用户名: 密码: 验证码:
大白菜随体单体、三体及其二倍体的光合作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以植株在营养和生殖生长时期均有较大差异的大白菜随体单体、三体和二倍体为试材,利用英国PP-systems公司生产的Ciras-2型便携式光合测定系统,在自然条件下,活体测定其净光合速率、光合速率日变化和光强对光合速率的响应曲线;并且对其功能叶叶片的叶绿素含量、希尔反应活性、可溶性蛋白质含量、Rubisco活性以及叶部性状进行了分析;结合三株系在大白菜收获期几个有关营养品质指标维生素C含量、可溶性糖含量和干/鲜重比的测定,研究随体染色体的缺失或附加是如何影响大白菜的生长发育,进而为利用非整倍体材料进行大白菜高光效育种或品种改良提供理论依据和实践指导。主要结果如下:
     1.随体染色体的缺失或附加对大白菜的光合速率都产生不同程度的负效应。但在大白菜的生殖生长阶段,缺失比附加一条随体染色体对大白菜光合速率的负效应更大;而在营养生长阶段,附加比缺失一条随体染色体对大白菜光合速率的负效应更大。即在大白菜的不同生长发育阶段,缺失或附加一条随体染色体对大白菜的影响程度不同。
     2.随体单体、三体和二倍体光合速率日变化在营养生长阶段表现相似,均呈典型的双峰曲线。而在生殖生长时期,随体单体和三体中午光合速率下降幅度小于二倍体,随体单体的“光合午休”现象不明显。
     3.生殖生长阶段,随体单体的光饱和点和光补偿点分别为1397μmol·m~(-2)·S~(-1)和67.7μmol·m~(-2)·S~(-1);随体三体的光饱和点和光补偿点分别为1370μmol·m~(-2)·S~(-1)和60.7μmol·m~(-2)·S~(-1);二倍体的光饱和点和光补偿点分别为1285μmol·m~(-2)·S~(-1)和48.4μmol·m~(-2)·S~(-1)。营养生长阶段,随体单体的光饱和点和光补偿点分别为905μmol·m~(-2)·S~(-1)和87.7μmol·m~(-2)·S~(-1);随体三体的光饱和点和光补偿点分别为867.5μmol·m~(-2)·S~(-1)和83.9μmol·m~(-2)·S~(-1);二倍体的光饱和点和光补偿点分别为927.5μmol·m~(-2)·S~(-1)和59.7μmol·m~(-2)·S~(-1)。
     4.随体染色体的缺失或附加对叶绿素含量有正效应。对叶绿素a/b的比值有负效应,提高了类囊体垛叠的程度。可以把叶绿素a/b比值作为高光效育种材料的一个初选指标。
     5.随体染色体的缺失或附加对希尔反应和Rubisco活性均有负效应。对可溶性蛋白含量的影响不大。希尔反应活性和Rubisco活性的降低是引起随体单体、三体光合速率降低的直接原因。
     6.随体染色体的缺失或附加对大白菜叶片的叶片结构产生影响。使叶肉细胞排列紧密,细胞胞间隙变小,栅栏组织与海绵组织的比例升高。对气孔密度和大小也有一定的影响,但在大白菜生长的不同时期,影响结果也不同。
     7.随体染色体的缺失或附加对大白菜的营养品质有一定的影响,极显著的提高了Vc的含量,但不利于糖和干物质的积累。
In this experiment,sat-monosome,diploid and sat-trisome of Chinese Cabbage with different characteristics were chosen as the materials.In order to find out how the sat-chromosome additioning or droping affected the Chinese Cabbage growing,Several index of their functional leaves were measurd by the use of the British PP-systems corporation, such as net photosynthetic rate(Pn),diurnal change of Pn,the response curve of PAR to Pn ,chlorophyll content,Hill reaction activity,soluble protein,Rubisco activity,leaf anatomical structure and the ascorbic acid,soluble sugar and dry/fresh weight at their harvesting stages.And some theoritic foundation and practical guidance would be received through this study and helped to realize high-photosynthetic efficiency breeding using the aneuploid plant. The main results are as follows:
    1. Compard to diploid,the additioning or dropping of sat-chromosome had a negtive effect on the photosynthetic rate(Pn).But the Pn of sat-trisome was higher than that of sat-monosome at the reproductive growing stage .However, at the nutritive growing stage the Pn of sat-monosome was higher than that of sat-trisome.
    2. The curves of diurnal change of Pn of three lines were similar,all showed typical two peaks at the nutritive growing stage.But at the reproductive growing stage ,the decline scope of Pn of monosome and trisome was smaller than diploid at noon.monosome showed an unconspicuous "noon sleep".
    3. At the reproductive growing stage,the light compensation point(LCP)and the light saturation point(LSP)of sat-monosome is 67.7μmol·m-2·s-1 and 1397μmol·m-2·s-1; 60.7μmol·m-2·s-1 and 1370μmol·m-2·s-1 in sat-trisome; 48.4μmol·m-2·s-1and 12.85μmol·m-2·s-1 in diploid. At the nutritive growing stage ,The LCP and LSP of sat-monosome is 87.7μmol·m-2·s-1 and 905μmol·m-2·s-1 ;83.9μmol·m-2·s-1 and 867.5μmol·m-2·s-1 in sat-trisome; 59. 7μmol·m-2·s-1 and 927.5 μmol·m-2·s-1 in diploid.
    4. The additioning or dropping of sat-chromosome had a positive effect on chlorophyll content and a negative effect on chla/b and boosted the degree of thylakoid stacking.chla/b can be used as a primary choice character for high photosynthetic efficiency breeding materials.
    5. The additioning or dropping of sat-chromosome had a negtive effect on Hill reaction activity and Rubisco activity,a little effect on soluble protein . The decline of Hill reaction activity and Rubisco activity were the direct factors resulting in low photosynthetic rate of sat-monosome and sat-trisome.
    6. The additioning or dropping of sat-chromosome affected the leaf anatomical
    
    
    
    structure.More tightly arranged mesophyll cell and less porosity were observed in them and the ratio of palisade tissue to spongy tissue went up.The density and size of stoma had also been affected.
    7. The additioning or dropping of sat-chromosome had some effects on the nutritive quality of Chinese Cabbage,a positive effect on Vc content and a negtive effect on soluble sugar and dry weight.
引文
[1] 黄卓辉,余志心主编.小麦光合作用的初步研究[A].小麦丰产研究论文集[C].上海:科学技术出版社,1962,166~172.
    [2] 刘振业,刘贞琦.光合作用的遗传与育种[M].贵阳:贵州人民出版社,1984.
    [3] 武维华,植物生理学[M].北京:科学出版社,2003.
    [4] Ris Hans, Plaut Walter. Ultrastructure of DNA-containing areas in the chloroplast of chlamydomonas[J]. J CellBiol., 1962, 13: 383~391.
    [5] Whitfeld P R, Bottomley W. Organization and structure of chloroplast genes. Ann. Rev. Plant Physiol[J]. 1983, 34: 279~310.
    [6] Bedbrook J R, Coen D M, Beaton A R, et al. Location of the single gene for the large subunit of ribulosebisphosphate carboxylase on the Maiz chloroplast chromosome[J]. J Biol. Chem., 1979, 254: 905~910.
    [7] Dyer TA. In Oxford Survey of Plant & Cell Biology Vol 2. PP147 Oxford University Press, 1985.
    [8] Hagemann. In Genetics aspects of photosynthesis[R], Clod spring harbor press, 1975: 115~118.
    [9] Herrmann R G. In chloroplast development[R], Clod spring harbor press, 1978: 221~237.
    [10] Austin R B, Morgan C L, Ford M A, et al. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species[J]. Ann. Bot., 1982, 49: 177~189.
    [11] Planchon C, Fesquet J. Effect of the D-genome and of selection on photosynthesis in wheat[J]. Thero. Appl. Genet., 1982, 61: 359~365.
    [12] Evans J R, Seemann J R. Differences between wheat genotypes in specific activity of RuBP carboxylase and the relationship to photosynthesis[J]. Plant Physiol., 1984, 74, 759~765.
    [13] Jellings AJ, Leech B M, Leech R M. Location of chromosomes control of RuBP carboxylase amount inwheat[J]. Mol. Gen. Gent., 1983, 192: 272~274.
    [14] Haour-lurton B, Planchon C. Role of D-genome chromosome in photosynthesis expression in wheats[J]. Theor, Apple, Genet, 1985, 69: 443~446.
    [15] Watanake N, Effect of genome and ploidy on photosynthesis of wheat[J]. Euphytica, 1997, 94:303~309.
    [16] 陆尔杰,马国英,等.小麦A、D染色体组对羧化酶活性及含量的影响.第三界青年作物遗传育种学术会论文集[C].北京:中国农业科技出版社,1994,337~343.
    [17] Miginiac-Maslow M, Hoaram A. Hill reaction studies with protoplasts from cultivated wheats and their wildrelatives[J]. Z.Pflanzenphysiol., 1979, 95: 95~104.
    [18] Zelenski M I, Mogileva G, et al. Hill reaction of chloroplasts from some species, varieties and cultivar of wheat[J]. Photosynthetic, 1978, 12: 428~435.
    [19] Dean C, Leech R M. The coordinated synthesis of the large and small subunits of ribulose bisphosphate carboxylase duiing early cellular development within a seven day wheat leaf [J]. FEBS Lett, 1982, 140: 113~116.
    [20] Dean C, Leech R M. The coordinated synthesis of the large and small subunits of ribulose bisphosphate carboxylase in a wheat line with alien cytoplasm [J]. FEBS Lett, 1982, 144: 154~156.
    [21] 万寅生,刘惠吉.二倍体与四倍体矮脚黄白菜光合特性比较[J].中国蔬菜,1988(1):38~39.
    [22] 张荣铣,戴新宾,许晓明,等.A、D组染色体对普通小麦光合碳同化特性的研究[J].遗传学报,1999,(6):683~689.
    
    
    [23] 张荣铣,程在全,马万山,等.不同染色体组小麦种叶片全展后光合速率及叶绿素含量的变化[J].江苏农业学报,1990,(1):1~9.
    [24] 张荣铣,陆京杰,马国英,等.Rht3基因及带有Rht3基因的4B染色体对普通小麦光合碳同化特性的影响[J].遗传学报,1995,(4):264~271.
    [25] 迟伟,焦得茂,黄雪清,等.转基因水稻的光合生理特性[J].植物学报,2001,43(6):657~660.
    [26] 徐克章,苗以农.大豆光合生理生态的研究 第3报 大豆叶形态解剖特征与光合作用速率[J].大豆科学,1983,2(3):169~173.
    [27] Bunce, J. A., 1988, Photosyn. Res., 15: 75~83.
    [28] Hesketh, J. D. etal., 1981, Photosyn. Res., 2: 21~30.
    [29] 郝乃斌,戈巧英,杜维广.大豆高光效育种光合生理研究进展[J].植物学通报.1991,8(2):13~19.
    [30] 王华,徐建章.大豆品种叶部性状与光合速率关系的研究[J].大豆科学,1988,7(4):255~267.
    [31] 苗以农,徐克章.大豆光合生理生态的研究 第6报 不同品种大豆叶片解剖的研究[J].大豆科学,1986,5(3):169~173.
    [32] Domhoff G. M., Shibles R. M., Varietal differences in net photosynthesis of soybean leaves[J]. Crop Sci., 1970, (10): 42~45.
    [33] Brinkman M A, Fery KJ, Flag leaf physiological analysis of oat isolines that differ in grain yield from their recurrent parents[J]. Crop Sci., 1978, 18: 69~73.
    [34] McClenden JH, The relationship between the thickness of deciduous leaves and their maximum photosynthetic rate[J]. Amer. J. Bot., 1962, 49: 320~322.
    [35] Delaney R H, Dobrenz A K, Morphological and anatomical features of alfalfa leaves as related to CO_2 exchange[J]. Crop Sci., 1974, 14: 444~447.
    [36] 张荣铣,朱根海.三个大豆品种光合特性的差异[J].植物生理学报,1986,12(3):259~265.
    [37] 匡廷云等.1980,光合作用研究进展,第二集,科学出版社.
    [38] 王文江.果树光合作用研究概况[D].1990.
    [39] 李家文,王贵臣,李惠芬,等.白菜光合作用的初步研究[J].园艺学报,1963,2(3):271~282.
    [40] 郑广华.植物栽培生理[D].山东科学技术出版社,1980,
    [41] Schaffer, B. J. A. Barden, J. M. Williams. Net phosynthesis, dark respiration, stomatal conductance, specific leaf weight and chlo-rophyll content of strawberryplants asinfluenced by fruiting[J]. J. Amer. Soc. Hort. Sci, 1986, 111(1): 82~86.
    [42] 余叔文.植物生理与分子生物学[D].北京:科学出版社,1998.
    [43] 陈根云,廖有刚,李立人.光和蛋白合成抑制剂对水稻Rubisco大、小亚基和Rubisco亚基结合蛋白基因表达的影响[J].植物生理学报,1993,19(3):243~249.
    [44] Hartman, F. C. et al., in Photosynthesis Ⅳ Regulation of carbon metabolism (Ed. Akoyounoglou,G.)[J]. Philadelphia, Balabanlnt. Sci. Serv, 1981, 17~29.
    [45] Lorimer, C. H. & Mizirko, H. M., Biochemistry, 1980(19): 5321~5328.
    [46] Mizirko, H. M. & Lorimer, C. H., Ann. Rev. Biochem., 1983(52): 507~535.
    [47] 王仁雷,魏锦城.杂交稻及三系生育过程中RUBP羧化酶及有关光合酶的变化[J].作物学报,1996,22(1):6~12.
    [48] Dean C, Leech R M. Genome expression during normal leaf development. I Direct correlation between ribulose bisphosphate carboxylase content and nuclear ploidy in a polyploid series of wheat[J]. Plant Physiol., 1982, 70: 1605~1608.
    [49] Kawashima N, Wildman S G. Fraction Ⅰ protein, Annu Rev[J]. Plant Physiol., 1970, 21:325~328.
    
    
    [50] 魏锦城,Agata Wa-Ichi.水稻叶片生育过程中Rubisco活性与光合、光呼吸的关系[J].植物生理学报,1994,20(3):285~292.
    [51] 肖凯,谷俊涛,张荣铣,等.杂种小麦光合特性的初步研究[J].作物学报,1997,7:425~431.
    [52] Patterson T G, Moss D N, Brun W A, Enzymatic changes during the senescence of field-grown wheat, Crop Sci., 1980, 20: 15~18.
    [53] Wittenbach V A, Ackerson R C, Giaquinta R T, et al. Changes in photosynthesis ribulose bisphosphase carboxylase, proteolytic activity and ultrastructure of soybean leaves duiring senescence[J]. Crop Sci., 1980, 20: 225~231.
    [54] 高忠,张荣铣.植物叶片中RUBP羧化酶/加氧酶及光反应机构衰老机理的研究进展[J].南京农业大学学报,1995,26~33.
    [55] 何启伟.十字花科蔬菜育种[M].北京:农业出版社,1993.
    [56] 杨广东,李燕娥,石跃进,等.蔬菜的雄性不育与基因工程[J].长江蔬菜,2001(4):28~30.
    [57] 郭晶心,孙日飞,宋家洋,等.大白菜雄性不育系小孢子发生的细胞形态学研究[J].园艺学报,2001,28(5):409~414.
    [58] 梁燕,王鸣,赵稚雅.结球白菜同核异质雄性不育系同工酶研究[J].园艺学报,1994,21(3):264~268.
    [59] 杨广东,朱祯等.转基因大白菜外源基因的遗传和表达初步研究[A].中国园艺学会第九界学术年会论文集[C].北京:中国科学技术出版社,2001,237~241.
    [60] 胡延吉,赵檀方.小麦光合作用的遗传和改良潜力的初步研究[J].中国农业科学,1995,28(增):14~21.
    [61] 张振贤,梁书华,陈利平.田间大白菜光合速率日变化与“午睡”现象的研究[J].植物学报,1994,36(增刊):97~101.
    [62] 魏岷,吴淑芸,张启沛.大白菜小株采种种株的光合特性[J].园艺学报,1998,25(2):159~164.
    [63] 申书兴,陈苏,李振秋,等.四倍体大白菜小孢子培养获得初级三体的细胞学观察[J].园艺学报,2000,27(2):145~147.
    [64] 沈伟其.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯,1988(3):62~64.
    [65] 薛应龙主编.植物生理实验手册[M].上海:上海科学技术出版社,1985.
    [66] 李合生,孙群,赵世杰,等.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000.
    [67] 刘文革,阎志红,王鸣.不同染色体倍性西瓜光合速率日变化的研究[J].中国西瓜甜瓜,2003,(2):4~6.
    [68] Bjorkman O., et al. Photosynthetic adaptation to light intensity in plants native to shaded and exposed habitats[J]. Physiol. Plant, 1966, 19: 854~859.
    [69] Blankman G. E., et al. Physiological and ecological studies in the analysis of plant environment Ⅸ. Ataptative changes in the vegatative growth and development of Helianthus annuus induced by an alteration in light level[J]. Ann. Bot, 1954, 18: 71~94.
    [70] Anderson J M, Aro E M, Grana stacking and protein of photosystem Ⅱ in thylakoid membranes of higher plant leaves under sustained light irradiance: an hypothesis [J]. Phorosynth Res 1994, 41:315~326.
    [71] 陈晓英.高温对适应于不同光强的玉米和大豆叶片的光破坏防御机制的影响[D].山东,山东农业大学硕士论文,2003,6.
    [72] Dean C, Leech R M. Genome expression during normal leaf development. I Direc correlation between ribulose bisphosphate carboxylase content and nucear ploidy in a polyploid series of
    
    wheat[J]. Plant Physiol., 1982, 70: 1606~1608.
    [73] Kawashima N, Wildman S G. Fraction Ⅰ protein[J]. Annu Rev Plant Physiol., 1970, 21: 325~328
    [74] 李小娟,赵玉新,肖凯,等.小麦B染色体组双端体光合性能的初步研究[J].河南科学,1999,17:35~38.
    [75] 余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,2003.
    [76] 朱凤绥,傅骏华,李连城,等.水稻×高粱远缘杂种的细胞学研究[J].中国农业科学,1988,(4):26~29.
    [77] 张振贤,郑国生,赵德婉.大白菜光合作用特性的研究[J].园艺学报,1993,20(1):38~44.
    [78] 蒋观敏,罗耀武,李咭浩.同源四倍体高粱不育系和保持系的生物学及生理特性研究[J].作物学报,2000,26(4):444~448.
    [79] 梅振安.离体叶绿体中不同叶绿素a/b比与光合磷酸化活性的关系[J].植物生理学报,1965,2(3):179~184.
    [80] 娄义龙,刘振业,刘贞琦,等.烟草光合作用的遗传研究Ⅳ叶绿素含量的遗传及其与产量的关系[J].贵州农学院学报,1994,13(2):1~7.
    [81] 郭培国,李明启.杂交水稻及其亲本光合特性的研究Ⅱ功能叶片的希尔反应、光合磷酸化、ATP酶活性和ATP含量[J].热带亚热带植物学报,1997,5(1):65~70.
    [82] 朱长甫,王英典,苗以农.大豆叶片希尔反应活性与酰脲的关系[J].吉林农业科学,1990,(3):32~34.
    [83] 郭蔼光.基础生物化学[M].北京.兴界图书出版公司.1997.
    [84] 程祝宽,杨学明,于恒秀,等.水稻随体染色体的研究[J].遗传学报,1998,25,(3):225~231.
    [85] 伏军,徐庆国,周文新.水稻与高粱远缘杂交育种若干问题探讨[J].湖南农业大学学报,1997,23(6):509~514.
    [86] 张赞平,侯小改,王进涛.两种栽培丝瓜的核型分析[J].河南科学,1996,14(增刊):49~52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700