用户名: 密码: 验证码:
公路隧道通风排烟网络分析及计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:我国公路隧道近年来向长大化方向发展,正常运营时污染物在隧道内累积达到较高浓度的可能性和火灾事故的危险性呈上升趋势,公路隧道通风排烟技术是隧道安全运营的重要保障。因此,本文对公路隧道的各种通风排烟方式进行了系统的研究,提出了基于网络模型的公路隧道的通风排烟计算方法,并将研究成果运用于实际工程中,通风排烟网络解算结果得到了火灾模型试验的验证。本论文的研究工作主要包括以下几个方面的内容:
     (1)在公路隧道通风计算中引入通风网络理论,系统的研究了纵向通风模式、半横向通风模式、横向通风模式和组合通风模式下隧道正常运营通风的风流特点和风压组成,绘制出了各通风系统的通风网络图,建立了公路隧道各种通风模式下的正常营运通风网络解算模型,提出了风机配置方法。
     (2)建立了公路隧道火灾通风排烟网络解算模型,给出了不同隧道通风排烟模式下主要技术参数、所需风机风量、风压的计算方法。
     (3)编制了基于质量描述的隧道网络通风模拟计算程序,该程序可完成分支风量、风压、风速、通风阻力、风机数量等参数的求解计算。
     (4)对集中排烟模式下排烟阀和排烟道所在分支的风阻系数随不同排烟阀设置方案的动态性变化进行了研究。获得了不同排烟阀设置方案下,行车道和排烟道内烟气温度分布、排烟道内和排烟阀处烟气流速分布,确定了分支密度和风阻系数这两个关键参数。
     (5)将研编的通风网络计算程序应用于苍岭隧道集中排烟模式下火灾通风排烟技术研究。获得了排烟阀设置方案、排烟方式、排烟量和漏风量对排烟道内和排烟阀处烟气流速的影响规律,确定了较好的排烟阀设置方案。最后,采用模型试验方法对火灾通风网络计算结果进行验证,证实了网络程序的可靠性。
     (6)基于贝叶斯网络的逻辑,建立了通风排烟系统设备正常工作的贝叶斯网络模型,分别获得了通风排烟系统设备正常工作和失效的概率计算公式。
     通过对隧道通风排烟模式的系统研究,建立了正常营运工况、火灾工况的通风网络解算模型,实现了风量、风压、风速、通风阻力、风机数量等参数的求解,为以后公路隧道通风设计和计算提供了参考。
Abstract:In recent years, the road tunnels in China are growing both in length and scale, which makes it more possible for the contamination to accumulate to a high concentration and result in a disaster, and the tunnel ventilation and smoke extraction technology becomes the key guarantee for the tunnel security. So, in this paper, a systematic research on ventilation and smoke extraction modes of tunnel is carried out, and method is proposed based on the network model for calculation and design of tunnel ventilation and smoke exhaust system. And then, it is applied to a practical engineering, and the results calculated by ventilation network model are validated through fire model tests. The main work of the paper are as follows:
     (1) The ventilation network theory is introduced into the calculation of road tunnel ventilation systems, the flow characteristics and compositions of ventilation power are analyzed respectively under longitudinal ventilation mode, semi-transverse ventilation mode, transverse ventilation mode and combination ventilation mode, network graphs of the tunnel ventilation systems are drawn, and calculation models based on network and how to configure fans in normal operation condition under different tunnel ventilation modes are proposed.
     (2) Calculation models based on ventilation network in fire operation condition are proposed, and the method for calculating central technical parameters, the air flux and pressure of fans in need under different tunnel fire ventilation modes are provided.
     (3) A road tunnel ventilation network calculation procedure with the air flux expressed by mass flux is developed. The procedure can realize the calculation of mass flow rate, wind pressure, wind speed, ventilation resistance and number of fans in need.
     (4) The dynamic variations of wind resistance coefficient attached to smoke vent and smoke duct branches with the different smoke vent design schemes under central exhaust mode are studied in this paper. In different smoke vent design scenarios, the smoke temperature distributions along tunnel ceiling and smoke duct, the smoke flow velocity distributions along the duct and through the vent are acquired. Finally, the two key parameters, wind density and wind resistance coefficient of network branches are determined.
     (5) The calculation procedure is applied to the research of smoke extraction technology in Cangling tunnel with central exhaust mode, the rule how the smoke vent design schemes, smoke exhaust modes, exhaust volume and air leakage influence the smoke flow velocity distributions along the duct and through the vent is gained, and proper vent design scheme is proposed. In the end, the reliability of the network procedure is approved by comparing the calculation results of procedure in fire operation condition with reduced-scale model fire tests.
     (6) A bayesian network model is established to reliability analysis of fire ventilation system devices based on bayes theory, and the formulae for calculating the possibility of ventilation system devices in working state and in failure state are provided, respectively.
     Based on the systematic research of ventilation and smoke extraction modes in tunnel, network models are established for the tunnel ventilation calculation in normal operation condition and in fire operation condition, and the mass flow rate, wind pressure, wind speed, ventilation resistance and number of fans in need can be solved, which has a reference meaning to future road tunnel ventilation system design and calculation.
引文
[1]2006年公路水路交通行业发展统计公报[EB/OL]. [2012-9-8]. http://www.stats.gov. cn/tjgb/qttjgb/qgqttjgb/t20070430_402402691.htm.
    [2]2007年公路水路交通行业发展统计公报[EB/OL]. [2012-9-8]. http://www.zgsyb.co m/GB/Article/ShowArticle.asp/ArticleID=881.
    [3]2008年公路水路交通运输行业发展统计公报[EB/OL]. [2012-9-8]. http://www.mo c.gov.cn/zhuzhan/tongjigongbao/fenxigongbao/hangyegongbao/201009/t20100916_81143 2.html.
    [4]2009年公路水路交通运输行业发展统计公报[EB/OL]. [2012-9-8]. http://www.mo c.gov.cn/zhuzhan/tongjigongbao/fenxigongbao/hangyegongbao/201009/t20100916_81143 3.html.
    [5]2010年公路水路交通运输行业发展统计公报[EB/OL]. [2012-9-8]. http://www.mo c.gov.cn/zizhan/siju/guihuasi/tongjixinxi/niandubaogao/201104/t20110427_937146.html.
    [6]2011年公路水路交通运输行业发展统计公报[EB/OL]. [2012-9-8]. http://www.mo c.gov.cn/zhuzhan/tongjigongbao/fenxigongbao/hangyegongbao/201204/t20120425_12317 78.html.
    [7]胡彦杰,龙正聪.雪峰山隧道通风系统设计[J].中南公路工程,2006,31(1):103-108.
    [8]夏永旭,王永东,赵峰.秦岭终南山公路隧道通风方案探讨[J].长安大学学报(自然科学版),2002,22(5):48-50.
    [9]杨铠腾.特长公路隧道通风数值模拟软件开发及应用[D].长沙:中南大学,2008.
    [10]邓念兵.公路隧道防火救灾对策研究[D].西安:长安大学,2003.
    [11]章玉伟.公路隧道纵向通风系统火灾工况数值模拟研究[D].西安:长安大学,2006.
    [12]王铭珍.巴库地铁火灾的教训[J].浙江消防,1996(3):42.
    [13]姚聪璞.基于风险分析的上海长江隧道逃生通道设计研究[D].上海:同济大学,2008.
    [14]强健,朱合华,闫治国,等.隧道火灾的原因分析及预防措施探讨[C].中国土木工程学会第十二届年会暨隧道及地下工程分会第十四届年会论文集.成都:中铁西南科学研究院,2006:208-212.
    [15]吕康成,朱光仪.公路隧道运营设施[M].北京:人民交通出版社,1999.
    [16]NFPA 502, Standard for Road Tunnels[S]. United States:National Fire Protectio n Association,2001.
    [17]Rohne E. The Friction Losses on Walls Caused by a Row of Four Parallel Jet Flows[C]. Proc.6th ISAVVT, BHRA Fluid Engineering. England,1988:151-164.
    [18]Mizuno A, Azuma T, Ichikawa A, et al. Appropriate JF installation interval obt ained by booster capacity measurements[C]. Proceedings 10th International Symposiu m on the Aerodynamics and Ventilation of Vehicle Tunnels. Boston:BHR Group,2 000:431-446.
    [19]Mutama K R, Hall A E. The experimental investigation of jet fan aerodynamics using wind tunnel modeling[J]. Journal of fluids engineering,1996,118(2):322-328.
    [20]Asagami K, Nagataki K. Operation and adequacy of the new ventilation system of the Kan-Etsu road tunnel [C]. proceedings 6th International Symposium on the A erodynamics and Ventilation of Vehicle Tunnels, Durham:BHR Group,1988:27-29.
    [21]郭建文.隧道通风用射流风机的高风速化[J].公路,2005(2):179-182.
    [22]Tunnel N F P A, Protection H F. NFPA 502, Standard for Road Tunnels, Brid ges, and Other Limited Access Highways[M]. United States:NFPA,2010.
    [23]郑道访.公路长隧道通风方式研究[M].辽宁:科学技术文献出版社,2000.
    [24]高孟理.中梁山隧道通风的模型试验研究[J].公路,1994(10):17-23.
    [25]赵峰.公路隧道通风研究及设计软件VDSHT的编制[D].西安:长安大学,2002.
    [26]Beard A, Carvel R. Handbook of tunnel fire safety[M]. London:ICE publishing, 2011.
    [27]Lonnermark A, Ingason H. Recent Achievements Regarding Heat Release and T emperatures during Fires in Tunnels[J]. Safety in Infrastructure Sveduletes, Budapest, Hungary,2004:20-21.
    [28]Maevski I Y. Design Fires in Road Tunnels[M]. Washington D.C.:Transportatio n Research Board,2011.
    [29]Meyer G, Gustafsson M. Fire and Explosion Tests in Underground Structures [M]. Sweden:Malardalen University,2011.
    [30]Kile G W, Gonzalez J A. The Memorial tunnel fire ventilation test program:th e longitudinal and natural tests[J]. ASHRAE Transactions-American Society of Heati ng Refrigerating Airconditioning Engin,1997,103(2):701-713.
    [31]Hu L H, Peng W, Huo R. Critical wind velocity for arresting upwind gas and smoke dispersion induced by near-wall fire in a road tunnel [J]. Journal of hazardous materials,2008,150(1):68-75.
    [32]Hwang C C, Edwards J C. The critical ventilation velocity in tunnel fires-a c omputer simulation [J]. Fire Safety Journal,2005,40(3):213-244.
    [33]Kang K. Computational study of longitudinal ventilation control during an enclo sure fire within a tunnel[J]. Journal of Fire Protection Engineering,2006,16(3):159-1 81.
    [34]Kim J Y, Yoon S W, Yoo J O, et al. A study on the smoke control characteri stic of the longitudinally ventilated tunnel fire using PIV[J]. Tunnelling and Undergr ound Space Technology,2006,21(3):302.
    [35]Kunsch J P. Simple model for control of fire gases in a ventilated tunnel[J]. Fi re Safety Journal,2002,37(1):67-81.
    [36]Kunsch J P. Critical velocity and range of a fire-gas plume in a ventilated tunn el[J]. Atmospheric Environment,1998,33(1):13-24.
    [37]Lee S R, Ryou H S. An experimental study of the effect of the aspect ratio on the critical velocity in longitudinal ventilation tunnel fires[J]. Journal of fire scienc es,2005,23(2):119-138.
    [38]Li J S M, Chow W K. Numerical studies on performance evaluation of tunnel ventilation safety systems[J]. Tunnelling and underground space technology,2003,18 (5):435-452.
    [39]Roh J S, Ryou H S, Kim D H, et al. Critical velocity and burning rate in poo 1 fire during longitudinal ventilation[J]. Tunnelling and underground space technolog y,2007,22(3):262-271.
    [40]Roh J S, Yang S S, Ryou H S. Tunnel fires:Experiments on critical velocity a nd burning rate in pool fire during longitudinal ventilation[J]. Journal of fire science s,2007,25(2):161-176.
    [41]Van Maele K, Merci B. Application of RANS and LES field simulations to pre dict the critical ventilation velocity in longitudinally ventilated horizontal tunnels [J]. Fire Safety Journal,2008,43(8):598-609.
    [42]Vauquelin O. Experimental simulations of fire-induced smoke control in tunnels using an "air--helium reduced scale model":Principle, limitations, results and future [J]. Tunnelling and underground space Technology,2008,23(2):171-178.
    [43]Heselden A J M, Station F R. Studies of fire and smoke behaviour relevant to tunnels[M]. Building Research Establishment, Fire Research Station,1978.
    [44]Danziger N H, Kennedy W D. Longitudinal ventilation analysis for the Glenwo od canyon tunnels[C]. Proceedings of the Fourth International Symposium Aerodyna mics and Ventilation of Vehicle Tunnels. Bedford:British Hydromechanics Research Association Fluid Engeering,1982:169-186.
    [45]Bettis R J, Jagger S F, Macmillan A, et al. Interim validation of tunnel fire co nsequence models:summary of phase 1 tests[R]. Buxton:Health and Safety Laborat ory,1994.
    [46]Bettis R J, Jagger S F, Wu Y. Interim validation of tunnel fire consequence m odels; summary of phase 2 tests[J]. Buxton:Health and Safety Laboratory, Health a nd Safety Executive,1993.
    [47]Oka Y, Atkinson G T. Control of smoke flow in tunnel fires[J]. Fire Safety Jo urnal,1995,25(4):305-322.
    [48]Atkinson G T, Wu Y. Smoke control in sloping tunnels[J]. Fire Safety Journal, 1996,27(4):335-341.
    [49]Wu Y, Bakar M Z A. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity[J]. Fire Safety Journal,2000,35 (4):363-390.
    [50]Cox G, Kumar S. A numerical model of fire in road tunnels[J]. Tunnels and T unnelling International,1987,19(3):55-60.
    [51]Li J S M, Chow W K. Numerical studies on performance evaluation of tunnel ventilation safety systems[J]. Tunnelling and Underground Space Technology,2003,1 8(5):435-452.
    [52]Dobashi M, Imai T, Yanagi H, et al. Numerical simulation of the emergency tu nnel ventilation for a tunnel with longitudinal and transverse systems combined[C]. 10th International Symposium on Aerodynamics and Ventilation of Vehicle Tunnels. Boston:BHR Group,2000.
    [53]姜学鹏,胡杰,徐志胜,等.铁路隧道火灾烟气逆流的计算模型[J].中南大学学报(自然科学版),2011,42(9):2837-2842.
    [54]李冬.特长水下铁路隧道火灾蔓延规律的模型试验研究[D].长沙:中南大学,2010.
    [55]李洪.特长铁路隧道火灾烟气蔓延特性及危害性研究[D].长沙:中南大学,2010.
    [56]徐志胜,李冬,姜学鹏,等.纵向通风隧道内火灾温度场分布规律研究[J].中国安全科学学报,2010,20(3):51-56.
    [57]赵红莉,徐志胜,姜学鹏,等.铁路隧道火灾温度分布和烟气蔓延的模型试验与数值模拟分析[C].沈阳:2010(沈阳)国际安全科学与技术学术研讨会,2010.
    [58]赵望达,李洪,徐志胜,等.铁路隧道火灾中烟气逆流层长度的研究[J].防灾减灾工程学报,2010,30(3):246-251.
    [59]姜学鹏,张阳树,徐志胜,等.不同集中排烟量对隧道火灾烟气控制效果的影响[J].科技导报,2012,30(15):40-44.
    [60]刘琪,姜学鹏,赵红莉,等.基于多指标约束的隧道集中排烟量设计模型[J].安全与环境学报,2012,12(1):191-195.
    [61]潘一平,徐志胜,王闪,等.公路隧道集中排烟道排烟阀结构设计参数研究[J].地下空间与工程学报,2012,8(2):408-414.
    [62]彭锦志,徐志胜,倪天晓,等.公路隧道集中排烟系统流速分布规律数值模拟研究[J].防灾减灾工程学报,2011,31(4):415-422.
    [63]吴小华,李耀庄,易亮,等.隧道集中排烟模式下火灾数值模拟研究[J].安全与环境学报,2010,10(6):145-149.
    [64]徐志胜,于年灏,张新,等.集中排烟公路隧道入口段火灾下诱导风速研究[J].灾害学,2012,27(3):97-101.
    [65]赵红莉,徐志胜,彭锦志,等.纵向排烟与集中排烟下烟气控制效果的对比研究[J].安全与环境学报,2012,12(1):196-201.
    [66]李开源,霍然,刘洋.隧道火灾纵向通风下羽流触顶区温度变化研究[J].安全与环境学报,2006,6(3):38-41.
    [67]彭伟,霍然,胡隆华,等.隧道内纵向风速对火源上方烟气温度影响的试验[J].中国科学技术大学学报,2006,36(10):1063-1068.
    [68]曹智明.双洞长大公路隧道火灾模式下的通风组织研究[D].成都:西南交通大学,2003.
    [69]闫治国.长大公路隧道火灾研究[D].成都:西南交通大学,2002.
    [70]闫治国,杨其新,王明年,等.火灾工况下公路隧道竖井通风模式试验研究[J].土木工程学报,2006,39(11):101-106.
    [71]闫治国,杨其新,朱合华.秦岭特长公路隧道火灾试验研究[J].土木工程学报,2005,38(11):96-101.
    [72]闫治国,朱合华,彭芳乐.隧道火灾场景设计及衬砌结构防火研究[J].地下空间与工程学报,2006,2(8):1320-1325.
    [73]杨其新,王明年,曹智明.长大双洞公路隧道火灾模式下横通道风流研究[J].地下空间,2004,24(2):220-223.
    [74]赵秋林,薛新功,刘培硕.秦岭终南山特长公路隧道的规划与设计[J].世界隧道,2000(4):1-7.
    [75]田沛哲.二郎山半横向通风公路隧道的火灾控制研究[D].北京:北京工业大学,2002.
    [76]姜学鹏,张阳树,徐志胜,等.不同集中排烟量对隧道火灾烟气控制效果的影响[J].科技导报,2012,30(15):40-44.
    [77]刘琪,姜学鹏,赵红莉,等.基于多指标约束的隧道集中排烟量设计模型[J].安全与环境学报,2012,12(1):191-195.
    [78]潘一平,徐志胜,王闪,等.公路隧道集中排烟道排烟阀结构设计参数研究[J].地下空间与工程学报,2012,8(2):408-414.
    [79]徐志胜,于年灏,张新,等.集中排烟公路隧道入口段火灾下诱导风速研究[J].灾害学,2012,27(3):97-101.
    [80]李元洲,易亮,霍然,等.大空间内机械排烟效果的实验研究[J].自然灾害学报,2004,13(4):151-155.
    [81]冯炼,张发勇.具有横通道的双洞公路隧道火灾数值模拟研究[J].地下空间与工程学报,2007,3(2):329-332.
    [82]张发勇,冯炼.终南山特长公路隧道火灾通风数值模拟分析[J].地下空间,2004,24(4):506-509.
    [83]徐琳,张旭.水平隧道火灾通风纵向控制风速的合理确定[J].中国公路学报,2007,20(2):92-96.
    [84]徐琳,张旭.超大断面水平隧道纵向通风临界风速CFD分析[J].地下空间与工程学报,2007,3(1):124-127.
    [85]HU Y A, SUI J X, YANG L, et al. Mine Ventilation Network Nonlinear Mode ling and Controller Design[J]. Journal of China University of Mining & Technology, 2010,39(4):582-590.
    [86]Huang C. Mine ventilation network optimization using nonlinear programming te chniques[D]. West Virginia:West Virginia University,1993.
    [87]Huang C, Wang Y J. Mine-ventilation network optimization using the generalize d reduced gradient method[C]. Proceedings of the 6th US Mine Ventilation Symposi um. Salt Lake City:University of Utah,1993:153-161.
    [88]Sui J X, Yang L, Hu Y A, et al. Improved Harmony Search for Optimization of Mine Ventilation Network[J]. Computer Measurement and Control,2010,18(7):161 5-1620.
    [89]Li J, Chen K Y, Lin B Q. Genetic Algorithm for the Optimization of mine ve ntilation network[J]. Journal of China University of Mining and Technology,2007,3 6(6):789-793.
    [90]Sui J, Yang L, Zhu Z, et al. Mine Ventilation Optimization Analysis and Airflo w Control Based on Harmony Annealing Search[J]. Journal of Computers,2011,6(6): 1270-1277.
    [91]Ueng T H, Wang Y J. Analysis of mine ventilation networks using nonlinear p rogramming techniques[J]. Geotechnical and Geological Engineering,1984,2(3):245-2 52.
    [92]Wu X, Topuz E. Analysis of mine ventilation systems using operations research methods[J]. International Transactions in Operational Research,1998,5(4):245-254.
    [93]Xie X P, Feng C G, Wang H L. Analysis of Mine Ventilation Network Using Genetic Algorithm[J]. Journal of Beijing Institute of Technology,1999,8(2):144-149.
    [94]Zhou L. Improvement of the Mine Fire Simulation Program MFIRE[D]. West V irginia:West Virginia University,2009.
    [95]Zhou L, Luo Y. Improvement and upgrade of mine fire simulation program MF IRE[J]. Journal of Coal Science and Engineering (China),2011,17(3):275-280.
    [96]Zhou L, Smith A C. Improvement of a mine fire simulation program-incorpora tion of smoke rollback into MFIRE 3.0[J]. Journal of Fire Sciences,2012,30(1):29-3 9.
    [97]Greuer R E. Modeling the movement of smoke and the effect of ventilation sys tems in mine shaft fires[J]. Fire Safety Journal,1985,9(1):81-87.
    [98]Zhou L, Smith A C. Improvement of a mine fire simulation program-incorpora tion of smoke rollback into MFIRE 3.0[J]. Journal of Fire Sciences,2012,30(1):29-3 9.
    [99]仇玉良.公路隧道复杂通风网络分析技术研究[D].西安:长安大学,2005.
    [100]胡金平.多竖井公路隧道通风网络理论及其应用[D].西安:长安大学,2004.
    [101]章玉伟.公路隧道纵向通风系统火灾工况数值模拟研究[D].西安:长安大学,2006.
    [102]张坚.特长公路隧道纵向通风风机工况模拟及控制[D].西安:长安大学,200 6.
    [103]王立新.公路隧道网络通风可视化程序的研编及其应用[D].西安:长安大学,2008.
    [104]宁军.港珠澳大桥海底隧道半横向通风网络优化研究[D].西安:长安大学,2010.
    [105]邵泮凡.节点法网络通风计算程序研究[D].西安:长安大学,2010.
    [106]王磊,郭洋洋.特长公路隧道火灾工况网络通风技术研究[J].筑路机械与施工机械化,2012,29(4):76-78.
    [107]周仁强.长大公路隧道火灾模式下通风及控制技术研究[D].成都:西南交通大学,2006.
    [108]于丽.终南山特长公路隧道火灾模式下通风设计和控制技术研究[D].成都:西南交通大学,2008.
    [109]程小虎.公路隧道火灾一维瞬态数值模拟研究[D].成都:西南交通大学,2007.
    [110]赵海东.乌鞘岭隧道辅助坑道对运营通风的影响及特长隧道定点防灾研究[D].成都:西南交通大学,2009.
    [111]杨洪.单洞双向行车公路隧道运营及救灾通风技术研究[D].成都:西南交通大学,2011.
    [112]王明年,杨其新,曾艳华,等.秦岭终南山特长公路隧道网络通风研究[J].公路交通科技,2002,19(4):65-68.
    [113]曾艳华,何川.斜井送排式通风隧道的火灾救援通风研究[J].防灾减灾工程学报,2009,29(2):219-223.
    [114]张娜.鹧鸪山公路隧道通风系统及火灾烟气控制研究[D].北京:北京工业大学,2005.
    [115]许昊.基于贝叶斯网络的上市公司财务困境预测研究[D].长沙:湖南大学,2011.
    [116]朱慧明,许昊,郝立亚,等.基于贝叶斯网络的上市公司财务困境预测研究[J].统计与决策,2011(20):4-8.
    [117]Pearl J. Fusion, propagation, and structuring in belief networks[J]. Artificial intelligence,1986,29(3):241-288.
    [118]Pearl J. Probabilistic reasoning in intelligent systems:networks of plausible inference[M]. California:Morgan Kaufmann,1988.
    [119]Kannan P R. Bayesian networks:Application in safety instrumentation and r isk reduction[J]. ISA TRANSACTIONS,2007,46(2):255-259.
    [120]de Campos L M, Fernandez-Luna J M, Huete J F, et al. Combining conten t-based and collaborative recommendations:A hybrid approach based on Bayesian n etworks[J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING,2010, 51(7):785-799.
    [121]Lazkano E, Sierra B, Astigarraga A, et al. On the use of Bayesian Network s to develop behaviours for mobile robots[J]. ROBOTICS AND AUTONOMOUS S YSTEMS,2007,55(3):253-265.
    [122]English S B, Shih S C, Ramoni M F, et al. Use of Bayesian networks to probabilistically model and improve the likelihood of validation of microarray findin gs by RT-PCR[J]. JOURNAL OF BIOMEDICAL INFORMATICS,2009,42(2):287-2 95.
    [123]Dlamini W M. A data mining approach to predictive vegetation mapping us ing probabilistic graphical models[J]. ECOLOGICAL INFORMATICS,2011,6(2):111-124.
    [124]Eckel C C, El-Gamal M A, Wilson R K. Risk loving after the storm:A B ayesian-Network study of Hurricane Katrina evacuees[J]. JOURNAL OF ECONOMI C BEHAVIOR & ORGANIZATION,2009,69(2):110-124.
    [125]Hager D, Andersen L B. A knowledge based approach to loss severity asse ssment in financial institutions using Bayesian networks and loss determinants[J]. E UROPEAN JOURNAL OF OPERATIONAL RESEARCH,2010,207(3):1635-1644.
    [126]Ko B, Cheong K, Nam J. Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks[J]. Fire Safety Journal,2010, 45(4):262-270.
    [127]Cheng H, Hadjisophocleous G V. The modeling of fire spread in buildings by Bayesian network[J]. FIRE SAFETY JOURNAL,2009,44(6):901-908.
    [128]Dlamini W M. A Bayesian belief network analysis of factors influencing wi ldfire occurrence in Swaziland[J]. Environmental Modelling & Software,2010,2 5(2):199-208.
    [129]Dlamini W. Application of Bayesian networks for fire risk mapping using GIS and remote sensing data[J]. GeoJournal,2011,76(3):283.
    [130]Hanea D M, Ale B J M. Estimating the Statistical Distribution of Human Damage Produced by a Fire in a Building Using Bayesian Belief Nets[J]. ASME C onference Proceedings,2005,2005(42304):49-55.
    [131]Hanea D, Ale B. Risk of human fatality in building fires:A decision tool using Bayesian networks[J]. Fire Safety Journal,2009,44(5):704-710.
    [132]Carvel R O, Beard A N, Jowitt P W. The influence of longitudinal ventilat ion systems on fires in tunnels[J]. Tunnelling and Underground Space Technology, 2001,16(1):3-21.
    [133]Carvel R O, Beard A N, Jowitt P W, et al. Variation of heat release rate with forced longitudinal ventilation for vehicle fires in tunnels [J]. Fire Safety Journa 1,2001,36(6):569-596.
    [134]Carvel R, Beard A, Jowitt P. Fire Spread Between Vehicles in Tunnels:Eff ects of Tunnel Size, Longitudinal Ventilation and Vehicle Spacing[J]. Fire Technolo gy,2005,41 (4):271-304.
    [135]Carvel R O, Beard A N, Jowitt P W, et al. The Influence of Tunnel Geom etry and Ventilation on the Heat Release Rate of a Fire[J]. Fire Technology,2004,4 0(1):5-26.
    [136]Lu S, Wu D, Lu S, et al. A Bayesian network model for the Asian Games fire risk assessment[C] 2011 International Conference on Information Systems for Crisis Response and Management (ISCRAM). IEEE,2011:350-355.
    [137]Wang Y F, Xie M, Ng K M, et al. Probability analysis of offshore fire by incorporating human and organizational factor[J]. Ocean Engineering,2011,38(17-1 8):2042-2055.
    [138]Biedermann A, Taroni F, Delemont O, et al. The evaluation of evidence in the forensic investigation of fire incidents (Part I):an approach using Bayesian net works[J]. Forensic Science International,2005,147(1):49-57.
    [139]Biedermann A, Taroni F, Delemont O, et al. The evaluation of evidence in the forensic investigation of fire incidents. Part II. Practical examples of the use of Bayesian networks[J]. Forensic Science International,2005,147(1):59-69.
    [140]Ballari D, Wachowicz M, Bregt A K, et al. A mobility constraint model to infer sensor behaviour in forest fire risk monitoring [J]. Computers, Environment an d Urban Systems,2012,36(1):81-95.
    [141]Ko B C, Hwang H J, Lee I G, et al. Fire Surveillance System Using an O mni-directional Camera for Remote Monitoring[C]. IEEE 8th International Conferenc e on Computer and Information Technology Workshops. IEEE,2008:427-432.
    [142]Chen J, Fu J Q. Fire Alarm System Based on Multi-Sensor Bayes Network [J]. Procedia Engineering,2012,29:2551-2555.
    [143]宋静波.政府决策的风险管理研究[D].重庆:重庆大学,2006.
    [144]周建方,唐椿炎,许智勇.事件树、故障树、决策树与贝叶斯网络[J].河海大学学报(自然科学版),2009,37(3):351-355.
    [145]徐志胜.安全系统工程[M].北京:机械工业出版社,2007.
    [146]Erik Magnusson S, Frantzich H, Harada K. Fire safety design based on calc ulations:Uncertainty analysis and safety verification[J]. Fire Safety Journal,1996,27 (4):305-334.
    [147]Frantzich H. Risk analysis and fire safety engineering [J]. Fire Safety Journal, 1998,31(4):313-329.
    [148]Arendt J S. Using quantitative risk assessment in the chemical process indu stry[J]. Reliability Engineering & System Safety,1990,29(1):133-149.
    [149]李恕和,王义章.矿井通风网络图论[M].北京:煤炭工业出版社,1984.
    [150]卢开澄,卢华明.图论及其应用[M].北京:清华大学出版社有限公司,1995.
    [151]赵梓成.扇风机特性曲线的数学处理[J].云南冶金,1986,(2):13-19.
    [152]交通部,重庆公路科学研究所,中华人民共和国交通部.公路隧道通风照明设计规范[M].北京:人民交通出版社,2000.
    [153]刘运洪平松良雄着.通风学[M].北京:冶金工业出版社,1981.
    [154]张兴凯.地下工程火灾原理及应用[M].北京:首都经济贸易大学出版社,1997.
    [155]Kunsch J P. Critical velocity and range of a fire-gas plume in a ventilated tunnel[J]. Atmospheric Environment,1998,33(1):13-24.
    [156]Kunsch J P. Simple model for control of fire gases in a ventilated tunnel[J]. Fire Safety Journal,2002,37(1):67-81.
    [157]戴国平,田沛哲,夏永旭.二郎山公路隧道火灾通风对策[J].长安大学学报(自然科学版),2002,22(6):42-45.
    [158]王惠宾,矿业工程.矿井通风网络理论与算法[M].徐州:中国矿业大学出版社,1996.
    [159]Hu L H, Huo R, Peng W, et al. On the maximum smoke temperature unde r the ceiling in tunnel fires[J]. Tunnelling and underground space technology,2006,2 l(6):650-655.
    [160]Wen J X, Kang K, Donchev T, et al. Validation of FDS for the prediction of medium-scale pool fires[J]. Fire safety journal,2007,42(2):127-138.
    [161]Smardz P. Validation of Fire Dynamics Simulator (FDS) for forced and nat ural convection flows[D]. Londonderry:University of Ulster,2006.
    [162]潘一平,赵红莉,吴德兴,等.隧道火灾集中排烟模式下的排烟效率研究[J].安全与环境学报,2012,12(2):191-196.
    [163]Lin C J, Chuah Y K. A study on long tunnel smoke extraction strategies b y numerical simulation[J]. Tunnelling and underground space technology,2008,23(5): 522-530.
    [164]张会冰.不同壁面边界条件对隧道火灾模拟结果的影响[D].成都:西南交通大学,2007.
    [165]华绍曾.实用流体阻力手册[M].北京:国防工业出版社,1985.
    [166]赵红莉,徐志胜,彭锦志,等.纵向排烟与集中排烟下烟气控制效果的对比研究[J].安全与环境学报,2012,12(1):196-201.
    [167]Quintiere J G. Scaling applications in fire research[J]. Fire Safety Journal,1 989,15(1):3-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700