用户名: 密码: 验证码:
含氟含铬废水及含铬废渣的综合处理处置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的迅速发展,工业废水废渣对环境造成的污染日趋广泛和严重,威胁人类的健康和安全。由于行业类型繁多、生产工艺过程各不相同,工业废水具有污染物种类繁多、水质波动幅度大、污染物毒性强、排放量大等特点。因此,工业废水处理方法因废水类型和污染物种类不同而不尽相同,需要根据不同的水质确定最合适的工艺流程,以便得到最佳的处理效果。而工业废水处理过程中所产生的污泥成分复杂,处理难度极大,若得不到妥善处理,难免会对环境造成二次污染。因此,工业污泥的无害化、减量化、资源化,已受到广泛的关注。本文针对某工业园区所产生的含氟废水、含铬废水及含铬废渣处理过程中存在的实际问题进行针对性研究,提出可行的技术解决方案。
     针对现有钙盐混凝沉淀除氟工艺存在的处理效果不理想、石灰用量大以及污泥量大的问题,对钙盐混凝沉淀法除氟机理和工艺参数进行理论分析和实验室小试研究。水溶液中溶解性的氟离子浓度与溶液的pH值和Ca2+的浓度有关,钙盐混凝沉淀法处理含氟废水出水氟离子浓度高于理论计算值的主要原因是受石灰溶解度的限制以及共存阴阳离子的影响。利用加载絮凝工艺处理含氟废水进行中试研究,将沉淀的污泥进行部分回流作为絮凝载体,显著的提高了除氟效果,出水氟离子浓度随污泥回流比的增加而降低。将三氯化铁混凝剂和聚丙烯酰胺PAM助凝剂联合使用,能够显著提高对CaF2颗粒的混凝效果,三氯化铁最佳投量范围0.10~0.20mmol/L,混凝过程中pH值最佳范围为8.0~8.5,PAM最佳投量范围为1~3mg/L。最佳工艺参数下进行运行试验,加载絮凝工艺对氟和浊度的去除率分别为96.31%、98.00%。
     化学还原沉淀法是含铬废水的常用处理工艺,对比考察了亚铁Fe(II)和亚硫酸盐S(IV)对六价铬Cr(VI)的氧化还原动力学,pH对氧化还原反应速率的影响,主要归因于对反应物和生成物的存在形态及氧化还原电位的影响,不同pH值下,不同形态的Cr(VI)和还原剂反应生成与pH值对应的生成物。Fe(II)还原Cr(VI)反应速率方程:-d[Cr(VI)]/dt=kobs[Cr(VI)][Fe(II)],其中表观速率常数lgkobs为pH值的二次函数,满足lgk_(obs)=6.61-3.38pH+0.43pH2(1.5     为了实现含铬废渣的无害化、减量化、资源化处置,降低和消除铬渣对水环境的二次污染,首先对铬渣的物理化学性质和酸浸出特性进行表征,含铬废渣具有强碱性,主要化学元素组成为CaO、MgO、Al2O3、Cr2O3、SiO2和Fe2O3,占总质量的90%以上。铬渣中总铬和Cr(VI)含量分别为2.28%、0.80%。铬渣中物相组成包括钙铁石(Ca2FeAlO5)、方镁石(MgO)、方解石(CaCO3)、白云石[CaMg(CO3)2]、水镁石[Mg(OH)2]、羟钙石[Ca(OH)2]和球霰石(CaCO3)。铬渣为具有浸出毒性的危险废物,有较大的酸中和能力,铬渣酸中和后pH值只与H+的投加量相关,无机酸阴离子种类对铬渣中总铬和六价铬的浸出产生影响,SO42-能将吸附于无定型金属氧化物上的CrO42-交换出来,增加了铬渣中铬的浸出量。
     对比考察了普通硅酸盐水泥、普通硅酸盐水泥掺加矿渣、普通硅酸盐水泥掺加粉煤灰、Ca(OH)2/矿渣、Na2SiO3/矿渣五种胶凝材料对铬渣的固定效果,结果表明:普通硅酸盐水泥对铬渣具有一定的固定效果,但对六价铬的固定主要为物理包裹,缺乏化学固定作用。普通硅酸盐水泥中掺入适量的矿渣可以显著的提高对铬的固定效果,矿渣替代普通硅酸盐水泥的最佳比例为45%。普通硅酸盐水泥中掺入粉煤灰对固化试件抗压强度和毒性浸出均产生不利影响。在对固化试件抗压强度要求不是很高的情况下,Ca(OH)2/矿渣为铬渣最佳固定材料,固化材料成本最低,且能满足较高铬渣掺量下具有较好的固定效果。Na2SiO39H2O/矿渣体系中Na2SiO39H2O配比的最佳范围为15%~25%,当铬渣掺量小于35%时,固化试件抗压强度较高且毒性浸出浓度非常低。铬渣掺量应控制在35%以内。利用Fe(II)湿法还原和Ca(OH)2/矿渣体系稳定固定化铬渣,经过Fe(II)还原后固化体固化效果显著提高,毒性浸出实验总铬浓度较单纯固定时大幅降低,六价铬均未检出。
     利用实验优化参数对工业园区废水处理工艺进行改造,改造后运行稳定,处理效果远优于原有常规处理工艺,总排放口各主要污染物指标均满足《污水综合排放标准》(GB8978-1996)一级标准,而且废水处理污泥产量大幅度降低,平均污泥产率比改造前常规工艺降低了39.6%,每吨废水处理运行成本降低了0.71元。最后,对工业园区废渣及污泥处理提出了可行的技术方案,采用稳定固定化方法处理具有良好的环保效益和经济效益。
With the rapid development of industry, environmental pollution caused by industrial wastewater and waste sludge has gradually become widespread and severe, threatening human health and safety. Due to various industry types and different manufacturing technological processes, the pollutant varieties of industrial wastewater are numerous, the water quality fluctuation range is large, the pollutant toxicity is strong and the discharge is huge. Therefore, the industrial wastewater treatment methods differ a lot according to different wastewater types and pollutant varieties and according to different water qualities, the most proper technological process shall be determined to obtain optimal treatment effect. However, the sludge components in the industrial wastewater treatment process are complex and the treatment difficulty is extremely huge. If they are not properly treated, it is easy to lead to secondary pollution of the environment. Therefore, the hazard-free treatment, reduction and reclamation of industrial sludge have been paid wide attention to. Specific to the practical problems of fluoride-containing wastewater, chromium-containing wastewater and chromium-containing waste residue in the treatment process in one industrial park, this paper put forward feasible technical solutions.
     Specific to the unsatisfactory treatment effect of defluorination using coagulation sedimentation by calcium salt, huge quantity of lime and large sludge quantity, theoretical analysis and laboratory bench-scale study were conducted on defluorination mechanism by calcium salt coagulation sedimentation and technological parameters. The concentration of soluble fluorine ion in aqueous solution was related to the pH value of solution and the concentrations of Ca2+. The concentration of effluent fluoride in fluoride-containing wastewater by calcium salt coagulation sedimentation was higher than the theoretical value. The major reason for this is the limits of lime solubility and the influence of coexistence of anion and cation. Ballasted flocculation process was utilized to treat fluoride-containing wastewater for pilot-scale study. Part of the precipitated sludge was recycled as flocculation carrier, which significantly improved the defluorination effect and the concentration of effluent fluorine ion decreased with the increase of sludge recycle ratio. Ferric chloride coagulant and PAM coagulant aids were jointly used, which could significantly improve the coagulation effect of CaF2particle. The optimal volume of ferric chloride ranged from0.10to0.20mmol/L, the optimal pH in the coagulation process ranged from8.0to8.5, and the optimal volume of PAM ranged from1to3mg/L. Under the optimal technological parameters, operation test was carried out and the mean defluorination and turbidity removal rate by ballasted flocculation process respectively were96.31%and98.00%.
     Chemical reduction precipitation method is a common treatment process of chromium-containing wastewater. This paper compared and investigated the influence of oxidation-reduction dynamics of Fe(II) and S(IV) on Cr(VI) as well as the influence of pH on oxidation-reduction reaction rate, mainly due to the influence of existing forms of reactants and products and oxidation-reduction potential, Cr(VI) of different pH values and forms and the reductant reaction product and the corresponding product of pH after the reaction. The reaction rate equation of Fe(II) on Cr(VI) is-d[Cr(VI)]/dt=kobs[Cr(VI)][Fe(II)], where apparent rate constantlgkobsis quadratic function of pH, satisfying lgk_(obs)=6.61-3.38pH+0.43pH2(1.5     Representation was made on the physicochemical property and acid leaching characteristics of chromium-containing waste slag and it showed a strong alkalinity. The major chemical elements included CaO, MgO, Al2O3, Cr2O3, SiO2and Fe2O3, accounting for over90%of the total mass. The contents of total Cr and Cr(VI) in COPR respectively were2.28%,0.80%. The phase composition of chromium-containing slag included Ca2FeAlO5, MgO, CaCO3, CaMg(CO3)2, Mg(OH)2, Ca(OH)2and CaCO3. chromium-containing slag was dangerous waste with leaching toxicity and owned great acid neutralization capacity. After acid neutralization of chromium-containing slag, pH was only relevant to the dosage of H+and the variety of inorganic acid anion had influences on the leaching of total Cr and Cr(VI) in chromium-containing slag. SO42-can replace CrO42-on metallic oxide in amorphous form, which could increase the leaching amount of Cr in chromium-containing slag.
     This paper compared and investigated the solidification effects of ordinary Portland cement, ordinary Portland cement with slag, ordinary Portland cement with fly ash, Ca(OH)2/slag and Na2SiO3/slag on chromium-containing slag. However, the solidification of Cr(VI) mainly was physical wrapping while lacked chemical fixation mechanism. Properly-adding slag in ordinary Portland cement could significantly improve Cr fixation effect and the optimal ratio of slag to ordinary Portland cement was45%. Adding fly ash in ordinary Portland cement could have adverse effects on the compressive strength and toxicity leaching of the solidification specimen. Under the low requirement of the compressive strength of the solidification specimen, Ca(OH)2/slag was the optimal fixation material of chromium-containing slag, which owned the lowest cost and could achieve better fixation effect under high dosage of chromium-containing slag. In the system of Na2SiO39H2O/slag, the optimal ratio of Na2SiO39H2O fell between15%~25%. When the dosage of chromium-containing slag was less than35%, the compressive strength of the solidification specimen was high and the concentration of toxicity leaching was extremely low. The dosage of chromium-containing slag shall be limited within35%. Fe(II) hydrometallurgical reduction and Ca(OH)2/slag system were used to stabilize and fix chromium-containing slag. After the reduction of Fe(II), the fixation effect of solidified specimen was improved significantly and the total Cr concentration in the toxicity leaching experiment decreased greatly compared with pure fixation and no Cr(VI) were detected.
     The transformation of wastewater treatment process in the industrial park was conducted according to the optimized experimental parameters. A more stable and better operational results were obtained compared with the original process. The effluent quality could meet the first grade nationnal discharge standard―integrated wastewater discharge standard‖(GB8978-1996). The sludge yield significantly reduced with the average sludge production ratio decreased by39.6%. Moreover, the operating costs per ton of wastewater reduced0.71yuan. Finally, a feasible technical treatment solution for residues and sludge in the industrial park was proposed and also a good environmental and economic benefits were gained by immobilized disposition.
引文
[1]瞿露,付宏祥,汪诚文,等.钙盐法处理太阳能电池生产含氟废水的污泥产量及成分研究[J].环境工程,2014,(01):147-152.
    [2]童浩.半导体行业含氟废水处理的研究[J].环境科学与管理,2009,34(07):75-77+82.
    [3]张小磊,何宽,马建华.氟元素对人体健康的影响[J].微量元素与健康研究,2006,23(06):66-67.
    [4] Tang Q Q, Du J, Ma H H, et al. Fluoride and children's intelligence: ameta-analysis [J]. Biological Trace Element Research,2008,126(1-3):115-120.
    [5] Camargo J A. Fluoride toxicity to aquatic organisms: a review [J].Chemosphere,2003,50(3):251-264.
    [6] Chang M F, Liu J C. Precipitation removal of fluoride from semiconductorwastewater [J]. Journal of Environmental Engineering-ASCE,2007,133(4):419-425.
    [7] Huang C J, Liu J C. Precipitate flotation of fluoride-containing wastewaterfrom a semiconductor manufacturer [J]. Water Research,1999,33(16):3403-3412.
    [8] Packham R F. Some studies of the coagulation of dispersed clays withhydrolyzing salts [J]. Journal of Colloid Science,1965,20(1):81-92.
    [9] Parthasarathy N, Buffle J, Haerdi W. Combined use of calcium salts andpolymeric aluminium hydroxide for defluoridation of waste waters [J]. WaterResearch,1986,20(4):433-448.
    [10] Yang M, Zhang Y, Shao B, et al. Precipitative removal of fluoride fromelectronics wastewater [J]. Journal of Environmental Engineering-ASCE,2001,127(10):902-907.
    [11] Aldaco R, Garea A, Irabien A. Calcium fluoride recovery from fluoridewastewater in a fluidized bed reactor [J]. Water Research,2007,41(4):810-818.
    [12] Lv L, He J, Wei M, et al. Factors influencing the removal of fluoride fromaqueous solution by calcined Mg–Al–CO3layered double hydroxides [J].Journal of Hazardous Materials,2006,133(1–3):119-128.
    [13] Lv L, He J, Wei M, et al. Treatment of high fluoride concentration water byMgAl-CO3layered double hydroxides: Kinetic and equilibrium studies [J].Water Research,2007,41(7):1534-1542.
    [14] Silva P T, Mello N T, Duarte M M, et al. Extraction and recovery ofchromium from electroplating sludge [J]. Journal of Hazardous Materials,2006,128(1):39-43.
    [15] Tang Y, Guan X, Wang J, et al. Fluoride adsorption onto granular ferrichydroxide: Effects of ionic strength, pH, surface loading, and majorco-existing anions [J]. Journal of Hazardous Materials,2009,171(1–3):774-779.
    [16] Zhao X, Wang J, Wu F, et al. Removal of fluoride from aqueous media byFe3O4@Al(OH)3magnetic nanoparticles [J]. Journal of Hazardous Materials,2010,173(1–3):102-109.
    [17] Drouiche N, Aoudj S, Hecini M, et al. Study on the treatment of photovoltaicwastewater using electrocoagulation: Fluoride removal with aluminiumelectrodes-Characteristics of products [J]. Journal of Hazardous Materials,2009,169(1-3):65-69.
    [18] Drouiche N, Lounici H, Drouiche M, et al. Removal of fluoride fromphotovoltaic wastewater by electrocoagulation and products characteristics[J]. Desalination and Water Treatment,2009,7(1-3):236-241.
    [19] Emamjomeh M M, Sivakumar M. An empirical model for defluoridation bybatch monopolar electrocoagulation/flotation (ECF) process [J]. Journal ofHazardous Materials,2006,131(1-3):118-125.
    [20] Emamjomeh M M, Sivakumar M. Fluoride removal by a continuous flowelectrocoagulation reactor [J]. Journal of Environmental Management,2009,90(2):1204-1212.
    [21] Emamjomeh M M, Sivakumar M. Fluoride removal by a continuous flowelectrocoagulation reactor [J]. Journal of Environmental Management,2009,90(2):1204-1212.
    [22] Essadki A H, Gourich B, Vial C, et al. Defluoridation of drinking water byelectrocoagulation/electroflotation in a stirred tank reactor with acomparative performance to an external-loop airlift reactor [J]. Journal ofHazardous Materials,2009,168(2-3):1325-1333.
    [23] Hu C Y, Lo S L, Kuan W H. Simulation the kinetics of fluoride removal byelectrocoagulation (EC) process using aluminum electrodes [J]. Journal ofHazardous Materials,2007,145(1-2):180-185.
    [24] Hu C Y, Lo S L, Kuan W H, et al. Removal of fluoride from semiconductorwastewater by electrocoagulation-flotation [J]. Water Research,2005,39(5):895-901.
    [25] Hu C Y, Lo S L, Kuan W H, et al. Treatment of high fluoride-contentwastewater by continuous electrocoagulation-flotation system with bipolaraluminum electrodes [J]. Separation and Purification Technology,2008,60(1):1-5.
    [26] Joshi V A, Nanoti M V. Removal of fluoride from fluoride contaminatedindustrial waste water by electrolysis [J]. Annali di Chimica,2003,93(9-10):753-760.
    [27] Kabay N, Arar O, Samatya S, et al. Separation of fluoride from aqueoussolution by electrodialysis: Effect of process parameters and other ionicspecies [J]. Journal of Hazardous Materials,2008,153(1-2):107-113.
    [28] Khatibikamal V, Torabian A, Janpoor F, et al. Fluoride removal fromindustrial wastewater using electrocoagulation and its adsorption kinetics [J].Journal of Hazardous Materials,179(1-3):276-280.
    [29] Mollah M Y A, Schennach R, Parga J R, et al. Electrocoagulation (EC)—science and applications [J]. Journal of Hazardous Materials,2001,84(1):29-41.
    [30] Neti N R, Kaul S N. Electrochemical treatment of wastewater from aphosphoric acid manufacturing plant [J]. Annali di Chimica,2003,93(9-10):777-782.
    [31] Shen F, Chen X M, Gao P, et al. Electrochemical removal of fluoride ionsfrom industrial wastewater [J]. Chemical Engineering Science,2003,58(3-6):987-993.
    [32] Zhao H Z, Yang W, Zhu J, et al. Defluoridation of drinking water bycombined electrocoagulation: effects of the molar ratio of alkalinity andfluoride to Al(III)[J]. Chemosphere,2009,74(10):1391-1395.
    [33] Zhu J, Zhao H Z, Ni J R. Fluoride distribution in electrocoagulationdefluoridation process [J]. Separation and Purification Technology,2007,56(2):184-191.
    [34] Zuo Q H, Chen X M, Li W, et al. Combined electrocoagulation andelectroflotation for removal of fluoride from drinking water [J]. Journal ofHazardous Materials,2008,159(2-3):452-457.
    [35] Kabay N, Arar O, Samatya S, et al. Separation of fluoride from aqueoussolution by electrodialysis: effect of process parameters and other ionicspecies [J]. J Hazard Mater,2008,153(1-2):107-113.
    [36] Eskandarpour A, Onyango M S, Ochieng A, et al. Removal of fluoride ionsfrom aqueous solution at low pH using schwertmannite [J]. Journal ofHazardous Materials,2008,152(2):571-579.
    [37] Toyoda A, Taira T. A new method for treating fluorine wastewater to reducesludge and running costs [J]. IEEE Transactions on SemiconductorManufacturing,2000,13(3):305-309.
    [38]闫秀芝,王淑芬. CaCl2+磷酸盐法处理含氟废水的探讨[J].环境保护科学,1998,(02):13-15.
    [39]韩建勋,贺爱国.含氟废水处理方法[J].有机氟工业,2004,(03):27-36.
    [40] Tang Y, Guan X, Wang J, et al. Fluoride adsorption onto granular ferrichydroxide: effects of ionic strength, pH, surface loading, and majorco-existing anions [J]. Journal of Hazardous Materials,2009,171(1-3):774-779.
    [41]纪柱.铬渣治理工程实用技术[M].北京:化学工业出版社,2011.
    [42]江澜,王小兰.铬的生物作用及污染治理[J].重庆工商大学学报(自然科学版),2004,21(04):325-328.
    [43]纪柱.铬渣的危害及无害化处理综述[J].无机盐工业,2003,35(03):1-4.
    [44] Saha R, Nandi R, Saha B. Sources and toxicity of hexavalent chromium [J].Journal of Coordination Chemistry,2011,64(10):1782-1806.
    [45] Shanker A K, Cervantes C, Loza-Tavera H, et al. Chromium toxicity inplants [J]. Environment International,2005,31(5):739-753.
    [46] Singh H, Mahajan P, Kaur S, et al. Chromium toxicity and tolerance in plants[J]. Environmental Chemistry Letters,2013,11(3):229-254.
    [47]何宝燕,尹华,彭辉,等.酵母菌吸附重金属铬的生理代谢机理及细胞形貌分析[J].环境科学,2007,28(01):194-198.
    [48] Cronje K J, Chetty K, Carsky M, et al. Optimization of chromium(VI)sorption potential using developed activated carbon from sugarcane bagassewith chemical activation by zinc chloride [J]. Desalination,2011,275(1–3):276-284.
    [49] Wen Y, Tang Z, Chen Y, et al. Adsorption of Cr(VI) from aqueous solutionsusing chitosan-coated fly ash composite as biosorbent [J]. ChemicalEngineering Journal,2011,175:110-116.
    [50] Gherasim C-V, Bourceanu G. Removal of chromium(VI) from aqueoussolutions using a polyvinyl-chloride inclusion membrane: Experimentalstudy and modelling [J]. Chemical Engineering Journal,2013,220:24-34.
    [51] Shi L-N, Zhang X, Chen Z-L. Removal of Chromium (VI) from wastewaterusing bentonite-supported nanoscale zero-valent iron [J]. Water Research,2011,45(2):886-892.
    [52] Pettine M, Tonnina D, Millero F J. Chromium(VI) reduction by sulphur(IV)in aqueous solutions [J]. Marine Chemistry,2006,99(1–4):31-41.
    [53] Erdem M, Tumen F. Chromium removal from aqueous solution by the ferriteprocess [J]. Journal of Hazardous Materials,2004,109(1–3):71-77.
    [54] Dermentzis K, Christoforidis A, Lazaridou A, et al. Removal of hexavalentchromium from electroplating wastewater by electrocoagulation with ironelectrodes [J]. Global Nest Journal,2011,13(4):412-418.
    [55] Wu L, Liao L, Lv G, et al. Micro-electrolysis of Cr (VI) in the nanoscalezero-valent iron loaded activated carbon [J]. Journal of Hazardous Materials,2013,254–255:277-283.
    [56] Masood F, Malik A. Hexavalent Chromium Reduction by Bacillus sp. StrainFM1Isolated from Heavy-Metal Contaminated Soil [J]. Bulletin ofEnvironmental Contamination and Toxicology,2011,86(1):114-119.
    [57] Field E, Gerlach R, Viamajala S, et al. Hexavalent chromium reduction byCellulomonas sp. strain ES6: the influence of carbon source, iron minerals,and electron shuttling compounds [J]. Biodegradation,2013,24(3):437-450.
    [58]董广霞,李莉娜,唐桂刚,等.中国含铬废物的来源、区域分布和处理现状及监管建议[J].中国环境监测,2013,29(06):196-199.
    [59]张汗泉,何东升,张翼.一种铬渣干法还原解毒工艺:中国,201210514144.X [P].2013-03-20.
    [60]隋智通,石玉敏,都兴红.工业废渣高温还原解毒铬渣新方法:中国.2008-03-12.
    [61]李先荣,王亭刚,马顺友.用一氧化碳解毒铬渣的方法:中国.2008-08-06.
    [62]赖红君.铬渣压块直接入高炉无害化处理方法:中国,201310081295.5
    [P].2013-05-29.
    [63]李刚.微波/生物质法解毒铬渣的研究[D];重庆大学,2007.
    [64]杨丽芳,王宜明,李理,等.微波辐照铬渣解毒的工艺研究[J].环境工程学报,2008,2(06):820-825.
    [65] Dermatas D, Chrysochoou M, Moon D H, et al. Ettringite-Induced Heave inChromite Ore Processing Residue (COPR) upon Ferrous Sulfate Treatment[J]. Environmental Science&Technology,2006,40(18):5786-5792.
    [66] Jagupilla S C, Moon D H, Wazne M, et al. Effects of particle size and acidaddition on the remediation of chromite ore processing residue using ferroussulfate [J]. Journal of Hazardous Materials,2009,168(1):121-128.
    [67] Moon D H, Wazne M, Dermatas D, et al. Long-term treatment issues withchromite ore processing residue (COPR): Cr6+reduction and heave [J].Journal of Hazardous Materials,2007,143(3):629-635.
    [68] Chrysochoou M, Ferreira D R, Johnston C P. Calcium polysulfide treatmentof Cr(VI)-contaminated soil [J]. Journal of Hazardous Materials,2010,179(1-3):650-657.
    [69] Chrysochoou M, Ting A. A kinetic study of Cr(VI) reduction by calciumpolysulfide [J]. Science of the Total Environment,2011,409(19):4072-4077.
    [70] Moon D H, Wazne M, Jagupilla S C, et al. Particle size and pH effects onremediation of chromite ore processing residue using calcium polysulfide(CaS5)[J]. Science of the Total Environment,2008,399(1-3):2-10.
    [71] Wazne M, Jappilla A C, Moon D H, et al. Assessment of calcium polysulfidefor the remediation of hexavalent chromium in chromite ore processingresidue (COPR)[J]. Journal of Hazardous Materials,2007,143(3):620-628.
    [72] Graham M C, Farmer J G, Anderson P, et al. Calcium polysulfideremediation of hexavalent chromium contamination from chromite oreprocessing residue [J]. Science of the Total Environment,2006,364(1-3):32-44.
    [73]刘会雄,黄守斌.西宁市铬渣综合治理项目工程设计[J].中国环保产业,2013,(5):67-69.
    [74]张淑玲,朱祖勇,袁晓宇,等.铬渣湿法解毒处理工艺在工程中的应用[J].环境卫生工程,2013,21(05):39-40.
    [75] He D, Liu H, Jiang C, et al. Microbial Detoxification of HexavalentChromium from Chromium-Containing Slag [J]. Journal of JishouUniversity (Natual Science Edition),2013,34(2):72-76.
    [76]谭怀琴,王贵学,赵由才,等.铬渣生物解毒实验[J].重庆大学学报(自然科学版),2006,29(09):102-105.
    [77]毛晖,周莉娜,曲东.微生物铁还原处理铬矿渣初步探索[J].西北农业学报,2006,15(02):164-166.
    [78]戴昊波,曹宏斌,李玉平,等.酸浸-生物法处理铬渣[J].过程工程学报,2006,06(01):55-58.
    [79] Shi C, Spence R. Designing of Cement-Based Formula forSolidification/Stabilization of Hazardous, Radioactive, and Mixed Wastes [J].Critical Reviews in Environmental Science and Technology,2004,34(4):391-417.
    [80] Qian G, Yang X, Dong S, et al. Stabilization of chromium-bearingelectroplating sludge with MSWI fly ash-based Friedel matrices [J]. Journalof Hazardous Materials,2009,165(1–3):955-960.
    [81] Chikhi M, Balaska F, Boudraa S, et al. Experimental Study of Stabilizationof Sludge Containing Toxic Metal by Hydraulic Binders [J]. Energy Procedia,2012,19:259-268.
    [82] Silva M, Mater L, Souza-Sierra M, et al. Small hazardous waste generatorsin developing countries: use of stabilization/solidification process as aneconomic tool for metal wastewater treatment and appropriate sludgedisposal [J]. Journal of Hazardous Materials,2007,147(3):986-990.
    [83] Katsioti M, Katsiotis N, Rouni G, et al. The effect of bentonite/cementmortar for the stabilization/solidification of sewage sludge containing heavymetals [J]. Cement and Concrete Composites,2008,30(10):1013-1019.
    [84] Huang W-J, Wu C-T, Wu C-E, et al. Ternary blends containing demercuratedlighting phosphor and MSWI fly ash as high-performance binders forstabilizing and recycling electroplating sludge [J]. Journal of HazardousMaterials,2008,156(1–3):118-122.
    [85]付永胜,欧阳峰.铬渣作水泥矿化剂的技术条件研究[J].西南交通大学学报,2002,37(01):26-28.
    [86]孟凡伟,朱元洪,肖勇,等.铬渣烧结炼铁的应用研究[J].环境科学与管理,2010,35(11):116-118+143.
    [87]肖汉宁,时海霞,陈钢军.利用铬渣制备微晶玻璃的研究[J].湖南大学学报(自然科学版),2005,32(04):82-87.
    [88] Desjardins C, Koudjonou B, Desjardins R. Laboratory study of ballastedflocculation [J]. Water Research,2002,36(3):744-754.
    [89]张帅,李军,陈瑜.加载絮凝沉淀工艺在水处理中的应用[J].给水排水,2009,35(S1):274-278.
    [90]卢建杭,刘维屏,郑巍.铝盐混凝去除氟离子的作用机理探讨[J].环境科学学报,2000,20(06):709-713.
    [91]卢建杭,王红斌,刘维屏.铝盐混凝法去除氟离子的一般作用规律[J].化工环保,2000,20(06):7-11.
    [92]王旭芳.给水处理新工艺池型计算绘图标准化设计研究[D];华中科技大学,2005.
    [93] Wu L, Forsling W. Surface Complexation of Calcium Minerals in AqueousSolution: III. Ion Exchange and Acid-Base Properties of Hydrous FluoriteSurfaces [J]. Journal of Colloid and Interface Science,1995,174(1):178-184.
    [94] Chang M F, Liu J C. Precipitation removal of fluoride from semiconductorwastewater [J]. Journal of Environmental Engineering-Asce,2007,133(4):419-425.
    [95] Sujana M G, Thakur R S, Rao S B. Removal of Fluoride from AqueousSolution by Using Alum Sludge [J]. Journal of Colloid and Interface Science,1998,206(1):94-101.
    [96] Aroua M K, Zuki F M, Sulaiman N M. Removal of chromium ions fromaqueous solutions by polymer-enhanced ultrafiltration [J]. Journal ofHazardous Materials,2007,147(3):752-758.
    [97]赵晓艳,刘丽君,聂湘平,等.利用对斑马鱼的在线监测实现对水体重金属铬污染的预警[J].给水排水,2009,35(06):20-23.
    [98] Muthukrishnan M, Guha B K. Effect of pH on rejection of hexavalentchromium by nanofiltration [J]. Desalination,2008,219(1–3):171-178.
    [99] Pugazhenthi G, Sachan S, Kishore N, et al. Separation of chromium (VI)using modified ultrafiltration charged carbon membrane and itsmathematical modeling [J]. Journal of Membrane Science,2005,254(1–2):229-239.
    [100] Hamadi N K, Chen X D, Farid M M, et al. Adsorption kinetics for theremoval of chromium(VI) from aqueous solution by adsorbents derived fromused tyres and sawdust [J]. Chemical Engineering Journal,2001,84(2):95-105.
    [101] Hu Z, Lei L, Li Y, et al. Chromium adsorption on high-performanceactivated carbons from aqueous solution [J]. Separation and PurificationTechnology,2003,31(1):13-18.
    [102] Mohan D, Singh K P, Singh V K. Removal of Hexavalent Chromium fromAqueous Solution Using Low-Cost Activated Carbons Derived fromAgricultural Waste Materials and Activated Carbon Fabric Cloth [J].Industrial&Engineering Chemistry Research,2005,44(4):1027-1042.
    [103]夏清.化学还原法处理含铬废水工艺条件研究[J].无机盐工业,2003,35(03):37-39.
    [104]张国栋,贾金平. pH值对含铬废水处理效果的影响研究[J].工业用水与废水,2006,37(05):44-46.
    [105] Pettine M, D Ottone L, Campanella L, et al. The reduction of chromium (VI)by iron (II) in aqueous solutions [J]. Geochimica Et Cosmochimica Acta,1998,62(9):1509-1519.
    [106]茹振修,刘夜月,柴路修,等.碱性条件下处理含氰含铬混合电镀废水[J].给水排水,2000,26(08):36-38+31.
    [107]茹增祺,郑彦宗.亚铁盐在碱性条件下还原六价铬的研究[J].电镀与环保,1993,13(05):17-18+11.
    [108] Buerge I J, Hug S J. Kinetics and pH Dependence of Chromium(VI)Reduction by Iron(II)[J]. Environmental Science&Technology,1997,31(5):1426-1432.
    [109] Puzon G J, Roberts A G, Kramer D M, et al. Formation of solubleorgano-chromium(III) complexes after chromate reduction in the presence ofcellular organics [J]. Environmental Science&Technology,2005,39(8):2811-2817.
    [110] Erdem M, Tümen F. A Study on Dissolution Properties of the Sludges fromCr(VI) Reduction–Precipitation Processes [J]. Journal of EnvironmentalScience and Health, Part A,2004,39(1):253-267.
    [111] Landrot G, Ginder-Vogel M, Livi K, et al. Chromium(III) oxidation by threepoorly-crystalline manganese(IV) oxides.1. Chromium(III)-oxidizingcapacity [J]. Environmental Science&Technology,2012,46(21):11594-11600.
    [112]匡少平.铬渣的无害化处理与资源化利用[M].北京:化学工业出版社,2006.
    [113]纪柱.治理铬渣的两个关键[J].无机盐工业,2004,(05):1-4.
    [114] Hillier S, Lumsdon D G, Brydson R, et al. Hydrogarnet: A host phase forCr(VI) in chromite ore processing residue (COPR) and other high pH wastes[J]. Environmental Science&Technology,2007,41(6):1921-1927.
    [115] Hillier S, Roe M J, Geelhoed J S, et al. Role of quantitative mineralogicalanalysis in the investigation of sites contaminated by chromite oreprocessing residue [J]. Science of the Total Environment,2003,308(1-3):195-210.
    [116] Chrysochoou M, Dermatas D. Application of the Rietveld method to assesschromium(VI) speciation in chromite ore processing residue [J]. Journal ofHazardous Materials,2007,141(2):370-377.
    [117]宋功保,刘福生,曹永革,等.坡缕石的红外光谱研究[J].岩石学报,1999,15(03):469-474.
    [118]段华波,黄启飞,王琪,等.危险废物浸出毒性的理论基础研究[J].环境科学研究,2005,18(S1):27-30.
    [119] Wazne M, Moon D H, Jagupilla S C, et al. Remediation of chromite oreprocessing residue using ferrous sulfate and calcium polysulfide [J].Geosciences Journal,2007,11(2):105-110.
    [120] Tinjum J M, Benson C H, Edil T B. Mobilization of Cr(VI) from chromiteore processing residue through acid treatment [J]. Science of the TotalEnvironment,2008,391(1):13-25.
    [121] Geelhoed J S, Meeussen J C L, Roe M J, et al. Chromium Remediation orRelease? Effect of Iron(II) Sulfate Addition on Chromium(VI) Leachingfrom Columns of Chromite Ore Processing Residue [J]. EnvironmentalScience&Technology,2003,37(14):3206-3213.
    [122] Batchelor B. Overview of waste stabilization with cement [J]. WasteManagement,2006,26(7):689-698.
    [123] Bulut U, Ozverdi A, Erdem M. Leaching behavior of pollutants inferrochrome arc furnace dust and its stabilization/solidification using ferroussulphate and Portland cement [J]. Journal of Hazardous Materials,2009,162(2–3):893-898.
    [124]张华,蒲心诚.碱矿渣水泥基铬渣固化体的性能研究[J].重庆环境科学,1999,21(03):46-48.
    [125] Conner J R, Hoeffner S L. A critical review of stabilization/solidificationtechnology [J]. Critical Reviews in Environmental Science and Technology,1998,28(4):397-462.
    [126] Singh T S, Pant K K. Solidification/stabilization of arsenic containing solidwastes using portland cement, fly ash and polymeric materials [J]. Journal ofHazardous Materials,2006,131(1-3):29-36.
    [127] Dutré V, Vandecasteele C. An evaluation of the solidification/stabilisation ofindustrial arsenic containing waste using extraction and semi-dynamic leachtests [J]. Waste Management,1996,16(7):625-631.
    [128] Mulligan C N, Yong R N, Gibbs B F. Remediation technologies formetal-contaminated soils and groundwater: an evaluation [J]. EngineeringGeology,2001,60(1–4):193-207.
    [129]付兴华,侯文萍,杨春霞,等.提高矿渣水泥中矿渣掺量的试验研究[J].水泥工程,1997,(03):27-30+61.
    [130]许柱,何莉苹,朱荣卫.粉煤灰处理含铬废水的研究进展[J].粉煤灰,2010,24(06):40-41.
    [131]张长森.机械活化粉煤灰性能的研究[J].粉煤灰综合利用,2003,(05):19-21.
    [132]任书霞,要秉文,王长瑞.粉煤灰活性的激发及其机理研究[J].粉煤灰综合利用,2008,04):50-52.
    [133]袁润章.胶凝材料学[M].武汉:武汉理工大学出版社,2006.
    [134]史才军.碱-碱激发水泥和混凝土[M].北京:化学工业出版社,2008.
    [135] Shi C J, Fernandez-Jimenez A. Stabilization/solidification of hazardous andradioactive wastes with alkali-activated cements [J]. Journal of HazardousMaterials,2006,137(3):1656-1663.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700