用户名: 密码: 验证码:
干旱及旱后复水对刺槐和侧柏苗木有机渗透调节物质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过盆栽试验研究不同生长阶段干旱及旱后复水对刺槐( Robinia pseudoacacia)和侧柏(Platycladus orientalis)叶片脯氨酸、可溶性糖、可溶性蛋白等有机渗透调节物质和细胞膜相对透性(RCPM)的影响,揭示在不同形式干旱过程中植物的生理特性以及对干旱胁迫的适应性变化。试验在陕西杨凌西北农林科技大学校内人工旱棚内进行,通过称重法进行人工控水。土壤选用陕北安塞县黄绵土,田间持水量为18.75%,试验用苗木均来自杨凌周围。试验以土壤相对含水量(RSWC)(87.84%、70%、52.16%、40%)和胁迫历时(60d、45d、30d、15d)作为影响因素,以土壤相对含水量100%为对照,于2008年4月到10月分三个阶段进行。本研究主要研究结论如下:
     1.在生长初期,随着土壤相对含水量(RSWC)的降低或胁迫历时的延长,刺槐苗木可溶性糖含量逐渐升高,侧柏则先升高后降低。RSWC从100%~70%降低过程中,刺槐苗木可溶性糖含量只增加约4%,而侧柏苗木则出现较大幅度增加,增幅接近50%。RSWC从70%到40%变化过程中,刺槐苗木可溶性糖含量增幅约为10%,侧柏苗木可溶性糖含量则出现下降,降幅达30%。可溶性糖在渗透调节中所发挥的作用具有一定的局限性。旱后复水可使两树种苗木可溶性糖含量均出现一定程度的下降,但受前期土壤水分和胁迫历时的影响。在不同生长阶段,可溶性糖对植物的抗旱性发挥着不同的作用。
     2.生长初期土壤相对含水量(RSWC)高于52.16%时,刺槐和侧柏苗木脯氨酸含量与土壤水分均呈负相关。当RSWC为40%时,刺槐脯氨酸含量显著高于对照。在生长初期不同土壤相对含水量下,刺槐脯氨酸含量呈现:40%>52.16%>70%>87.84%>CK,而侧柏为:52.16%>70%>40%>CK>87.84%。随着干旱胁迫历时的延长,刺槐和侧柏苗木脯氨酸含量均呈先升后降趋势。脯氨酸对树木抗旱性发挥着重要作用,但在严重干旱条件下,脯氨酸的渗透调节又表现出一定的局限性。干旱复水后刺槐苗木脯氨酸含量可以在短时间内恢复到对照水平,而侧柏呈波动降低趋势,复水72h后侧柏各处理间脯氨酸含量仍存在较大差异。不同生长阶段刺槐和侧柏苗木脯氨酸含量表现为:生长初期>生长盛期>生长末期。干旱胁迫初期,适度干旱可以提高刺槐和侧柏苗木的抗旱能力。
     3.生长初期土壤水分对刺槐苗木细胞膜相对透性的影响大于侧柏。胁迫历时15d时,刺槐细胞膜相对透性(RCPM)在40%RSWC处理下最高,比对照高3倍;70%处理最低,比对照高10%。在短历时(15d)胁迫下侧柏RCPM在87.84%处理比对照高50%,70%处理约比对照低10%。土壤水分亏缺和过多都会对树木细胞膜造成一定程度的损伤。随着胁迫历时的延长,两树种细胞膜透性呈现:高-低-高的变化趋势。复水后刺槐苗木细胞膜相对透性快速降低,下降速率与土壤水分呈负相关;而侧柏呈先增大后减小的变化趋势,复水72h后仍维持较高水平。在不同生长阶段,刺槐苗木细胞膜相对透性生长初期最大,而侧柏生长末期最大。
     4.随着胁迫历时的延长,生长初期两树种苗木可溶性蛋白含量呈现先升高后降低的趋势。长历时胁迫(60d)下土壤相对含水量对可溶性蛋白含量的影响较大。复水后刺槐和侧柏苗木可溶性蛋白含量的变化总体呈现:升高-降低-升高的趋势,但侧柏苗木可溶性蛋白的变化趋势比较平缓。在不同生长阶段,可溶性蛋白在树木渗透调节中所发挥的作用与树木种类和生长阶段都有密切关系。
     5.生长初期土壤水分和胁迫历时变化过程中两树种苗木生理特性的变化呈现一种交替互补现象。随着土壤水分的降低,刺槐苗木可溶性蛋白、可溶性糖、脯氨酸和细胞膜相对透性依次升高,而侧柏各生理特性均在土壤相对含水量70%时达到最高。其中脯氨酸含量的变化幅度最大,当RSWC为40%时刺槐脯氨酸含量为对照的8倍,RSWC为70%时侧柏脯氨酸含量为对照2.5倍;胁迫历时15d时刺槐和侧柏脯氨酸含量分别为对照的7倍和3倍。在干旱初期(0-15d),脯氨酸对两树种抗旱性方面起着非常重要的作用。
A simulated drought experiment was conducted in pots to test the physiological response of Robinia pseudoacacia and Platycladus orientalis seedlings to water stress and rewatering in different growing stage. The relative cell membrane permeability (RCMP) and the content of organic osmotic adjustment substances (Proline, soluble sugar, soluble protein) in leaves were measured to explore the physiological characteristic and regulation of adaptability of plant under multiform drought. The experiment was conducted in a rain-free shed in campus of Northwest A&F University in Yangling of Shaanxi province. The soil water content was controlled by weighing the weight of pots. Pots were filled with loessial soil collected in Ansai of Shaanxi. Seedlings were transplanted from the neighborhood. The treatment was set crossways by relative soil water content (RSWC) of soil (87.84%, 70%, 52.16% and 40%) and drought stress duration (60, 45, 30 and 15 days). The RSWC of control treatment was 100%. Experiment was conducted by three stages during April and October. The main result was as follows:
     1. In early growing stage, with the decreasing of RSWC or prolonging of stress duration, soluble sugar of R. pseudoacacia had increasing trend, and that of P .orientalis increased early and decreased later. When RSWC decreased from 100% to 70%, soluble sugar of R. pseudoacacia and P .orientalis had a increasing of 4% and 50% respectively. From 70% to 40% of RSWC, soluble sugar of R. pseudoacacia increased 10%, P .orientalis showed a decreasing of 30%. Soluble sugar had some limitations in osmotic adjustment. After rewatering, soluble sugar of two species declined in a certain extent and affected by RSWC and stress duration of drought. Soluble sugar had different effects on trees in different growing stages.
     2. The Proline of two species and RSWC had a negative correlation when RSWC was over 52.16% in early growing stage. Proline of R. pseudoacacia in 40% RSWC was significantly more than CK. Under different RSWC in early growing stage, the Proline of R. pseudoacacia ranged 40%>52.16%>70%>87.84%>CK, P. orientalis was 52.16%>70%>40%>CK>87.84%. With the prolonging of stress duration, Proline of two species showed increase-decrease trend. Proline had important effects on tree’s drought resistance, but in severe drought, the effects of Proline in osmotic adjustment had limitations. After rewatering, Proline of R. pseudoacacia came back to the CK rapidly. But P. orientalis declined with fluctuation. There were still more differences between each treatment 72h after rewatering. In different growing stage, the average Proline content of two species was early growing stage>fast growing stage>late growing stage. The result showed that moderate stress in initial stages of drought could enhance the resistance of two species to drought.
     3. In early growing stage, RSWC had more effects on R. pseudoacacia than that on P. orientalis. When stress duration was 15d, RCPM of R. pseudoacacia was most and three folds in 40% RSWC more than in CK, lest and 10% in 70% RSWC more than in CK. RCPM of P. orientalis in 87.84% was 50% more than in CK, and in 70% RSWC was 10% less than in CK. Water deficit and overabundance had some damages on cell membrane permeability. With the prolonging of stress duration, RCPM of two species showed high-low-high trend. After rewatering, RCPM of R. pseudoacacia declined rapidly, and the decline velocity had a negative correlation with soil water content. RCPM of P. orientalis had an increase-decrease trend, and standed on a high level 72h after rewatering. In different growing stages, the most of RCPM appeared R. pseudoacacia in early growing stage, P. orientalis in late growing stage.
     4. The soluble protein content of two species at beginning increased and then decreased along with the prolonging of stress duration in early growing stage. The RSWC had more effects on soluble protein in longer stress duration (15d). After rewatering the soluble protein of two species showed increase-decrease-increase trend, and that of P. orientalis fluctuated gently. The effects of soluble protein in osmotic adjustment had Close relationship with tree species and growing stage.
     5. During changing of soil water content and stress duration, the dynamics of physiological characteristics of two species showed a complementary and alternative phenomenon. The soluble protein, soluble sugar, Proline and RCPM of R. pseudoacacia had an ordinal increasing with RSWC’s declining. Moreover, each physiological characteristics of P. orientalis had an apex in 70% RSWC. And Proline was a typical indicator. Proline content of R. pseudoacacia in 40% RSWC was eight times of CK, and that of P. orientalis in 70% RSWC was 250% of CK. When stress duration was 15d, Proline content of two species was 7 and 3 times of CK respectively. Proline had important effects on drought resistance of two species in prophase (0-15d) of drought.
引文
[1]土小宁,胡建忠.黄土高原水蚀风蚀复合区水土保持植被建设存在的问题及其解决对策[J].国际沙棘研究与开发,2007,5(3):25-27.
    [2]丁圣彦,贾海军.农业干旱问题及其对策研究[J].河南大学学报,2001,41(3):20-23.
    [3]李云荫,尚忠林.作物抗旱生理与21世纪农业[A].植物生理学与跨世纪农业[C].北京:科学出版社,1999:19-27.
    [4]刘晓英,罗远培.干旱胁迫对作物生长后效影响的研究现状[J].干旱地区农业研究,2002,20(4):6-10.
    [5]杨帆,苗灵凤,胥晓,等.植物对干旱胁迫的响应研究进展[J].应用与环境生物学报,2007,13(4):586-891.
    [7]陈培元.作物对干旱逆境的适应性和反应[J].山西农业科学.1990,(9):29-32,37.
    [8]邵艳军,山仑.植物耐旱机制研究进展[J].中国生态农业学报,2006,14(4):16-20.
    [9]王洪春.植物生理学专题讲座[M].北京:科学出版社,1987.
    [10]李云萌.植物抗旱生理研究概述[J].生态农业研究,1996,4(1):37-41.
    [11] Petzall Cecily, Castrillo Marisol. Leaf sucrose and starch contents and osmotic adjustment in two tomato cultivars under water deficit[J]. Tropical Agriculture. 2005,82(1-2):59-67.
    [12]武维华.植物生理学[M].科学出版社,2005:440-448.
    [13] Li Rui-Fen, Zhang Jun-Wen, Wei Jian-Hua, et al. Functions and mechanisms of the CBL–CIPK signaling system in plant response to abiotic stress[J]. Progress in Natural Science, 2009,19(6):667-676.
    [14]杨敏生,裴保华,于东梅.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响[J].生态学报,1997,17(4):364-370.
    [15] Hsiao T. C, Acevedo E, Fereres E, et al. Water Stress, Growth, and Osmotic Adjustment[A]. Philosophical Transactions of the Royal Society of London[C], London:1976:479-500.
    [16]王娟,李德全.逆境条件下植物体内渗透调节物质的积累与活性氧代谢[J].植物学通报,2001,18(4):459-465.
    [17]王霞,侯平,尹林克,等.水分胁迫对柽柳植物可溶性物质的影响[J].干旱区研究,1999,16(2):6-11.
    [18]彭志红,彭克勤,胡家金,等.渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报,2002,18(4):80-83.
    [19]李建民,王进鑫,赵广贤.谐变供水条件下元宝枫幼树叶片中SOD活性的变化[J].西北林学院学报,2006,21(6):24-27.
    [20]王进鑫,黄宝龙,王明春,等.不同供水条件下侧柏和刺槐幼树的蒸腾耗水与土壤水分应力订正[J].应用生态学报,2005,16(3):419-425.
    [21] Androniki Bolla, Magda K.P., Dimitrios Voyiatzis, et al. Physiological responses associated to substrate water availability of Rosa‘Eurored’plants grown in soilless greenhouse conditions[J]. Scientia Horticulturae, 2009, 121(1):80-83.
    [22] Pooja Bhatnagar-Mathur, M. Jyostna Devi, Vincent Vadez, et al. Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress[J]. Journal of Plant Physiology, 2009, DOI:10.1016/j.jplph.2009.01.001.
    [23] Sangita Handa, Ray A. Bressan, Avtar K. Handa, et al. Solutes Contributing to Osmotic Adjustment inCultured Plant Cells Adapted to Water Stress[J]. Plant Physiol, 1983, 73(3): 834-843
    [24]杨玉珍,郑银锋,彭方仁.干旱胁迫下香椿苗木脯氨酸累积的动态变化[J].林业科技开发,2007,21(3):32-35.
    [25]马双艳,姜远茂,彭福田,等.干旱胁迫对苹果叶片中甜菜碱和丙二醛及脯氨酸含量的影响[J].落叶果树,2003,(5):1-4.
    [26]马双艳,姜远茂,彭福田,等.干旱胁迫对不同板栗品种叶片渗透调节物质含量及光合的影响[J].干旱地区农业研究,2003,21(3):114-118.
    [27]高爱丽,赵秀梅,秦鑫.水分胁迫下小麦叶片渗透调节与抗旱性的关系[J].西北植物学报,1991,11(1):58-63.
    [28]刘红云,粱宗锁,刘淑明,等.持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响[J].西北林学院学报,2007,22(3):55-59.
    [29]张艳馥,沙伟,徐忠文.干旱胁迫对玉米幼苗生理特性的影响[J].种子(Seed),2007,26(6):38-40.
    [30]李建梅,邓西平.旱后复水条件下转基因甘薯体内脯氨酸含量变化及其抗氧化作用[J].水土保持研究,2007,14(4):53-56.
    [31]田福平,王锁民,郭正刚,等.紫花苜蓿脯氨酸含量和含水量、单株干质量与抗旱性的相关性研究[J].草业科学,2004,21(1):3-6.
    [32] Francisco J.S, María Manzanares, Eusebio F.A, et al. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress[J]. Field Crops Research, 1998, 59(3): 225-235.
    [33]杨鑫光,傅华,牛得草.干旱胁迫下幼苗期霸王的生理响应[J].草叶学报,2007,16(5):107-112.
    [34]吴涛,陈少瑜,彭明俊,等.不同种源膏桐在干旱胁迫下生理指标的变化[J].西北林学院学报,2008,23(2):7-11.
    [35]孙景宽,张文辉,刘新成.干旱胁迫对沙枣和孩儿拳头的生理特性的影响[J].西北植物学报,2008,28(9):1868-1874.
    [36]赵纪东,傅华,吴彩霞.水分胁迫对白刺幼苗生物量和渗透调节物质积累的影响[J].西北植物学报,2006,26(9):1788-1793.
    [37]唐晓敏,王文全,马春英.长期水分胁迫下甘草叶片的抗旱生理响应[J].河北农业大学学报,2008,31(2):16-20.
    [38]董明,苏德荣,刘泽良,等.干旱胁迫对阿诺红鞑靼忍冬生理指标的影响[J].西北林学院学报,2008,23(4):8-13.
    [39]刘涛,李柱,安沙舟,等.干旱胁迫对木地肤幼苗生理生化特性的影响[J].干旱区研究,2008,25(2):231-235.
    [40]毛培利,李丕军,刘华,等.干旱胁迫下刺槐生理适应特性研究[J].新疆农业科学,2008,45(4):704-706.
    [41]孙国荣,张睿,姜丽芬,等.干旱胁迫下白桦(Betula platyphylla)实生苗叶片的水分代谢与部分渗透调节物质的变化[J].植物研究,2001,21(3):413-415.
    [42]韩蕊莲,李丽霞,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报,2003,23(1):23-27.
    [43] Elizabeth A Bray. Plant responses to water deficit[J]. Trends in Plant Science, 1997, 2(2): 48-54.
    [44]贺苏华,尹恒,吴莉英,等.干旱胁迫对4个红檵木品种渗透调节物质含量的影响[J].江苏林业科技,2008,35(4):29-31.
    [45]万东石,李红玉,张立新,等.植物体内干旱信号的传递与基因表达[J].西北植物学报,2003,23(1):151-157.
    [46]王列富,雒红宇,杨玉珍,等.干旱胁迫下不同种源香椿苗可溶性糖的动态变化[J].林业科技开发,2008,22(4):53-56.
    [47]张慎鹏,孙明高,张鹏,等.盐旱交叉胁迫对君迁子渗透调节物质含量的影响[J].西北林学院学报,2008,23(5):18-21.
    [48]彭立新,李德全,束怀瑞.植物在渗透胁迫下的渗透调节作用[J].天津农业科学,2002,8(1):40-43.
    [49]王霞,候平.植物对干旱胁迫的适应机理[J].干旱区研究,2004,18(2):42-46.
    [50]王启明,徐心诚,吴诗光,等.干旱胁迫对不同大豆品种苗期叶片渗透调节物质含量和细胞膜透性的影响[J].种子(Seed),2005,24(8):9-12.
    [51]陈卫元,曹晶,姜卫兵.干旱胁迫对红叶石楠叶片光合生理特性的影响[J].中国农学通报,2007,23(8):217-220.
    [52]王兰兰,张立军,陈贵.甘薯愈伤组织对干旱胁迫的生理反应研究[J].干旱地区研究,2007,25(1):143-148.
    [53]王启明,李方远,徐心诚,等.干旱胁迫对花荚期大豆叶片细胞膜透性和渗透调节物质含量的影响[J].河南农业科学,2005,8:39-42.
    [54]毛桂莲,哈新芳,孙婕,等.NaCl胁迫下枸杞愈伤组织可溶性蛋白含量的变化[J].宁夏大学学报(自然科学版),2005,26(1):64-66.
    [55] Heyser J W, Nabors M W. Growth, water content and soluble accumulation of two tobacco cell lines cultured on sodium chloride, dextran and polyethylene glycol[J]. Plant physiol, 1981, 68:1454-1459.
    [56]康俊梅,杨青川,樊奋成.干旱对苜蓿叶片可溶性蛋白的影响[J].草地学报,2005,13(3):199-202.
    [57]谭晓荣,胡韬纲,戴媛,等.不同干旱方式对小麦幼苗可溶性蛋白含量及总抗氧化力的影响[J].河南工业大学学报(自然科学版),2008,29(1):42-47.
    [58]张强,杨玉珍,彭方仁.干旱胁迫下不同种源香椿可溶性蛋白的动态变化[J].安徽农业科学,2009,37(1):65-66,71.
    [59]史玉炜,王燕凌,李文兵,等.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5-8.
    [60]王艳芳,崔震海,张立军,等.玉米籽粒灌浆期可溶性糖含量变化与可溶性蛋白积累关系的研究[J].辽宁化工,2006,35(1):9-12.
    [61]田晓艳,刘延吉,郭迎春.盐胁迫对NHC牧草Na+、K+、Pro、可溶性糖及可溶性蛋白的影响[J].草业科学,2008,25(10):34-38.
    [62]陈亚新,于健.考缺水滞后效应的作物-水模型研究[J].水利学报,1998,(4):70-74.
    [63]山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70-76.
    [64] Rosenthal W. D, Arkin G. F, Shouse P. J, et al. Water deficit effects on transpiration and leaf growth[J]. Agronomy Journal, 1987, 79(6): 1019-1026.
    [65] Carla Pinheiro, Jose Antnio Passarinho, Candido Pinto Ricardo. Effect of drought and rewatering on the metabolism of Lupinus albus organs[J]. Journal of Plant Physiology, 2004, 16:1203-1210.
    [66] MikaYamada, HiromasaMorishita, KaoruUrano ,et al. Effects of free proline accumulation in petunias under drought stress[J]. Journal of Experimental Botany, 2005, 56(417): 1975-1981.
    [67] Zhuang L, Chen Y N. Physiological responses of three contrasting plant species to groundwater level changes in an arid environment[J]. Journal of Integrative Plant Biology, 2006, 48 (5): 520-526.
    [68] Rosenthal W. D, Arkin G. F, Shouse P. J, et al. Water deficit effects on transpiration and leaf growth[J].Agronomy Journal, 1987, 79(6): 1019-1026.
    [69] Hinckley T M, Duhme F, Hinckley A R, et al. Water relations of drought land shrubs:Osmotic potential and stomatal reactivity[J]. Plant Cell and Environment. 1980, 3:131-140.
    [70] Hinckley T M., Teskey R O. Temperate Hardwood Forest[A]. Water Deficits and Plant Growth[C]. New York: Academic Press, 1981:153-208.
    [71]刘国志,王新建,崔俊昌,等.干旱胁迫对楸树嫁接苗部分生理生化指标的影响[J].安徽农业科学,2008,36(18):7546-7548.
    [72] Bai Wen-Bo, Li Pin-Fang, Li Bao-Guo, et al. Some Physiological Responses of Chinese Iris to Salt Stress[J]. Pedosphere, 2008,18(4):454-463.
    [73] Nathalie Breda, Roland Huc, Andre Granier, et al. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences[J]. Annals of Forest Science, 2006, 63 (6) :625–644.
    [74]谭勇,梁宗锁,安玉艳.冬季干旱胁迫下黄土高原三种常绿树种叶片渗透调节物质变化研究[J].水土保持研究,2007,14(3):70-73.
    [75] Irigoyen J.J, Einerich D.W, Sánchez-Díaz M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants[J]. Physiologia Plantarum, 2006,84(1):55-60.
    [76] Cui Ning-Bo, Du Tai-Sheng, Li Fu-Sheng, et al. Response of vegetative growth and fruit development to regulated deficit irrigation at different growth stages of pear-jujube tree[J]. Agricultural Water Management, 2009, 96(8):1237-1246.
    [77]唐光金.谐变供水下几种幼树的生长及生理特性研究[D].西北农林科技大学,2006:18-21.
    [78]王晶英,敖红,张杰,等.植物生理生化实验技术与原理[M].哈尔滨:东北林业大学出版社,2003:133-135.
    [79]蔡昆争,吴学祝,骆世明.不同生育期水分胁迫对水稻跟叶渗透调节物质变化的影响[J].植物生态学报,2008,32(2):491-500.
    [80] Chmielewski F.M, R?tzer T. Response of tree phenology to climate change across Europe[J]. Agricultural and Forest Meteorology, 2001, 108(2) :101–112.
    [81]梁爱华,马富裕,梁宗锁,等.旱后复水激发玉米根系功能补偿效应的生理学机制研究[J].西北农林科技大学学报(自然科学版),2008,36(4):58-64.
    [82] Efeoglu B, Ekmekci Y, Cicek N. Physiological responses of three maize cultivars to drought stress and recovery[J]. South African Journal of Botany. 2009,75:34-42.
    [83]鲍健寅,杨特武,冯蕊华,等.不同强度干旱胁迫后复水白三叶生长和生理特性恢复的研究[J].中国草地,1995,3:30-33.
    [84]邵艳军,山仑,李广敏.干旱胁迫与复水条件下高粱、玉米苗期渗透调节及抗氧化比较研究[J].中国生态农业学报,2006,14(1):68-70.
    [85] Beny Aloni, Gila Rosenshtein. Proline Accumulation: A Parameter for Evaluation of Sensitivity of Tomato Varieties to Drought Stress?[J]. Physiol.Plant, 1984, 61:231-235.
    [86] Ashraf M, Foolad R M. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59:206-216.
    [87] Shao H-B, Chu L-Y, Jaleel Cheruth Abdul, et al. Water-deficit stress-induced anatomical changes in higher plants[J]. Comptes Rendus Biologies, 2008, 331:215-225.
    [88]武勇,陈存及,刘宝,等.干旱胁迫下柚木叶片生理指标的变化[J].福建林学院学报,2006,26(2):103-106.
    [89] Ines Slama, Tahar Ghnaya, Arnould Savoure, et al. Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum[J]. Comptes Rendus Biologies, 2008, 331:442-451.
    [90]陈世苹,高玉葆,梁宇,等.水分胁迫下内生真菌感染对黑麦草叶内游离脯氨酸和脱落酸含量的影响[J].生态学报,2001,21(12):1964-1971.
    [91] Blum A, Adelina Ebercon. Genotypic Responses in Sorghum to Drought Stress. III. Free Proline Accumulation and Drought Resistance[J]. Crop Science Society of America, 1976, 16:428-431.
    [92]刘玉英,王三根,徐泽,等.不同茶树品种干旱胁迫下抗氧化能力的比较研究[J].中国农学通报,2006,22(4):264-268.
    [93]李云萌.植物抗旱生理研究概述.生态农业研究,1996,4(1):37-41.
    [94] O.L.朗格, L.卡彭, E.-D.舒尔策.水分与植物生活-问题与研究现状[M].科学出版社,1985:180-183.
    [95]张立军,胡文玉,戴俊英.渗透胁迫下玉米幼苗离体叶片膜透性变化机理的研究[J].沈阳农业大学学报,1996,27(3):207-210.
    [96]覃鹏,刘叶菊,刘飞虎.干旱胁迫对烟草叶片丙二醛含量和细胞膜透性的影响[J].亚热带植物科学,2004,33(4):8-10.
    [97] Ana E.Carmo-Silva, Alfred J.Keys, Micheal H.Beale, et al. Drought stress increases the production of 5-hydroxynorvaline in two C4 grasses[J]. Phytochemistry, 2009, 70(5):664-671.
    [98]张明生,谢波,谈锋,等.甘薯可溶性蛋白、叶绿素及ATP含量变化与甘薯抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
    [99]汤章城.植物对渗透胁迫和淹水胁迫的适应机制[C].余叔文.植物生理与分子生物学.北京:科学出版社,1999:739-752.
    [100]刘灵娣,李存东,高雪飞.干旱对不同铃重棉花不同区位果枝叶可溶性蛋白及脯氨酸含量的影响[J].华北农学报,2008,23(5):165-169.
    [101]郑海燕,王燕凌,廖康,等.土壤干旱胁迫对野生樱桃李叶片渗透调节物质的影响[J].新疆农业大学学报,2009,32(1):47-51.
    [102]王中英.果树抗旱生理[M].北京:中国农业出版社,2000:115-118.
    [103]杨淑慎,翁明阳,戴明,等.甜菜碱不同预处理时间下小麦幼苗对PEG-6000模拟干旱的响应[J].水土保持研究,2008,15(6):241-244.
    [104]王晶英,赵雨森,王臻.干旱胁迫对银中杨生理生化特性的影响[J].水土保持学报,2006,20(1):197-200.
    [105]葛体达,隋方功,白莉萍,等.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学,2005,38(5):922-928.
    [106]刘玲玲,李军,李长辉,等.马铃薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国马铃薯,2004,18(4):201-204.
    [107]李妮亚,高俊凤,汪沛洪.小麦幼苗水分胁迫诱导蛋白的特征[J].植物生理学报,1998,14(1):65-71.
    [108]陈鹏,张德玖,李玉红,等.水分胁迫对苦荞幼苗生理生化特性的影响[J].西北农业学报,2008,17(5):204-207.
    [109]张文婷,谢福春,王华田,等.3种园林灌木幼苗对干旱胁迫的生理响应[J].浙江林学院学报,2009,26(2):182-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700