用户名: 密码: 验证码:
放牧制度与放牧强度对内蒙古短花针茅荒漠草原AM真菌多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)是草原生态系统中的重要组成成分,通过与植物根系形成菌根(arbuscular mycorrhiza,AM),促进植物的生长、养分吸收,提高植物的抗逆性,影响植物多样性与群落生产力。内蒙古荒漠草原因放牧与其他人为干扰面临着严重的退化危机。本文以内蒙古短花针茅荒漠草原为对象,研究不同的放牧方式(休牧、轮牧、禁牧、自由放牧等)以及放牧强度(禁牧、轻牧、中牧、重牧)对草原植物和土壤因子的影响,尤其是对土壤AM真菌种群及其多样性的影响,尝试从AM真菌多样性变化,以及AM真菌与植物和土壤因子间的相互关系来评价不同放牧制度和放牧强度对草原生态系统的影响。旨在为草原生产方式、资源的可持续发展和利用提供科学依据。主要的研究结果如下:
     1.比较研究了休牧制度(春季休牧40d、50d、60d)、禁牧制度和自由放牧制度对AM真菌,植物和土壤的影响。结果显示,春季适宜休牧一段时间有利于提高AM真菌的多样性和侵染能力,并有利于提高植物生物量、土壤微生物及土壤养分的改善。土壤AM真菌的多样性、孢子密度、土壤磷酸酶活性、土壤理化性质和土壤微生物均表现出休牧区>禁牧区>自由放牧区,差异达到显著水平(p<0.05)。休牧60天区的AM真菌孢子密度、多样性、侵染能力以及植物生物量、有机质、全N等土壤理化性质、磷酸酶活性和土壤微生物数量等均显著高于自由放牧区,其中AM真菌孢子密度和土壤微生物数量显著高于禁牧区,八月和九月的植物生物量也显著高于禁牧区(p<0.05)。休牧制度中,春季休牧60d的效果最好。休牧60d的土壤AM真菌孢子密度、侵染能力以及土壤有机质、全N、磷酸酶活性和土壤微生物数量均高于休牧40d和50d,并达到显著性差异水平(p<0.05)。在休牧条件下,AMF多样性与土壤N含量、磷酸酶活性及细菌等土壤因子之间有积极的相互作用。
     2.比较研究了轮牧制度、禁牧制度和自由放牧制度对AM真菌,植物和土壤的影响。结果显示,轮牧有利于提高AM真菌多样性、植物生物量、土壤养分和土壤微生物。AM真菌孢子密度和物种丰富度表现为轮牧>自由放牧>禁牧,而植物现存量、土壤理化性质、土壤磷酸酶活性和土壤微生物数量均表现为轮牧>禁牧>自由放牧。轮牧区与禁牧区和自由放牧区的差异达到显著水平(p<0.05)。轮牧区的AM真菌孢子密度、物种丰富度、土壤磷酸酶活性和土壤微生物数量显著高于禁牧和自由放牧区,而植物现存量和土壤理化性质显著高于自由放牧区(p<0.05)。AM真菌侵染率在自由放牧区内最高,其原因可能是持续的放牧干扰刺激了AM真菌的侵染能力。轮牧条件下AM真菌多样性与土壤有机质、N含量、磷酸酶活性和细菌等土壤因子有显著正相关关系。
     3.比较研究了轻度、中度、重度和禁牧等放牧强度对AM真菌多样性、植物和土壤因子的影响。结果显示,轻度放牧有利于提高AM真菌多样性、侵染能力、植物生物量、土壤微生物以及土壤养分的保持。AM真菌多样性、侵染能力、土壤理化性质、土壤微生物数量均表现为轻牧>中牧>禁牧>重牧,轻牧区与其他放牧强度区间的差异达到显著水平(p<0.05)。植物现存量表现为轻牧、禁牧>中牧、重牧,差异达到显著水平(p<0.05)。轻牧区的AM真菌孢子密度、侵染率、有机质等土壤理化性质和土壤微生物数量显著高于禁牧区和重牧区,AM真菌物种丰富度和植物现存量显著高于中牧和重牧区(p<0.05)。在三种放牧强度中,最有利于牧草的生长和土壤养分的保持的是轻度放牧。轻度放牧条件下AM真菌多样性和一些土壤理化性质和微生物数量最高,可见轻牧不仅可以促进AM真菌多样性,还有利于一些土壤因子含量的提高。轻度放牧对植物生长有利,在植物生长旺期,轻牧区的植物现存量甚至高于无放牧区。无放牧区的AM真菌多样性、土壤理化性质和微生物等低于轻牧区,可见单纯禁牧的效果没有轻度放牧好。中度放牧对AM真菌多样性和土壤因子的影响比重度放牧要好一些。重度放牧区AM真菌多样性、植物生物量、土壤理化性质以及微生物数量都最低,可见重度放牧对草原生态系统有不利影响。在不同放牧强度下,AM真菌孢子密度与植物现存量、土壤磷含量、水分含量和真菌数量呈现了显著正相关性,AM真菌物种丰富度与植物现存量、碱解氮含量呈现显著正相关。
As an important component of grassland ecosystem, arbuscular mycorrhizal fungi (AMF) promote the growth and nutrient-uptaking of plant through arbuscular mycorrhiza (AM). In this way, it can strengthen plant resistance and influence plant diversity and community productivity. However in Inner Mongolia, inappropriate grazing methods and anthropogenic interference cause serious soil degradation to the desert grassland. In this paper different grazing managements (rest grazing, rotational grazing, banning grazing and continuous grazing) and different degrees of grazing intensity (light grazing, moderate grazing and heavy grazing) in Inner Mongolian Stipa breviflora desert steppe were analyzed to find out their influence on plants and soil factors of the steppe, especially the effects on AMF diversity. It also attempts to evaluate the effects of the present grazing managements and grazing intensity to grassland ecosystem from the perspectives of AMF diversity change and relationship between AMF and plants, as well as soil factors. This paper aims to provide scientific materials to grassland production methods and sustainable development and utilization of resources. Results were concluded as follows:
     1. The influence of rest grazing (resting grazing for40,50,60days respectively in spring), banning grazing and continuous grazing management on AMF, plants and soil factors was analyzed. The result shows that stopping grazing for a period of time in spring improves AMF diversity and infection capacity and increases plant biomass and soil microorganisms and soil nutrient. AMF diversity, spore density, soil phosphatase activity, physical and chemical properties of soil and soil microbial quantity become well from rest grazing, banning grazing to continuous grazing. And the differences are significantly (P<0.05). AMF spore density, diversity, colonization rates, plant biomass, organic matters, total N of soil physical and chemical properties, phosphatase activity and microbial quantity in60days rest grazing areas are all higher than in continuous grazing areas. AMF spore density and microbial quantity are significantly higher in the60days rest grazing area than in banning grazing areas and plant biomass is also higher than banning grazing areas in August and September (P<0.05). The result of60days rest grazing in spring is the best among all rest grazing managements. Its AMF spore density, colonization rates, content of organic matters, total N, phosphatase activity and soil microbial quantity are all significantly higher than40or50days rest grazing (p<0.05). Under rest grazing management, AMF diversity and soil factors such as soil N content, phosphatase activity and bacterial quantity shows positive interactions.
     2. The influences of rotational grazing, banning grazing and continuous grazing managements on AMF, plant and soil were analyzed. The result shows that rotational grazing is beneficial to improve AMF diversity, plant biomass, soil nutrient and soil microbial quantity. AMF spore density and species richness are higher in rotational grazing areas than in continuous grazing ones. And plant biomass, soil physical and chemical properties and soil microbial quantity are higher in rotational grazing>banning grazing> continuous grazing and the differences are significantly. AMF spore density, species richness, soil phosphatase activity and soil microbial quantity in rotational grazing areas are significantly higher than banning grazing or continuous grazing areas and plant amount and soil physical and chemical properties are significantly higher than continuous grazing areas. AMF colonization rate is the highest in continuous grazing area, maybe because continuous grazing interference the ability of AMFo colonization. In rotational grazing areas, AMF diversity shows positive relationships with soil microbial amount, N content, phosphatase activity and soil factors.
     3. By comparing the influence of light, moderate and heavy stocking rates and banning grazing on AMF diversity, plant and soil factors, it is concluded that light grazing can improve AMF diversity, colonization rate, plant biomass, soil microbial quantity and the maintaining of soil nutrients. AMF diversity, colonization rate, soil physical and chemical properties and soil microbial amount are higher in light grazing>moderate grazing>banning grazing>heavy grazing areas and the difference is significant between light grazing and other grazing areas. Plant biomass shows higher in light and banning grazing than moderate and heavy grazing areas and the difference is significantly. AMF spore density, colonization rate, organic matters, soil physical and chemical properties and soil microbial quantity are all significantly higher than banning grazing and heavy grazing areas and AMF species richness and plant biomass are significantly higher than moderate and heavy grazing areas (p<0.05). Light grazing intensity is the best for growth of grass and maintaining of soil nutrients among the three kinds of grazing intensity. Because AMF diversity and some soil physical and chemical properties are the highest under light grazing, this grazing way not only improves AMF diversity, but also increases contents of some soil factors. Light grazing is good for plant growth, and which is more, plant biomass in this area is even higher than non-grazing area during plant growing seasons. AMF diversity, soil physical and chemical properties and microbial in non-grazing areas are lower than light grazing areas, so we can see that the result of light grazing method is better than the latter one. As far as the influence on AMF diversity and soil factors is concerned, moderate grazing is better than heavy grazing. AMF diversity, plant biomass, soil physical and chemical properties and microbial amount are all lower in heavy grazing areas. So heavy grazing has an adverse effect on grassland ecosystem. Under different grazing conditions, AMF spore density shows positive relationship with plant biomass, soil phosphorous content, soil moisture and fungal quantity. AMF species richness has significant positive relationship with plant biomass and nitrogen content.
引文
[l]马治华.内蒙古荒漠草原生态环境质量评价研究[D].中国农业科学院,2008.
    [2]赛胜宝.内蒙古北部荒漠草原带的严重荒漠化及其治理[J].干旱区资源与环境,2001,15(4):34-39
    [3]卫智军,杨静,杨尚明.荒漠草原不同放牧制度群落稳定性研究[J].水土保持学报,2003,17(6):121-124
    [4]王强,杨京平.我国草地退化及其生态安全评价指标体系的探索[J].水土保持学报,2003,17(6):27-31
    [5]赵立祥.草原荒漠化的物理过程[J].草业科学,2004,21(11):7-10
    [6]刘润进,李晓林.丛枝菌根及其应用[M1,北京:科学出版社,2000:1-224
    [7]Marschner P, Crowley DE, Higashi RM. Root exudation and physiological status of a root-colonizing fluorescent pseuodomonad in mycorrhizal and non-mycorrhizal pepper(Capsicum annuum L.) [J]. Plant Soil,1997,189(1):11-20
    [8]Tian H, Gai JP, Zhang JL, Christie P, Li XL. Arbuscular mycorrhizal fungi associated with wild forage plants in typical steppe of eastern Inner Mongolia [J]. Eur J Soil Biol,2009,45:321-327
    [9]包玉英,孙芬,闫伟.内蒙古荒漠地区丛枝菌根植物的初步研究.干旱区资源与环境[J],2005,19(3):180-184
    [10]Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. Mycorrhizal fungal diversity determines plant biodiversity, Ecosystem variability and productivity [J]. Nature,1998,396:69-72
    [11]Landis FC, Gargas A, Givnish TJ. Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas[J]. New Phytol,2004,164:493-504
    [12]Piippo S, Huhta AP, Rautio P, Markkola A, Tuomi J. Grazing tolerance and mycorrhizal colonization:effects of resource manipulation and plant size in biennial Gentianella campestris[J]. Flora,2011,206:808-813
    [13]Eisenhauer N. Aboveground-belowground interactions as a source of complementarity effects in biodiversity experiments [J]. Plant Soil,2012,351:1-22
    [14]Eriksson A. Arbuscular mycorrhiza in relation to management history, soil nutrients and plant species diversity [J]. Plant Ecol,2001,155:129-137
    [15]Mendoza R, Cabello M, Anchorena J, Garcfa I, Marban L. Soil parameters and host plants associated with arbuscular mycorrhizae in the grazed Magellanic steppe of Tierra del Fuego[J]. Agr Ecosyst Environ,2011,140:411-418
    [16]Teague WR, Dowhower SL, Baker SA, Haile N, DeLaune PB, Conover DM. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie[J]. Agric Ecosyst Environ,2011,141:310-322
    [17]卫智军,常秉文,孙启忠,韩建国,杨尚明.荒漠草原群落及主要植物种群特征对放牧制度的响应[J].干旱区资源与环境,2006,20(3):188-191
    [18]褚文彬,卫智军,运向军,闫瑞瑞,张小英.短花针茅荒漠草原土壤含水量和地上现存量对禁牧休牧的响应[J].中国草地学报,2008,30(3):106-109
    [19]运向军,卫智军,杨静,吴燕玲.禁牧休牧短花针茅草原主要植物种光合特性研究[J].干旱区资源与环境,2010,24(7):138-143
    [20]Alice Altesor, Martin Oesterheld.Elsa Leoni, Felipe Lezama and Claudia Rodriguez. Effect of grazing on community structure and productivity of a Uruguayan grassland[J].Plant Ecology,2005,179:83-91
    [21]卫智军,乌日图,达布希拉图,苏吉安,杨尚明.荒漠草原不同放牧制度对土壤理化性质的影响[J].中国草地,2005,27(5):6-10
    [22]李耀,卫智军,刘红梅,吴艳玲.不同放牧制度对典型草原土壤中全磷和速效磷的影响[J].内蒙古草业,2010,22(1):4-6
    [23]运向军.短花针茅草原对禁牧休牧的响应及休牧期家畜舍饲研究[D].内蒙古农业大学,2010.
    [24]Su YY, Guo LD. Arbuscular mycorrhizal fungi in non-grazed,restored and over-grazed grassland in the Inner Mongolia steppe[J]. Mycorrhiza,2007,17:689-693
    [25]Klironomos JN, McCune J, Moutoglis P. Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory[J]. Applied Soil Ecology,2004,26:133-141
    [26]Techau MEC, Bjornlund L, Christensen S. Simulated herbivory effects on rhizosphere organisms in pea (Pisum sativum) depended on phosphate[J]. Plant Soil,2004,264:185-194
    [27]Duponnois R, Plenchette C, Thioulouse J, Cadet P. The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal [J]. Applied Soil Ecology,2001,17:239-251
    [28]Villarreal M, Cochran RC, Johnson DE, Towne EG, Wilson GWT, Hartnett DC, Goodin DG. The use of pasture reflectance characteristics and arbuscular mycorrhizal root colonization to predict pasture characteristics of tallgrass prairie grazed by cattle and bison[J]. Grass and Forage Science,2006,61:32-41
    [29]Wearn JA, Gange AC. Above-ground herbivory causes rapid and sustained changes in mycorrhizal colonization of grasses[J]. Oecologia,2007,153:959-971
    [30]焦树英,韩国栋,李永强,窦红举.不同载畜率对荒漠草原群落结构和功能群生产力的影响[J].西北植物学报,2006,26(3):0564-0571
    [31]毕力格图,索培芬,康俊霞,韩国栋,赵萌莉.载畜率对短花针茅荒漠草原植物群落影响的研究[J].内蒙古农业大学学报,2004,25(4):30-33
    [32]卫智军,韩国栋,杨静,吕雄.短花针茅荒漠草原植物群落特征对不同载畜率水平的响应[J].中国草地,2000,6:1-5
    [33]Yusheng Wang, Masae Shiyomi, Mikinori Tsuiki, Michio Tsutsumi, Xueren Yu, Ruhan Yi. Spatial heterogeneity of vegetation under different grazing intensities in the Northwest Heilongjiang Steppe of China[J]. Agriculture, Ecosystems and Environment,2002,90(3):217-229
    [34]Z.K.Tessema, W.F.de Boer, R.M.T.Baars, H.H.T. Prins. Changes in soil nutrients, vegetation structure and herbaceous biomass in response to grazing in a semi-arid savanna of Ethiopia[J]. Journal of Arid Environments,2011,75(7):662-670
    [35]周丽艳,王明玖,韩国栋.不同强度放牧对贝加尔针茅草原群落和土壤理化性质的影响[J].干旱区资源与环境,2005,19(7):182-187
    [36]Yingzhong Xie, Rudiger Wittig. The impact of grazing intensity on soil characteristics of Stipa grandis and Stipa bungeana steppe in northern China (autonomous region of Ningxia)[J].Acta Oecologica,2004,25(3):197-204
    [37]Carpenter FL, Mayorga SP, Quintero EG, Schroeder M. Land-use and erosion of a Costa Rican Ultisol affect soil chemistry, mycorrhizal fungi and early regeneration[J]. Forest Ecology and Management,2001,144:1-17
    [38]Medina-Roldan E, Arredondo JT, Huber-Sannwald E, Chapa-Vargas L, Olalde-Portugal V. Grazing effects on fungal root symbionts and carbon and nitrogen storage in a shortgrass steppe in Central Mexico[J]. Journal of Arid Environments,2008,72:546-556
    [39]Ba L, Ning JX, Wang DL, Facelli E, Facelli JM, Yang YN, Zhang LC. The relationship between the diversity of arbuscular mycorrhizal fungi and grazing in a meadow steppe[J]. Plant and Soil,2012,352:143-156
    [40]An ZQ, Hendrix JW, Hershman DE, Henson GT. Evaluation of the "most probable number" (MPN) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi[J]. Mycologia,1990,82:516-581
    [41]Schuβler A, Walker C. (2010) The Glomeromycota. A species list with new families and genera. Edinburgh & Kew, UK:The Royal Botanic Garden; Munich, Germany:Botanische Staatssammlung Munich; Oregon, USA:Oregon State University. URL:http://www.amf-phylogeny.com. ISBN-13: 978-1466388048; ISBN-10:1466388048
    [42]Vierheilig H, Coughlan AP,Wyss U, Piche Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi[J]. Appl Environ Microbiol,1998,64:5004-5007
    [43]McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of roots by vesicular-arbuscular mycorrhizal fungi[J]. New Phytol,1990,115:495-501
    [44]Yeomans JC, Bremner JM. A rapid and precise method for routine determination of organic carbon in soil[J]. Commun Soil Sci Plant Anal,1988,13:1467-1476
    [45]Yuen SH, Pollard AG Determination of nitrogen in soil and plant materials:use of boric acid in the micro-kjeldahl method[J]. J Sci Food Agric,1953,4:490-496
    [46]Mulvaney RL, Khan SA. Diffusion methods to determine different forms of nitrogen in soil hydrolysates[J]. Soil Sci Soc Am J,2001,65:1284-1292
    [47]Hedley MJ, Stewart JWB, Chauhan BS. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and laboratory incubations[J]. Soil Sci Soc Am J,1982,46:970-976
    [48]Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters[J]. Anal Chim Acta,1962,27:31-36
    [49]Zhao LP, Jiang Y. Research of determination of soil phosphatase activity[J]. Chin J Soil Sci, 1986,17:138-141
    [50]Hoffman G. Eine photometrische Methode zur Bestimmung der Phosphatase-Aktivitat in Boden[J].Z Pflanzenernaehr Bodenkd,1967,118:193-198
    [51]郭锡平,张春信,乌日根,孔庆伟.锡林郭勒盟春季休牧工作现状及对策[J].内蒙古草业,2006,13(1):54-56
    [52]李青丰,赵钢,郑蒙安,阿民布和.春季休牧对草原和家畜生产力的影响[J].草地学报,2005,13(增刊):53-56
    [53]赵钢,李青丰,张恩厚.春季休牧对绵羊和草地生产性能的影响[J].仲恺农业技术学院学报,2006,19(1):1-4
    [54]朝鲁,卫亮,王美芬.克氏针茅草地牧草返青期放牧对比试验[J].内蒙古草业,2002,14(4):42-45
    [55]Hurlbert, S.H.. Pseudoreplication and the design of ecological field experiments[J]. Ecological Monographs,1984,54:187-211.
    [56]Guo YJ, Han JG. Soil biochemical properties and arbuscular mycorrhizal fungi as affected by afforestation of rangelands in northern China[J]. J Arid Environ,2008,72:1690-1697
    [57]Gonzalez-Cortes, J.C., Vega-Fraga, M., Varela-Fregoso, L., Martinez-Trujillo, M., Carreon-Abud, Y., Gavito, M.E. Arbuscular mycorrhizal fungal (AMF) communities and land use change:the conversion of temperate forests to avocado plantations and maize fields in central Mexico[J]. Fungal Ecology,2012,5:16-23.
    [58]韩国栋,毕力格图,高安社。不同载畜率条件下绵羊选择性采食的研究[J].草业科学,2004,21(12):95-98
    [59]Eason, W.R., Scullion, J., Scott, E.P. Soil parameters and plant responses associated with arbuscular mycorrhizas from contrasting grassland management regimes. Agr. Ecosyst[J]. Environment,1999,73:245-255.
    [60]Reidinger, S., Eschen, R., Gange, A.C., Finch, P., Bezemer, T.M. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea[J]. Acta Oecol., 2012,38:8-16.
    [61]Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A. In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections[J]. Mycol Res,1993,97:245-250
    [62]Aon MA, Colaneri AC. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil[J]. Appl Soil Ecol,2001,18:255-270
    [63]Barness G, Zaragoza SR, Shmueli I, Steinberger Y. Vertical distribution of a soil microbial community as affected by plant ecophysiological adaptation in a desert system [J]. Microb Ecol, 2009,57:36-49
    [64]Franklin RB, Mills AL. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field [J]. FEMS Microbiol Ecol,2003,44:335-346
    [65]Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G. Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant [J]. Mycorrhiza,2009,19:81-90
    [66]闫瑞瑞.不同放牧制度对短花针茅荒漠草原植被与土壤影响的研究[[D].内蒙古农业大学,2008
    [67]闫瑞瑞,卫智军,韩国栋,王鹏飞,周忠义.荒漠草原不同放牧制度群落多样性研究[J].干旱区资源与环境,2007,21(7):111-115
    [68]Taylor, C.A., M.M.Kothmann, L.B.Merriland, D.Elledge. Diet selection by catole under high intensity-low frequenly, short duational, and Merrill grazing Systems [J]. J.Range Manage,1980, 33:428-434
    [69]刘红梅.短花针茅草原群落特征与草地空间异质性对不同放牧制度的响应[]D].内蒙古农业大学,2011
    [70]卫智军,常秉文,孙启忠,韩建国,杨尚明.荒漠草原群落及主要植物种群特征对放牧制度的响应[J].干旱区资源与环境,2006,20(3):188-191
    [71]H.C.Norman, M.G.Wilmot, D.T.Thomas, E.GBarrett-Lennard, D.GMasters. Sheep production, plant growth and nutritive value of a saltbush-based pasture system subject to rotational grazing or set stocking [J]. Small Ruminant Research,2010,91(1):103-109
    [72]A. GSELMAN,B. KRAMBERGER,A. LESNIK. THE EFFECT OF ROTATIONAL GRAZING ON FLORISTIC COMPOSITION AND YIELD OF Ranunculo repentis Alopecuretum pratensis HILLY GRASSLAND [J]. Journal of Central European Agriculture,2003,4 (4)
    [73]V. R. Kanneganti, R. P. Walgenbach, L. J. Massingill. Daily and Seasonal Forage Availability Under Rotational Grazing of a Mixed-Species Temperate Pasture [J]. Journal of Sustainable Agriculture,1998,12 (2-3):49-66
    [74]刘红梅,卫智军,杨静,吕世杰,吴艳玲,刘荣.不同放牧制度对荒漠草原表层土壤氮素空间异质性的影响[J].中国草地学报,2011,33(2):51-74
    [75]闫瑞瑞,卫智军,辛晓平,乌仁其其格.放牧制度对荒漠草原生态系统土壤养分状况的影响[J].生态学报,2010,30(1):0043-0051
    [76]Barto EK, Alt F, Oelmann Y, Wilcke W, Rillig MC. Contributions of biotic and abiotic factors to soil aggregation across a land use gradient[J]. Soil Biol Biochem,2010,42:2316-2324
    [77]郑淑华,赵萌莉,韩国栋,红梅,贵满全,乌力吉.不同放牧压力下典型草原土壤物理性质与植被关系的研究[J].干旱区资源与环境,2005,19(7):199-203
    [78]高雪峰.内蒙古短花针茅草原不同放牧强度下土壤主要微生物类群、酶及养分的动态变化研究[D].内蒙古师范大学,2005
    [79]乔鹏云.放牧对陇东半干旱草地土壤微生物的影响[]D].兰州大学,2008
    [80]Peterson R L and Bonfante P. Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas [J]. Plant and soil,1994,159:81-88.
    [81]刘满仓.盐池县草原沙漠化的现状、成因与对策[J].草业科学,2002,19(6):5-6
    [82]李瑜琴,赵景波.过度放牧对生态环境的影响与控制对策[J].中国沙漠,2005,25(3):404-408
    [83]许志信,赵萌莉.过度放牧对草原土壤侵蚀的影响[J].中国草地,2001,23(6):59-63,
    [84]韩文军,春亮,侯向阳.过度放牧对羊草杂类草群落种的构成和现存生物量的影响[J].草业科学,2009,26(9):195-199
    [85]程积民,杜峰.放牧对半干旱地区草地植被影响的研究[J].草原与牧草,1999,1(6):29-31
    [86]包玉英.内蒙古草原和荒漠丛枝菌根共生多样性及其生态分布[D].内蒙古农业大学,2004
    [87]Gallaud I. etudes sur les mycorrhizes endotrophes[J]. Revue Generale de Botanique,1905, 17:5-48,66-83,123-136,223-239,313-325,425-433,479-500.
    [88]Smith F A,Smith S E.Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses[J].New Phytologist,1997,137:373-388.
    [89]Peterson R L and Bonfante P.Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas[J].Plant and soil,1994,159:81-88.
    [90]张美庆,王幼珊,刑礼军.环境因子和AM真菌分布的关系[J].菌物系统,1999a,18(2):145-148
    [91]张美庆,王幼珊,刑礼军.我国东南沿海地区AM真菌群落生态分布研究[J].菌物系统, 1998,17(3):274-277
    [92]张美庆,王幼珊,张弛.我国北部VA菌根真菌某些属和种的生态分布[J].真菌学报,1994,13(3):166-172
    [93]盖京苹,刘润进.野生植物根围丛枝菌根[J].菌物系统,2000,19(2):205-211
    [94]龚平,孙铁衍,李培军.重金属对土壤微生物的生态效应[J].应用生态学报,1997,8(2):218-224
    [95]张英,郭良栋,刘润进.都江堰地区丛枝菌根真菌多样性与生态研究[J].植物生态学报,2003,27:537-544
    [96]Koske R E.Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient[J]. Mycologia,1987,79(l):55-68
    [97]Johnson NC, Pffeger FL. Vesicular arbuscular mycorrhizae and culture stress. In: Bethlenfalvay GJ and Linderman RG ed. Mycorrhizae in sustainable agriculture[J]. ASA Special Publication Number,1992,54:71-99
    [98]Douds DD, Galvez G, Janke RR, et al. Effect of tillage and farm ing system upon populations and distribution of vesicular arbuscular mycorrhizal fungi [J]. Agriculture, Ecosystems and Environment,1995,52:111-118.
    [99]Edson WR, Scullion J, Scott EP. Soil parameters and responses associated with arbuscular mycorrhizas from contrasting grassland management regimes [J]. Agriculture, Ecosystems and Environment,1999,73:245-255
    [100]Eom A H, Wilson G W T,Hartnett D C.Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie[J].Mycologia,2001,93:233-242
    [101]Lugo M A,Gonzlez Maza M E,Cabello M N.Arbuscular mycorrhizal fungi in a mountain grassland II:Seasonal variation of colonization studied,along with its relation to grazing and metabolic host type[J]. Mycologia,2003,95(3):407-415
    [102]Jumpponen A. Dark septate endophytes-are they mycorrhizal? [J]. Mycorrhiza,2001, 11:207-211
    [103]Vohnik M, Albrechtova J. The co-occurrence and morphological continuum between ericoid mycorrhiza and dark septate endophytes in roots of six european Rhododendron species [J]. Folia Geobot,2011,46:373-386
    [104]Mandyam K, Jumpponen A. Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment [J]. Mycorrhiza,2008,18:145-155
    [105]Lugo MA, Molina MG, Crespo EM. Arbuscular mycorrhizas and dark septate endophytes in bromeliads from South American arid environment [J]. Symbiosis,2009,47:17-21
    [106]王明玖,马长升.两种方法估算草地载畜量的研究[J].中国草地,1994,5:19-22
    [107]卫智军,韩国栋,杨静,吕雄.短花针茅荒漠草原植物群落特征对不同载畜率水平的响应[J].中国草地,2000,6:1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700