, CHEN Qian, et al. A General Image Processing Algorithm Demo and Evaluation System for Infrared Imaging. Proceedings of SPIE. 2007(6279): 62793G-1~7.
    14. Hui-xin Zhou, Rui Lai, Shang-qian Liu, et al. New improved nonuniformity correction for infrared focal plane arrays. Optics Communications. 2005(245): 49-53.
    15.周金梅,邢廷文,林妩媚.红外焦平面阵列非均匀性校正的精度分析.光子学报.2005,34(11):1681-1684.
    16. QU Hui-ming, CHEN Qian, et al. Accurate Non-effective Pixel Detection and Replacement Based on Multi-Temperature Matching. Proceedings of SPIE. 2007(6279): 62796X-1~8.
    17. QU Hui-ming, CHEN Qian, Adaptive Histogram Subsection Modification for Infrared Image Enhancement. Proceedings of SPIE. 2006(6233): 623310-1~7.
    18.陈钱,柏连发,张保民.红外图像直方图双向均衡技术研究.红外与毫米波学报.2003,6(22):428~430
    19. I. Ramesh Babu, I.V. Murali Krisbna. Contrast Enhancement of IRS-1C LISS Data. IEEE. 1997(3836): 1778~1780.
    20. Abraham Friedenberg, Isaac Goldblatt. Nonuniformity two-point linear correction errors in infrared focal plane arrays. Optical Engineering. 1998, 37 (4): 1251~1253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700