用户名: 密码: 验证码:
不同煤阶煤的吸附、扩散及渗流特征实验和模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为对高、中、低煤阶的不同煤样进行实验和数值模拟研究,分别在沁水盆地晋城矿区和长治矿区,以及新疆准噶尔盆地铁厂沟煤矿进行采样。重点研究不同煤阶煤的吸附、扩散和渗流特征及变化规律,以及在ECBM过程中渗透率的动态变化和预测。
     本次研究共使用四种气体,分别为:H_e,N_2,CH_4和CO_2,对于每种气体,测试条件为三到四个不同孔隙压力(一般为1MPa,2.5MPa,4MPa和6MPa)和五个不同有效应力(1MPa,2MPa,3MPa,4MPa和5MPa)及三个不同温度(35℃,40℃和45℃)。测定煤样的吸附量并绘制等温吸附曲线,测定扩散率随时间的变化并绘制其变化曲线,测定其渗透率并绘制渗透率变化曲线,同时进行膨胀量计算和压汞及低温液氮实验,分析实验现象与煤岩特征及孔径分布的定性或定量关系。
     对三组煤样的吸附性能研究发现,同一煤样对不同气体的吸附能力不同。不同煤阶的煤样对同一气体的吸附能力也不同,基本上呈现随煤阶的增加吸附能力也相应增加的趋势。通过扩散实验和压汞及低温液氮实验研究发现,高煤阶煤以微孔为主,扩散和吸附所需的平衡时间长。中煤阶煤以中孔为主,而低煤阶煤样以中孔为主,也含有部分大孔。数值模拟的结果显示:本次实验所研究的煤样,均可使用双孔模型进行模拟研究。
     对渗透率的实验研究发现,有效应力和孔隙压力对渗透率有重要的影响,使用的测试气体的类型对于渗透率也有重要影响。割理的压缩系数与渗透率数值关系密切,通过对其研究发现,割理的压缩系数与有效应力、孔隙压力和测试气体的类型有关。随着孔隙压力的增加,割理的压缩系数先降低然后又缓慢的增加。通过膨胀量计算和绘制动态渗透率预测曲线图发现,在ECBM过程中,渗透率随CO_2的摩尔分数的变化,呈现一定的变化规律:先急剧降低,后缓慢的降低,在保持某一固定的数值后,再缓慢的升高。动态渗透率预测曲线对于注气提高煤层气的采收率的过程有重要的指导意义。
Three typical different-ranked Chinese coal samples, JCC-1, CZ-1and TCG-1takenfrom Jinchen area,Changzhi area of Qinshui Basin and Junggar Basin of Xinjiang area,respectively, were used to study the adsorption, diffusivity and permeability and theirchanging laws. Moreover, the dynamic permeability change and the prediction ofpermeability during ECBM process were also studied.
     In this study, four types of gases, H_e,N_2,CH_4and CO_2, were used to do theexperiment. For each type of gas, the adsorption amount, diffusivity and permeability weremeasured under the condition of three or four different pore pressure steps(Generally,1MPa,2.5MPa,4MPa and6MPa)and five different effective stres(s1MPa,2MPa,3MPa,4MPa and5MPa)and three different temperatures(35℃,40℃and45℃). The adsorptionamount was measured and the adsorption isothermals were obtained. The diffusivity andthe changing curves with time were drawn; and the permeability was tested and its relativecurves were also plotted in this study. Meanwhile, by means of swelling calculation and theexperiment of mercury injection and low temperature liquid nitrogen adsorption experiment,the analysis about the experiment phenomenon and its relationship with coal rank and porestructure distribution was performed.
     Through studying the adsorption characteristics, the following conclusions can bemade: for the same coal sample, the adsorptive capacity for different gas is different.Meanwhile, for the same gas, the adsorptive capacity for different ranked coal is alsodifferent. The capacity increases with the increasing of coal rank from low to high.Studying on the diffusivity and using experiment of mercury injection experiment and lowtemperature liquid nitrogen experiment, it is found that micropore makes up the majority ofthe pore space for the high rank coal. While for the middle-ranked coal, mesopore is themajority; for the low-ranked coal, mesopore is still the majority but macropore is also animportant part of the structure. According to the modeling result, bidisperse model is bestdiscripbing diffusion for all the three different ranked Chinese coal.
     Studying on the permeability for the three coals found that effective stress and porepressure both have significant effect on permeability. Moreover, the gas type also hasimportant effect on permeability. Permeability and cleat compressibility have very closerelationship. Cleat compressibility is related to effective stress, pore pressure and gas type.Combined with result of swelling calculation and depicting the dynamic permeability prediction curve, it is found that during the ECBM process, permeability presents certainrules with the changing of CO_2molar fraction: it first declines dramatically, then declinesslowly, and then keeps a certain value, finally rises slowly. The dynamic permeabilityprediction curves have significant guidance to the coalbed methane production duringECBM process.
引文
式中,Vi为各组分在相应平衡分压下在煤层中吸附量,m3/t;ai为各组分在煤层中单独吸附时在参考压力Pc下的极限吸附量,m3/t;
    Bhatia, S.K.,1987. Modeling the pore structure of coal. AIChE Journal,33(10):1707-1718.
    Bhatia, S.K., Perlmutter, D.D.,1980. A random-pore model for fluid-solid reactions. I:Isothermal,Kinetic control. AIChE Journal.,26,379.
    Brace, W. F., Walsh, J.B., Frangos, W.T.,1968. Permeability of granite under high pressure.Journal of Geophysical Research73(6),2226-2236.
    Busch, A., Gensterblum, Y., Krooss B.M., Littke, R.,2004. Methane and carbon dioxideadsorption-diffusion experiments on coal: upscaling and modeling. International Journal of CoalGeology,60(2004):151-168.
    Bustin R M, Clarkson C R.1999. Geological controls on coalbed methane reservoir capacity andgas content. Int. J. of Coal Geology.38(1):3-26
    Charriere, D., Pokryszka, Z., Behra, P.,2010. Effect of pressure and temperature on diffusion ofCO2and CH4into coal from the Lorraine basin (France). International Journal of Geology,81:373-380.
    Chen, Z., Pan, Z., Liu, J., Connell, L.D., Elsworth, D.,2011. Effect of the effective stresscoefficient and sorption-induced strain on the evolution of coal permeability: experimental observations.International Journal of Greenhouse Gas Control5,1284-1293.
    Clarkson, C.R., Bustin, R.M.,1996. Variation in micropore capacity and size distribution withcomposition in bituminous coal of the Western Canadian sedimentary Basin. Fuel,75:1483-1489.
    Clarkson, C.R., Bustin, R.M.,1999b. The effect of pore structure and gas pressure upon thetransport properties of coal: a laboratory and modeling study:2. Adsorption rate modeling. Fuel78,1345-1362.
    Connell, L.D, Lu, M, Pan, Z.,2010. An analytical coal permeability model for tri-axial strain andstress conditions. International Journal of Coal Geology84(3),103-114.
    Crank, J.,1975. The mathematics of diffusion,2nd ed. Oxford Univ. Press, London,1975.
    Cui, X,J., Bustin, R.M.,2005. Volumetric strain associated with methane desorption and itsimpact on coalbed gas production from deep coal seams. AAPG Bulletin89(9),1181-1202.
    Cui, X., Bustin, M.C., Dipple, G.,2004. Selective transport of CO2, CH4and N2in coals:insights from modeling of experimental gas adsorption data. Fuel,83,293-303.
    Dabbous, M.K. Reznik, A.A., Table, J.J., Fulton, P.F.,1974. The permeability of coal to gas andwater. SPE J Dec,563-72.
    DeGance, A.E., Morgan, W.D., Morgan, D., Yee, D.,1993. High-pressure adsorption of methane,nitrogen and carbon-dioxide on coal substrates. Fluid Phase Equilib,82:215-225.
    Durucan, S. and Edwards, J.S.,1986. The effects of stress and fracturing on permeability of coal.Mining Science and Technology3(3),205-216.
    Elsworth, D.,1989. Thermal permeability enhancement of blocky rocks: One-dimensional flows.International Journal of Rock Mechanics and Mining Sciences26(3-4),329-339.
    Fitzgerald, J.E., Pan, Z., Sudibandriyo, M., Robinson, R.L., Gasem, K.A.M., Reeves, S.,2005.Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal. Fuel,84(18):2351-2363.
    Fujioka, M., Yamaguchi, S. and Nako, M.,2010. CO2-ECBM field tests in the Ishikari coal basinof Japan. International Journal of Coal Geology82(3-4),287-298.
    Gan H, Nandi S P, Walker P L,1972. Nature of porosity in American coals. Fuel,51:272-277
    Gan, H., Nandi, S.P., Walker. Jr. P.L.,1972. Nature of the porosity in American coals.Fuel,51:272-277.
    Gavalas, G.R.,1980. A random capillary model with application to char gasification at chemicallycontrolled rates. AIChE Journal.,26,577.
    Gu, F., Chalaturnyk, R.,2005. Analysis of coalbed methane production by reservoir andgeomechanical coupling simulation. Journal of Canadian Petroleum Technology44(10),23-32.
    H.-S.Law, D.(2002)."Numerical Simulator Comparison Study for Enhanced Coalbed MethaneRecovery Proceses, Part I: Pure Carbon Dioxide Injection." SPE75669:1-7.
    Han, F., Busch, A., Krooss, B,M., Liu, Z., Van Wageningen, N., Yang, J.,2010. Experimenal studyon fluid transport processes in the cleat and matrix systems of coal. Energy&Fuels24(12),6653-6661.
    Hildenbrand, A., Krooss, B.M., Busch, A., Gaschnitz, R,2006. Evolution of methane sorptioncapacity of coal seams as a function of burial history—a case study from the Campine Basin, NEBelgium. International Journal of Coal Geology.66:179–203.
    HU Guoyi, LI Jin, MA Chenghua.,etc. Characteristics and implications of the carbon isothermalfractionation of desorbed coalbed methane in Qinshui coalbed methane field,China. Earth ScienceFrontiers,2007,14(6)
    King, G.R., Ertekin, T., Schwerer, F.C.,1986. Numerical simulation of the transient behavior ofcoal-seam degasification wells. SPE Formation Evaluation1,165-183.
    Laubach S.E., Marrett, R.A., Olson J.E., Scott, A.R.,1998. Characteristics and origins of coalcleat, A review. International Journal of Coal Geology35(1-4),175-207.
    Laxminarayana, C., Crosdale, P.J.,1999. Role of coal type and rank on methane sortptioncharacteristics of Bowen Basin, Australia coals. International Journal of Coal Geology,40:309-325.
    Levy, J., Day, S.J., Killingley, J.S.,1997. Methane capacity of Bowen Basin coals related to coalproperties. Fuel,74:1-7.
    Li, D., Liu, D., Weniger, P., Gensterblum, Y., Busch, A., Krooss, B.M.,2010. High-pressuresorption isotherms and sorption kinetics of CH4and CO2on coals. Fuel,89(3):569-580.
    Li, D., Liu, Q., Weniger, P., Gensterblum, Y., Busch, A., Krooss, B.M.,2010. High-pressuresorption isotherms and sorption kinetics of CH4and CO2on coals. Fuel89(3),569-580.
    Li, D., Liu, Q., Weniger, P., Gensterblum, Y., Busch, A., Krooss, B.M.,2010. High-pressuresorption isotherms and sorption kinetics of CH4and CO2on coals. Fuel,89:569-580.
    Liu, C., Zhu, J., Che, C., Yang, H., Fan, M.,2009. Methodologies and results of the latestassessment of coalbed methane resources. Natural Gas Industry29(11),129-133.
    Liu, D., Wu,X, Zhao, Z.,2007. The potential and prospect areas of coal bed methane gas resourcein Junggar Basin. Xinjiang Petroleum Geology28(3),272-275.
    Liu, H.-H., Rutqvist, J.,2010. A new coal-permeability model: internal wwelling stress andfracture–matrix interaction. Transport in Porous Media82(1),157-171.
    Luo, D., Chu, W., Wu, X., Li, W.,2009. Analysis on economic benefits of coalbed methanedrilling technologies. Petroleum Exploration and Development36(3),403-407.
    Marco Mazzotti, R. P., Giuseppe Storti (2008)."Enhanced coalbed methane recovery." J.ofSupercritical Fluids47(2009):619-627.
    McKee, C. R., Bumb,.C. Koenig, R.A.,1988. Stress-dependent permeability and porosity of coaland other geologic formations. SPE Formation Evaluation, March,81-91.
    MLR (Ministry of Land and Resources Oil and Gas Resources Strategic Research Center),2009.International Information Manual of Oil and Gas Resources Beijing, Geological Publishing House.
    Palmer, I.,2010. Coalbed methane completions: A world view. International Journal of CoalGeology82(1),184-195.
    Palmer, I., Mansoori, J.,1998. How permeability depends on stress and pore pressure in coalbed:a new model. SPE Reservoir Evaluation&Engineering1(6),539-544.
    Palmer, I., Mansoori., J.,1996. How permeability depends on stress and pore pressure in coalbeds:a new model. Annual Technical Conference and Exhibition Denver, Colorado, SPE36737.
    Palmer, I.D.,2009. Permeability changes in coal, Analytical modeling. International Journal ofCoal Geology77(1-2),119-126.
    Pan, Z, Connell, L.D.,2010. Laboratory characterisation of coal reservoir permeability forprimary and enhanced coalbed methane recovery. International Journal of Coal Geology,82:252-261.
    Pan, Z., Connell, L,D.,2007. A theoretical model for gas adsorption-induced coal swelling.International Journal of Coal Geology69(4),243-252.
    Pan, Z., Connell, L.D., Camilleri, M.,2010. Laboratory characterisation of coal reservoirpermeability for primary and enhanced coalbed methane recovery. International Journal of Coal Geology82(3-4),252-261.
    Pan, Z., Connell, L.D., Camilleri, M., Connelly, L.,2010. Effects of matrix moisture on gasdiffusion and flow in coal. Fuel,89(2010):3207-3217.
    Pekot, L.J., Reeves, S.R.,2003. Modeling the effects of matrix shrinkage and differential swellingon coalbed methane recovery and carbon sequestration. Proceedings of the2003International CoalbedMethane Symposium. University of Alabama,0328.
    Petersen, E.E.,1957. Reaction of porous solids. AIChE Journal.,3,443.
    Pini, R., Ottiger, S., Burlini, L., Storti, G., Mazzotti, M.,2009. Role of adsorption and swelling onthe dynamics of gas injection in coal. Journal of Geophysical Research-solid Earth114, B04203.
    Pomeroy, C.D., Robinson, D.J.,1967. The effect of applied stresses on the permeability of amiddle rank coal to water. International Journal of Rock Mechanics and Mining Science4,329-343.
    Puri, R., Seidle, J.R.,1991. Measurement of stress dependent permeability in coal and itsinfluence on coalbed methane production. Coalbed Methane Symposium, Tuscaloosa May,13-16.
    Reyes, S., Jensen, K.F.,1985. Estimation of effective transport coefficients in porous solids basedon percolation concepts. Chem. Eng. Sci.,40,1723.
    Rose, P.E, Foh, S.E.,1984. Liquid permeability of coal as function of net stress. Paper SPE12856Unconventional Gas Recovery Symposium, Pittsburgh, May13-15.
    Ruckenstein E, Vaidyanathan AS, Youngquist GR. Sorption by solids with bidisperse porestructures. Chem Eng Sci1971;26:1305–18.
    Ruckenstein, E., Vaidyanathan, A.S., Youngquist, G.R.,1971. Sorption by solids with bidispersepore structures. Chem. Eng. Sci.26,1305-1318.
    Rushing, J. A.,2008. Applicability of the arps rate-time relationships for evaluating declinebehaviour and ultimate gas recovery of coalbed methane wells. SPE Gas Technology Symposium,1-18.
    S.Reeves (2001)."Geologic Sequestrtion of CO2in Deep, Unmineable Coalbeds." An IntegratedResearch and Commercial-Scale Field Demonstration Project.
    Seidel, J. P., Jeansonne, M.W., Erickson, D.J.,1992. Application of matchstick geometry to stressdependent permeability in coals. Society of Petroleum Engineers SPE Rocky Mountain RegionalMeeting.
    Shi, J-Q., Durucan, S.,2004. Drawdown induced changes in permeability of coalbeds: a newinterpretation of the reservoir response to primary recovery. Transport in Porous Media56(3),1-16.
    Shi, J-Q., Durucan, S.,2005. A model for changes in coalbed permeability during primary andenhanced methane recovery. SPE Reservoir Evaluation&Engineering, August,291-299. Paper87230.
    Shi, J-Q., Durucan, S.,2010. Exponential growth in San Juan Basin Fruitland coalbedpermeability with reservoir drawdown, model match and new insights. SPE Reservoir Evaluation andEngineering,914-925.
    Shimada, S., Li, H.Y., Oshima,Y., Adachi, K.,2005. Displacement behavior of CH4adsorbed oncoals by injecting pure CO2, N2, and CO2-N2mixture, Environ. Geol,49(1):44-52.
    Smith, D.M., Williams, F.L.,1984. Diffusion models for gas production from coals, application tomethane content determination. Fuel63,251-255.
    Somerton, W. H., Soylemezoglu, I.M., Dudley, R.C.,1975. Effect of stress on permeability of coal.International Journal of Rock Mechanics and Mining Sciences and Geomechanics12(5-6),129-145.
    Szekely, J., and Evans, J.W.,1970. A structure model for gas-solid reactions with a movingboundary. Chem. Eng.Sci.,25,1091.
    Tao, X., Wang, J., Hu, G.,Yang, C.,Ni, Y.,2009. Current situation and prospect for exploration anddevelopment of coalbed methane in Xinjiang. Natural Gas Geoscience20(03),454-459.
    Thimons, E.D., Kissell, F.N.,1973. Diffusion of methane through coal. Fuel,52(10):274-280.
    Unsworth, J.F., Fowler, C.S., Jones, L.F.,1989.Maceral effects on pore structure. Fuel,68:18-26.
    Van Bergen, F., Pagnier, H., Krzystolik, P.,2006. Field experiment of enhanced coalbedmethane-CO2in the upper Silesian basin of Poland. Environmental Geosciences13(3),201-224.
    WhiteCM,Smith DH,JonesKL, et a.l.,2005.Sequestration of carbon dioxide in coalwith enhancedcoalbedmethane recovery: a review energy fuels.Energy Fuels,19(3):659-724;
    Wong, S., Law, D., Deng, X., Robinson, J., Katdatz, B., William, D.G., Ye, J., Feng, S., Fan, Z.,2006. Enhanced coalbed methane and CO2storage in anthracitic coals-micro-pilot test at south Qinshui,Shanxi, China. International Journal of Greenhouse Gas Control1,215-222.
    Yao, Y., Liu, D., Yao, C., Tang, D., Tang, S., Huang, W.,2009. Non-destructive characterizationof coal samples from China using microfocus X-ray computed tomography. International Journal of CoalGeology80(2),113-123.
    Zhang, Q., Feng, S., Yang X.,2001. Basic reservoir characteristics and development strategy ofcoalbed methane resource in China. Journal of China Coal Society26(3),230-235.
    Zheng, S., Tang, S., Tang, D., Pan, Z., Yang, F.,2010. The characteristics of coal reservoir poresand coal facies in Liulin district, Hedong coal field of China. International Journal of Coal Geology,81:117-127.
    Zheng, Y., Han, B.,2005. Affecting factors and estimating methods of recovery percent of coalbedgas. Natural Gas Industry25(01),149-154.
    陈敬轶,田俊伟,张玉贵,等。晋城成庄煤矿3#煤层含气量控制因素分析。中国煤层气,2007(01);
    陈孟晋,张建博。浅议我国西北低煤阶含煤盆地煤层气的勘探对策。石油勘探与开发,2003(01);
    陈萍,唐修义。低温氮吸附法与煤中微孔隙特征的研究。煤炭学报,2001,26(10):552-555;
    段利江,唐书恒,刘洪林,等。晋城地区煤层甲烷碳同位素特征及成因探讨。煤炭学报,2007(11);
    樊生利。沁水盆地南部煤层气勘探成果与地质分析。天然气工业;2001,21(4):35-38;
    冯少华,李晓峰。新疆地区煤层气勘探开发工作建议。中国煤层气,2008(01);
    傅家谟,刘德韩,盛国英。煤成烃地球化学。北京:科学出版社。1990,243-247;
    傅雪海,秦勇,李贵中。沁水盆地中-南部煤储层渗透率主控因素分析。煤田地质与勘探,2001,16-19;
    郭兰在,王漠。实现新疆矿产资源优势转换战略对策探讨。中国地质矿产经济,2000(02);
    何伟钢,唐书恒,谢晓东。地应力对煤层渗透性的影响。辽宁工程技术大学学报,2000,19(4):353-355;
    胡宝林,杨起,刘大锰,等。新疆地区侏罗系中低变质煤储层吸附特征及煤层气资源前景。现代地质,2002,16(1):77-80;
    黄道成。新疆煤层气开发利用条件和勘查布局浅析。西北煤炭,2007(03);
    冀涛,杨德义。沁水盆地煤层气地质条件评价。煤炭工程,2007,(10):82-85
    李广昌,成国清。潞安-晋城矿区煤层气开发前景分析。江苏煤炭,2001(01);
    李小彦,钟铃文,李瑞明,等。乌鲁木齐河东河西矿区煤层气储层特征。中国煤田地质,2003(05);
    刘得光,吴晓智,赵铮亚,等。准噶尔盆地煤层气资源潜力及勘探选区。新疆石油地质,2007,28(3):272-275
    刘晔,王云。山西沁水盆地煤层气产业发展规划研究。中国煤层气,2008(02);
    马东民。煤层气吸附解机理研究(博士学位论文)。2008,西安:西安科技大学;
    马东民,殷屈娟。影响韩城地区煤层气产出的主要因素。西安科技学院学报,2002,22(2):162-165;
    倪小明,苏现波,魏庆喜等。煤储层渗透率与煤层气垂直井排采曲线有关系。煤炭学报,2009,34(9):1194-1198;
    彭金宁,傅雪海,申建。潘庄煤层气解吸特征研究。天然气地球科学,2005(06);
    曲国娜,滕玉洪。呼和湖凹陷煤层气储量及有利勘探区预测。辽宁工程技术大学学报.2009(z1);
    阮传明,张丽新,周茹,等。新疆主要煤田煤层气赋存和开发特点及勘查建议。西部探矿工程,2010,第2期:144-148;
    孙斌,邵龙义,赵庆波,等。海拉尔盆地煤层气成藏机理及勘探方向。天然气工业,2007(07);
    孙平,刘洪林,巢海燕,等。低煤阶煤层气勘探思路。天然气工业,2008(03);
    谭开俊,张帆,赵应成,等。准噶尔盆地侏罗系煤层气勘探潜力与有利区预测。天然气勘探与开发,2009,32(2):1-3;
    唐书恒。煤储层渗透性影响因素探讨。中国煤田地质,2001,13(1):28-31;
    陶小晚,王俊民,胡国艺,等。新疆煤层气勘探开发现状及展望。天然气地球科学,2009(03);
    王勃,巢海燕,郑贵强。高低煤阶煤层气藏地质特征与控气作用差异性研究。地质学报,2008(01);
    王明寿,汤达祯,魏永佩,等。沁水盆地北端煤层气储层特征及富集机制。石油实验地质。2006,28(5):440-444;
    王晓锋,朱卫平。注CO2提高煤层气采收率技术研究现状。资源与产业,2010,12(6):125-129。
    王屿涛,董蔚凯,曹伟,等。准噶尔盆地的煤层气及其开发前景。2007,石油论坛;
    蔚远江。准噶尔盆地低煤阶煤储层及煤层气成藏初步研究。2002,北京:中国地质大学;
    吴欣松,韩德馨,张金强。华北地区煤层气聚集带评价与优选。天然气工业,2004,24(4):4-8;
    武汉地质学院煤田教研室,1979。煤田地质学(上册)。北京:地质出版社;
    徐进,敬益武。准南煤田白杨河-四工河普查区构造特征分析。中国煤田地质,2001(04);
    杨起,刘大锰,黄文辉,等。西北地区煤层气资源综合评价。2002,中国地质调查局地质调查项目成果报告;
    叶建平。中国煤层气勘探开发进展综述。地质通报,2006,25(9-10):1074-1078;
    叶建平,史保生,张春才。中国煤储层渗透性及其主要影响因素。煤炭学报,1999,24(2):118-122;
    叶建平,武强,王子和。水文地质条件对煤层气赋存的控制作用。煤炭学报,2001,26(5):495-462;
    叶建平,秦勇,林大扬,等。中国煤层气资源。徐州:中国矿业大学出版社。1998,67-103;
    叶欣。中国西北低煤阶煤层成藏地质特征研究。2007,成都:成都理工大学;
    尹准新,谈红梅,坛俊颖。新疆低煤阶煤层气勘探选区评价标准的探讨。中国煤层气,2009(06);
    尹准新。新疆大倾角煤层的煤层气开采方式探讨。中国西部科技,2009(06);
    张慧。煤孔隙的成因类型及其研究。煤炭学报,2001,26(1):40-43;
    张金川,徐波,聂海宽。中国天然气勘探的两个重要领域。天然气工业,2007,27(11):1-6;
    张俊威。煤层气开发在晋城矿区的应用。科技情报开发与经济,2007(32);
    张尚虎。沁水盆地高煤阶煤储层孔隙系统发育特征及模型分析。2004,北京:中国地质大学(北京);
    张遂安。有关煤层气开采过程中煤层气解吸作用类型的探索。中国煤层气,2004(01);

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700